Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 13, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LIMIT BEHAVIOR OF MONOTONE AND CONCAVE SKEW-PRODUCT SEMIFLOWS WITH APPLICATIONS

BIN-GUO WANG

ABSTRACT. In this article, we study the long-time behavior of monotone and concave skew-product semiflows. We show that if there are two strongly ordered omega limit sets, then one of them is a copy of the base. Thus, we obtain a global attractor result. As an application, we consider a delay differential equation.

1. INTRODUCTION

Recently, monotone skew-product semiflows generated by nonautonomous systems, in particular almost periodic systems, have extensively investigated, see [3, 5, 6, 7, 8, 9, 10]. Hetzer and Shen [3] considered the convergence of positive solutions of almost periodic competitive diffusion systems. Jiang and Zhao [5] established the 1-covering property of the omega limit set for monotone and uniformly stable skew-product semiflows with the componentwise separating property of bounded and ordered full orbits, which is an important property for considering the long-time behavior of skew-product semiflows. Novo et al [6, 7, 8] considered the skew-product semiflow generated by almost periodic systems. Under the assumption that there existed two strongly ordered minimal subsets or completely strongly ordered minimal subsets, a complete description of the long-time behavior of the trajectories was given and a global picture of the dynamics was provided for a class of monotone and convex skew-product semiflows. Zhao [10] proved a global attractivity theory for a class of skew-product semiflows.

In conclusion, the properties of the omega limit set of skew-product semiflows, especially its structure, play an important role in considering the convergent behavior of the orbit. Shen and Yi [9] told us if the omega limit set \mathcal{O} is linearly stable, then there exists an integral number N such that \mathcal{O} is the (N-1)-almost periodic extension; i.e., there exists a subset $Y_0 \subset Y$ (the definition of Y see Section 2) such that for any $g_0 \in Y_0$, $\operatorname{card}(\mathcal{O} \cap \pi^{-1}(g_0)) = N$ (π is the natural projector). If it is uniformly stable, then it is the extension of Y; i.e., $\operatorname{card}(\mathcal{O} \cap \pi^{-1}(g)) = N$ for any $g \in Y$. This is not enough to understand the structure of the omega limit set thoroughly. If we can obtain the conclusion that \mathcal{O} is the copy of the base Y; i.e., $\operatorname{card}(\mathcal{O} \cap \pi^{-1}(g)) = 1$ for any $g \in Y$, it would give a complete description

²⁰⁰⁰ Mathematics Subject Classification. 34C12, 34D08, 34D45.

Key words and phrases. Monotone; skew-product semiflow; attractor;

almost periodic equation.

^{©2015} Texas State University - San Marcos.

Submitted October 21, 2013. Published January 19, 2015.

B.-G. WANG

for the long-time behavior of the orbit. For this purpose, under the assumption of the existence of two completely strongly ordered omega limit sets and motivated by [6, 7], we deduce that one of them is an equilibrium point set if monotonicity and concavity are satisfied. Naturally, it is a copy of the base. Furthermore, we establish the convergent results for skew-product semiflows.

This article is organized as follows. In Section 2, we present some definitions and notation of skew-product semiflows. In Section 3, we establish global attractor results and consider an almost periodic delay differential equation.

2. Preliminaries

Let (Y, d) be a compact metric space. A continuous flow (Y, σ, \mathbb{R}) is defined by a continuous mapping $\sigma : Y \times \mathbb{R} \to Y$, $(g, t) \mapsto \sigma(g, t)$, which satisfies (i) $\sigma_0 = id$, (ii) $\sigma_t \cdot \sigma_s = \sigma_{t+s}$, for all $t, s \in \mathbb{R}$, where $\sigma_t(g) := \sigma(g, t) = g \cdot t$ for $g \in Y$ and $t \in \mathbb{R}$ with $g \cdot 0 = g$ and $g \cdot (s+t) = (g \cdot s) \cdot t$. A continuous flow (Y, σ, \mathbb{R}) is **distal** if for any two distinct points g_1 and g_2 in Y, $\inf_{t \in \mathbb{R}} d(\sigma(g_1, t), \sigma(g_2, t)) > 0$.

A semiflow (X, Φ, \mathbb{R}^+) on Banach space X is a continuous map $\Phi : X \times \mathbb{R}^+ \to X$, $(x,t) \mapsto \Phi(x,t)$, which satisfies (i) $\Phi_0 = id$, (ii) $\Phi_t \cdot \Phi_s = \Phi_{t+s}$, where $\Phi_t(x) := \Phi(x,t)$ for $x \in X$ and $t \ge 0$.

A compact, positively invariant subset S of a semiflow (X, Φ, \mathbb{R}^+) is **minimal** if it contains no nonempty, closed and proper positively invariant subset. If X itself is minimal, then (X, Φ, \mathbb{R}^+) is called minimal semiflow.

In this article, we assume that (X, X^+) is an ordered Banach space with $X^+ \neq \emptyset$, where X^+ denotes the interior of the cone X^+ . For $x, y \in X$, we write $x \leq y$ if $y - x \in X^+$; x < y if $y - x \in X^+ \setminus \{0\}$; $x \ll y$ if $y - x \in int X^+$. In addition, the norm of Banach space X is **monotone**, namely, if $0 \leq x \leq y$, then $||x|| \leq ||y||$ (see [7]).

The ordering on X induces the ordering on $Y \times X$ in the following way:

$$(g, x) \le (g, y) \Leftrightarrow y - x \in X^+, \quad \forall g \in Y,$$

$$(g, x) < (g, y) \Leftrightarrow y - x \in X^+, \ x \ne y, \quad \forall g \in Y,$$

$$(g, x) \ll (g, y) \Leftrightarrow y - x \in \text{int } X^+, \quad \forall g \in Y.$$

Consider a skew-product semiflow: $\Pi : \mathbb{R}^+ \times Y \times X \to Y \times X$,

$$(t, g, x) \mapsto (g \cdot t, u(t, g, x)). \tag{2.1}$$

We assume that (Y, σ, \mathbb{R}) is a minimal flow defined by $\sigma : Y \times \mathbb{R} \to Y$, $(g, t) \mapsto g \cdot t$ and u is locally C^1 in $x \in X$; that is, u is C^1 in x, and u_x is continuous in $g \in Y$, t > 0 in a neighborhood of each compact subset of $Y \times X$. Moreover, for any $v \in X$, $\lim_{t\to 0^+} u_x(t, g, x)v = v$ uniformly in every compact subset of $Y \times X$. Sometimes, we also use the notation $\Pi_t(g, x) \equiv \Pi(t, g, x)$. We denote $\pi : Y \times X \to Y$ as the natural projection.

The forward orbit of (g_0, x_0) is written as

$$O(g_0, x_0) = \{ \Pi(t, g_0, x_0) : t \ge 0 \}.$$

If $u(t, g_0, x_0)$ is convergent as $t \to \infty$, we can define the omega limit set of (g_0, x_0) as

$$\mathcal{O}(g_0, x_0) = \{ (g, x) \in Y \times X : \exists t_n \to \infty \text{ such that } g_0 \cdot t_n \to g, \ u(t_n, g_0, x_0) \to x \}.$$

Given a subset $K \subset Y \times X$, let us introduce the projection set of K into the fiber space

$$K_Y := \{g \in Y : \text{ there exists } x \in X \text{ such that } (g, x) \in K\} \subset Y.$$

An **equilibrium** is a map $a : Y \to X$ such that $a(g \cdot t) = u(t, g, a(g))$, for all $g \in Y, t \ge 0$. A set $E \subset Y \times X$ is called an **equilibrium point set** if there exists a map a such that a(g) = x, for all $(g, x) \in E$ and $a(g \cdot t) = u(t, g, a(g))$, for all $g \in E_Y, t \ge 0$.

We say that the skew-product semiflow (2.1) is monotone if

$$u(t,g,y) \ge u(t,g,x), \quad \forall y \ge x, \ t \ge 0, \tag{2.2}$$

and strongly monotone if

$$u(t,g,y) \gg u(t,g,x), \quad \forall y \gg x, t \ge 0.$$

The skew-product semiflow (2.1) is said to be **eventually strongly monotone** if there exists $t_0 > 0$ such that

$$u(t,g,y) \gg u(t,g,x), \quad \forall y > x, \ t > t_0$$

$$(2.3)$$

and it preserves the ordering; i.e.,

$$u(t, g, y) >_r u(t, g, x), \quad \forall y >_r x, \ t > 0,$$

where $>_r$ denotes the relations \geq , > or \gg .

The skew-product semiflow (2.1) is called **concave**, if, whenever $x \leq y$,

$$u(t,g,\lambda y + (1-\lambda)x) \ge \lambda u(t,g,y) + (1-\lambda)u(t,g,x)$$

$$(2.4)$$

for $g \in Y$, $\lambda \in [0,1]$ and $t \in \mathbb{R}^+$; strongly concave, if, whenever $x \ll y$,

$$u(t,g,\lambda y + (1-\lambda)x) \gg \lambda u(t,g,y) + (1-\lambda)u(t,g,x)$$
(2.5)

for $g \in Y$, $\lambda \in (0, 1)$ and $t \in \mathbb{R}^+$.

From the continuous hypothesis for u, (2.4) is equivalent to, whenever $y \ge x$,

$$u_x(t,g,x)(y-x) \ge u_x(t,g,y)(y-x)$$

for $g \in Y$ and $t \in \mathbb{R}^+$. Similarly, (2.5) is equivalent to, whenever $y \gg x$,

$$u_x(t,g,x)(y-x) \gg u_x(t,g,y)(y-x)$$

for $g \in Y$ and $t \in \mathbb{R}^+$. Since $x \leq \lambda y + (1 - \lambda)x$ and $\lambda y + (1 - \lambda)x \leq y$, we have

$$u_x(t,g,y)(y-x) \le u(t,g,y) - u(t,g,x) \le u_x(t,g,x)(y-x)$$
(2.6)

for $g \in Y$ and $t \in \mathbb{R}^+$.

Let $y \ge x$, we have

$$u(t,g,y) - u(t,g,x) = \int_0^1 u_x(t,g,\lambda y + (1-\lambda)x)(y-x)d\lambda$$

A forward orbit $\{\Pi(t, g_0, x_0) | t \ge 0\}$ of the skew-product semiflow (2.1) is said to be **uniformly stable** if for any $\epsilon > 0$ there is a $\delta = \delta(\epsilon) > 0$, such that if s > 0and $\|u(s, g_0, x_0) - u(s, g_0, x)\| \le \delta(\epsilon)$, we have

$$||u(t+s, g_0, x_0) - u(t+s, g_0, x)|| \le \epsilon, \ \forall t \ge 0.$$

A forward orbit $\{\Pi(t, g_0, x_0) | t \ge 0\}$ of the skew-product semiflow (2.1) is said to be **uniformly asymptotically stable** if it is uniformly stable and there is $\delta_0 > 0$

with the following property: for each $\epsilon > 0$ there exists a $t_0(\epsilon) > 0$ such that if $s \ge 0$ and $||u(s, g_0, x_0) - u(s, g_0, x)|| \le \delta_0$, we get

$$||u(t+s, g_0, x_0) - u(t+s, g_0, x)|| \le \epsilon, \ \forall t \ge t_0(\epsilon).$$

3. GLOBAL ATTRACTOR RESULT

In this section, we assume that the skew-product semiflow (2.1) satisfies eventually strong monotonicity and (strong) concavity. Based on this, we establish the global attractor results.

Definition 3.1. Two subsets S_1 , S_2 of $Y \times X$ are ordered $S_1 \leq S_2$ if for each $(g, x_1) \in S_1$, there exists $(g, x_2) \in S_2$ such that $x_1 \leq x_2$. We say $S_1 < S_2$ if $S_1 \leq S_2$ and they are different.

Definition 3.2. We say the subset S_1 , S_2 of $Y \times X$ to be ordered $S_1 \ll S_2$ if for each $(g, x_1) \in S_1$, there exists $(g, x_2) \in S_2$ such that $x_1 \ll x_2$.

Definition 3.3. Two subsets S_1 , S_2 are said to be completely strongly ordered $S_1 \ll_C S_2$ if $x_1 \ll x_2$ holds for all $(g, x_1) \in S_1$ and $(g, x_2) \in S_2$.

Definition 3.4. Let $M \subset Y \times X$ be a compact, positively invariant subset of the skew-product semiflow (2.1). For $(g, x) \in M$, we define the **Lyapunov exponent** $\lambda(g, x)$ as

$$\lambda(g, x) = \limsup_{t \to \infty} \frac{\ln \|u_x(t, g, x)\|}{t}.$$

The number $\lambda_M = \sup_{(g,x) \in M} \lambda(g,x)$ is called the **upper Lyapunov exponent** on M. If $\lambda_M \leq 0$, then M is said to be **linearly stable**.

In addition, the following assumptions are necessary.

- (A1) Every bounded forward orbit $\{\Pi(t, g, x) : t \ge 0\}$ is precompact.
- (A2) u(t, g, 0) = 0, for all $g \in Y$, $t \in \mathbb{R}^+$.

Theorem 3.5. Assume that (A2) holds and $\mathcal{O} \subset Y \times \operatorname{int} X^+$ with $\lambda_{\mathcal{O}} < 0$. Then \mathcal{O} is uniformly asymptotically stable, that is, for each $g \in Y$, the forward orbit $\{\Pi(t, g, a(g) | t \geq 0\}$ is uniformly asymptotically stable. Moreover, \mathcal{O} is the copy of the base Y, i.e., $\operatorname{card}(\mathcal{O} \cap \pi^{-1}(g)) = 1$, for all $g \in Y$.

Proof. The proof of the uniformly asymptotical stability is completely similar to [6, Theorem 8.1], we omit the details here.

In view of the theory of [9] about the structure of omega limit sets, we deduce that \mathcal{O} is an (N-1)-extension of Y as $\lambda_{\mathcal{O}} < 0$, that is, $\operatorname{card}(\mathcal{O} \cap \pi^{-1}(g)) = N$ for any $g \in Y$, where N is an integral number, and hence, we denote $\mathcal{O} \cap \pi^{-1}(g) =$ $\{x_1(g), \ldots, x_N(g)\}$. Since X^+ is a normal cone and $\operatorname{int} X^+ \neq \emptyset$, it is easy to deduce that, for each $g \in Y$, the finite set $\{x_1(g), \ldots, x_N(g)\}$ is bounded with respect to the ordering induced by X^+ . Thus, there exists the supremum

$$b(g) = \sup\{x_1(g), \dots, x_N(g)\},\$$

which is a continuous map on Y. The positive invariance and monotonicity of the semiflow imply that

$$b(g \cdot t) \le u(t, g, b(g)), \quad \forall g \in Y, \ t \ge 0.$$

$$(3.1)$$

Furthermore, we claim that b is invariant under the flow σ , that is, $b(g \cdot t) = u(t, g, b(g))$ for each $g \in Y$ and $t \ge 0$.

On the contrary, we assume that there exist $g \in Y$ and s > 0 such that

$$b(g \cdot s) < u(s, g, b(g)). \tag{3.2}$$

Our assumption implies that $x_i \gg 0$, i = 1, ..., N, from which we deduce that $b(g) \gg 0$. For $e \gg 0$ we define *e*-norm by

$$\|x\|_e \coloneqq \inf\{\gamma > 0 : -\gamma e \leq_K x \leq_K \gamma e\}.$$

$$(3.3)$$

Let $e = b(g) \gg 0$ and

$$\alpha = \inf\{\|b(g) - x_i(g)\|_e : i = 1, \dots, N\}.$$
(3.4)

Obviously, $\alpha < 1$ and there exists $j \in \{1, ..., N\}$ such that $\alpha = ||b(g) - x_j(g)||_e$. Hence, $b(g) - x_j(g) \leq \alpha b(g)$, which is equivalent to

$$x_j(g) \ge (1 - \alpha)b(g)$$

The monotonicity and concavity of the skew-product semiflow and (A2) imply that

$$u(s, g, x_j(g)) \ge (1 - \alpha)u(s, g, b(g)) > (1 - \alpha)b(g \cdot s).$$

If $\alpha = 0$, then we obtain $b(g \cdot s) \ge x_j(g \cdot s) = u(s, g, x_j(g)) \ge u(s, g, b(g))$, which contradicts to (3.2), and hence, α is strictly positive. Moreover, the eventually strong monotonicity and strong concavity of the semiflow show that

$$u(s+t_0, g, x_j(g)) \gg (1-\alpha)u(t_0, g \cdot s, b(g \cdot s)).$$

The property of cones implies that we can find $0 < \alpha_0 < \alpha$ such that

$$u(s+t_0, g, x_i(g)) \gg (1-\alpha_0)u(t_0, g \cdot s, b(g \cdot s)),$$

Using the eventually strong monotonicity and strong concavity of the semiflow again, it then follows from (3.1) that

$$u(t, g, x_i(g)) \gg (1 - \alpha_0)b(g \cdot t), \quad \forall t \ge s + t_0.$$

Since the flow is minimal, there exists a sequence $t_n \to \infty$ such that

$$\lim_{n \to \infty} (g \cdot t_n, u(t_n, g, x_j(g)) = (g, x_k(g))$$

for some $k \in \{1, \ldots, N\}$. Thus, we have

$$x_k(g) \ge (1 - \alpha_0)b(g);$$

i.e., $b(g) - x_k(g) \leq \alpha_0 b(g) = \alpha_0 e$, which contradicts to (3.4). Hence, b is invariant under the flow σ .

Define

$$\mathcal{O}_b = \{(g, b(g)) : g \in Y\}.$$

Finally, we verify that $\mathcal{O}_b = \mathcal{O}$. On the contrary, assume that there exist $g \in Y$ and $j \in \{1, \ldots, N\}$ such that $b(g) > x_j(g)$. The eventually strong monotonicity of the semiflow implies that $b(g) \gg x_j(g)$, for all $g \in Y$, $j \in \{1, \ldots, N\}$, which contradicts that b is the supremum. Hence, we get $\mathcal{O}_b = \mathcal{O}$. Furthermore, the conclusion that \mathcal{O} is a copy of the base Y can be obtained straight. \Box

Corollary 3.6. Let the assumptions of Theorem 3.5 hold. Then \mathcal{O} is an equilibrium point set.

Proof. By Theorem 3.5, we have

$$\mathcal{O} = \{ (g, b(g)) : g \in Y \},\$$

B.-G. WANG

and the map $g \mapsto b(g)$ is a bijection with $b(g \cdot t) = u(t, g, b(g)), \forall g \in Y, t \ge 0$. Hence, \mathcal{O} is the equilibrium point set.

Lemma 3.7. Assume that two omega limit sets satisfy $\mathcal{O}_1 \ll_C \mathcal{O}_2$. Then there exists a positive constant c_1 such that

$$\|u_x(t,g,x_2)\| \le c_1, \quad \forall (g,x_2) \in \mathcal{O}_2, \ t \ge 0.$$

Proof. In view of the proof of [6, Lemma 5.6], we know that, for $e \gg 0$ there exists a constant \bar{c} (depending on e) such that

$$||u_x(t,g,x)|| \le \bar{c}||u_x(t,g,x)e||, \quad \forall (g,x) \in Y \times X, \ t \ge 0.$$
(3.5)

The conclusion of [6, Lemma 5.3] implies that there exists a positive constant $\beta > 0$ such that $x_2 - x_1 \ge \beta e$, for all $(g, x_1) \in \mathcal{O}_1$, $(g, x_2) \in \mathcal{O}_2$. The positiveness of the linear operator $u_x(t, g, x_2)$ shows that

$$u_x(t, g, x_2)(x_2 - x_1) \ge \beta u_x(t, g, x_2)e.$$

The monotonicity and concavity of the semiflow and (2.6) show that

$$||u_x(t,g,x_2)|| \le \frac{c}{\beta} ||u_x(t,g,x_2) - u_x(t,g,x_1)||, \quad \forall t \ge 0.$$

From the above and the compact positive invariance of \mathcal{O}_1 and \mathcal{O}_2 we can conclude that there exists a positive constant c_1 such that

$$||u_x(t, g, x_2)|| \le c_1, \quad \forall (g, x_2) \in \mathcal{O}_2, \ t \ge 0$$

The proof is complete.

Proposition 3.8. If $\mathcal{O}_1 \ll_C \mathcal{O}_2$ holds, then \mathcal{O}_2 is a linearly stable set, i.e., $\lambda_{\mathcal{O}_2} \leq 0$.

Proof. By Definition 3.4 and Lemma 3.7, the conclusion can be obtained immediately. \Box

Proposition 3.9. There exists the function $g \mapsto a(g)$ such that the set

 $Y_0 = \{g \in Y : (g, a(g)) \in \mathcal{O}\}$

is the continuous point set of the mapping $g \mapsto a(g)$.

Proof. It is sufficient to prove that for any $g_k \to g$ there exists $g \mapsto a(g)$ such that $a(g_k) \to a(g)$. Because of the minimality of the flow, we only to prove $a(g \cdot t_k) \to a(g \cdot t_0)$ for any $t_k \to t_0$. Let $(g, x) \in \mathcal{O}$, from the definition of the omega limit set, there exists a sequence $t_n \to \infty$ such that $g_0 \cdot t_n \to g$, $u(t_n, g_0, x_0) \to x$. Let

$$a(g) := \lim_{n \to \infty} u(t_n, g_0, x_0) = x$$

Then

$$\begin{aligned} a(g \cdot t_0) &= \lim_{n \to \infty} u(t_n, g_0 \cdot t_0, u(t_0, g_0, x_0)) \\ &= \lim_{n \to \infty} u(t_n + t_0, g_0, x_0) \\ &= \lim_{n \to \infty} u(t_0, g_0 \cdot t_n, u(t_n, g_0, x_0)) \\ &= u(t_0, g, x), \end{aligned}$$

and for any $k \in \mathbb{N}$,

$$\lim_{k \to \infty} a(g \cdot t_k) = \lim_{k \to \infty} \lim_{n \to \infty} u(t_n, g_0 \cdot t_k, u(t_k, g_0, x_0))$$
$$= \lim_{k \to \infty} \lim_{n \to \infty} u(t_k, g_0 \cdot t_n, u(t_n, g_0, x_0))$$
$$= \lim_{k \to \infty} u(t_k, g, x)$$
$$= u(t_0, g, x) = a(g \cdot t_0).$$

The proof is complete.

From [6, Proposition 6.1], we have the following result .

Proposition 3.10. Suppose that $\mathcal{O}_1 \ll_C \mathcal{O}_2$. If $\lambda_{\mathcal{O}_2} = 0$, there exist positive constant \hat{c} and c such that

$$\hat{c} \le ||u_x(t, g, x_2)|| \le c, \quad \forall (g, x_2) \in \mathcal{O}_2, \ t \ge 0.$$
 (3.6)

Proposition 3.11. Assume that $\mathcal{O}_1 \ll_C \mathcal{O}_2$ holds and $\lambda_{\mathcal{O}_2} = 0$. Then there exists a minimal subset \mathcal{O}^* of $Y \times X$ such that $\mathcal{O}_1 \ll \mathcal{O}^* < \mathcal{O}_2$.

Proof. As in Proposition 3.9, define $Y_0 = \{g \in Y : (g, a(g)) \in \mathcal{O}_2\}$. Let $g_0 \in Y_0$, from the definition of Y_0 , we have $(g_0, a(g_0)) \in \mathcal{O}_2$. Since $\mathcal{O}_1 \ll_C \mathcal{O}_2$, for each $(g_0, x_1) \in \mathcal{O}_1$, we have $x_1 \ll a(g_0)$. Fixed $0 < \alpha < 1$, define

$$y_{\alpha} = \alpha x_1 + (1 - \alpha)a(g_0).$$

Obviously, $x_1 \ll y_\alpha < a(g_0)$. The precompactness of the forward orbit $\{\pi(t, g_0, y_\alpha) : t \geq \delta, \delta > 0\}$ implies that its closure contains a minimal subset, denoted by \mathcal{O}_α , i.e.,

$$\mathcal{O}_{\alpha} \subset \operatorname{cls}\{(g_0 \cdot t, u(t, g_0, y_{\alpha})) : t \ge \delta\}.$$

The monotonicity of the skew-product semiflow implies $\mathcal{O}_1 \leq \mathcal{O}_\alpha \leq \mathcal{O}_2$. In the following, we prove that \mathcal{O}_α is required.

First we check $\mathcal{O}_1 \ll \mathcal{O}_\alpha$. For $(g, z) \in \mathcal{O}_\alpha$, there exist a sequence $t_n \to \infty$ such that

$$\lim_{n \to \infty} \Pi(t_n, g_0, y_\alpha) = (g, z).$$

The concavity implies that

$$u(t_n, g_0, y_\alpha) \ge \alpha u(t_n, g_0, x_1) + (1 - \alpha)u(t_n, g_0, a(g_0)).$$

In addition, there exists a subsequence (assume the whole sequence), $(g, z_1) \in \mathcal{O}_1$ and $(g, z_2) \in \mathcal{O}_2$ such that

$$\lim_{n \to \infty} \Pi(t_n, g_0, x_1) = (g, z_1), \quad \lim_{n \to \infty} \Pi(t_n, g_0, a(g_0)) = (g, z_2).$$

Hence, we have

$$z \ge \alpha z_1 + (1 - \alpha) z_2.$$

Since $\mathcal{O}_1 \ll_C \mathcal{O}_2$, $z_1 \ll z_2$ holds, from which we have $z \gg z_1$, Definition 3.2 tells us $\mathcal{O}_1 \ll \mathcal{O}_{\alpha}$.

In the following we prove $\mathcal{O}_2 \neq \mathcal{O}_\alpha$. On the contrary, we assume that $\mathcal{O}_2 = \mathcal{O}_\alpha$ with $(g_0, a(g_0)) \in \mathcal{O}_2 \cap \mathcal{O}_\alpha$. Thus, there exists a sequence $t_k \to \infty$ such that $\lim_{n\to\infty} \prod(t_k, g_0, y_\alpha) = (g_0, a(g_0))$. Proposition 3.10 implies that there exist a positive constant $\hat{c} > 0$ such that $\hat{c} \leq ||u_x(t, g_0, a(g_0))||, \forall t \geq 0$. From the inequality (2.6) we deduce that for all $k \in \mathbb{N}$,

$$u(t_k, g_0, a(g_0)) - u(t_k, g_0, y_\alpha) \ge u_x(t_k, g_0, a(g_0))(a(g_0) - y_\alpha)$$

B.-G. WANG

$$= \alpha u_x(t_k, g_0, a(g_0))(a(g_0) - x_1).$$

It then follows from (3.5) and the monotonicity of the skew-product semiflow that for $e = (a(g_0) - x_1)$, we can find l (which only depends on $a(g_0)$ and x_1) such that

$$\|a(g_0 \cdot t_k) - u(t_k, g_0, y_\alpha)\| \ge l > 0, \quad \forall k \in \mathbb{N}.$$

This contradicts that g_0 is a point of continuity of $a(g_0)$, which implies $\lim_{n\to\infty} (g_0 \cdot t_k, u(t_k, g_0, y_\alpha)) = (g_0, a(g_0))$. The proof is complete.

Theorem 3.12. If $\mathcal{O}_1 \ll_C \mathcal{O}_2$, then $\lambda_{\mathcal{O}_2} < 0$.

Proof. Proposition 3.8 implies that $\lambda_{\mathcal{O}_2} \leq 0$, hence, it is sufficient to prove $\lambda_{\mathcal{O}_2} \neq 0$. On the contrary, we assume that $\lambda_{\mathcal{O}_2} = 0$. It follows from Proposition 3.11 that there exists the subset \mathcal{O}^* of $Y \times X$ such that $\mathcal{O}_1 \ll \mathcal{O}^* < \mathcal{O}_2$. Let $g_0 \in Y_0$, then $(g_0, a(g_0)) \in \mathcal{O}_2$ and there exist $(g_0, z) \in \mathcal{O}^*$ and $(g_0, x_1) \in \mathcal{O}_1$ such that

$$x_1 \ll z < a(g_0).$$

Let $e = a(g_0) - x_1 \gg 0$ in (3.3) and define

$$\gamma = \inf\{\|a(g_0) - x\|_e : (g_0, x) \in \mathcal{O}^*\}.$$

It is easy to see that there exists $(g_0, x) \in \mathcal{O}^*$ such that $\gamma = ||a(g_0) - x||_e$ with $0 < \gamma < 1$, which implies that $a(g_0) - x \leq \gamma(a(g_0) - x_1)$; i.e.,

$$x \ge (1 - \gamma)a(g_0) + \gamma x_1.$$

Since $a(g_0) \gg x_1$, the monotonicity and strong concavity of the skew-product semiflow implies that

$$u(t, g_0, x) \gg (1 - \gamma)u(t, g_0, a(g_0)) + \gamma u(t, g_0, x_1).$$
(3.7)

In view of the property of the cone, there exists γ_0 with $0 < \gamma_0 < \gamma$ such that

 $u(t, g_0, x) \gg (1 - \gamma_0)a(g_0 \cdot t) + \gamma_0 u(t, g_0, x_1),$

Hence, there exists $(g_0, y) \in \mathcal{O}^*$ such that

$$y \ge (1 - \gamma_0)a(g_0) + \gamma_0 x_1;$$

i.e., $a(g_0) - y \leq \gamma_0(a(g_0) - x_1) = \gamma_0 e$, which implies that $||a(g_0) - y||_e \leq \gamma_0 < \gamma$. This contradicts the definition of γ .

Theorem 3.13. If $\mathcal{O}_1 \ll_C \mathcal{O}_2$, then \mathcal{O}_2 is the copy of the base Y, i.e., for each $g \in Y$, $\operatorname{card}(\mathcal{O}_2 \cap \pi^{-1}(g)) = 1$.

Proof. Since $\mathcal{O}_1 \ll_C \mathcal{O}_2$, Theorem 3.12 tells us $\lambda_{\mathcal{O}_2} < 0$, the remaining is concluded by Theorem 3.5.

Next, we introduce the main result of this article.

Theorem 3.14. If (A1) and (A2) hold, then for any $(g, x) \in Y \times X^+ \setminus \{0\}$ either

- (i) $\lim_{t \to \infty} ||u(t, g, x)|| = +\infty$, or
- (ii) there exists an equilibrium point set $\mathcal{O}^* \subset Y \times \operatorname{int} X^+$ such that $\mathcal{O}(g, x) = \mathcal{O}^*$ and $\lim_{t\to\infty} \|u(t,g,x) u(t,g,x^*)\| = 0$, where $(g,x^*) = \mathcal{O}^* \cap \pi^{-1}(g)$.

Proof. On the contrary, we assume that (i) does not hold; i.e., the forward orbit of the skew-product semiflow is bounded, From (A1) we know $\{\Pi(t,g,x)|t \geq 0\}$ is precompact. The eventually strong monotonicity implies that if $(g,x) \in Y \times (X^+ \setminus \{0\})$, then $\mathcal{O}(g,x) =: \mathcal{O}^* \subset Y \times \operatorname{int} X^+$. It then follows from (A2) that $\mathcal{O}(g,0) =: \mathcal{O}^0 \subset Y \times \{0\}$. Hence, $\mathcal{O}^0 \ll_C \mathcal{O}^*$. Thus, Theorem 3.12 implies that $\lambda_{\mathcal{O}^*} < 0$. Furthermore, Theorem 3.13 and Corollary 3.6 show that \mathcal{O}^* is a copy of the base Y and an equilibrium set, i.e., $\operatorname{card}(\mathcal{O}^* \cap \pi^{-1}(g)) = 1$, for all $g \in Y$.

Next we prove that $\lim_{t\to\infty} \|u(t,g,x) - u(t,g,x^*)\| = 0$. On the contrary, we assume there exists a sequence $t_n \to \infty$ and a positive constant $\epsilon > 0$ such that $\|u(t_n,g,x) - u(t_n,g,x^*)\| > \epsilon$ for all $n \ge 1$. Denote $\lim_{n\to\infty} \Pi(t_n,g,x) = (\bar{g},\bar{x}_1)$ and $\lim_{n\to\infty} \Pi(t_n,g,x^*) = (\bar{g},\bar{x}_2)$, where $(g,x^*) = \mathcal{O}^* \cap \pi^{-1}(g)$. Since $\operatorname{card}(\mathcal{O}^* \cap \pi^{-1}(\bar{g})) = 1$, we have $\bar{x}_1 = \bar{x}_2$. Thus, $0 = \|\bar{x}_1 - \bar{x}_2\| = \lim_{n\to\infty} \|u(t_n,g,x^*) - u(t_n,g,x^*)\| \ge \epsilon$, a contradiction holds. Hence, $\lim_{t\to\infty} \|u(t,g,x) - u(t,g,x^*)\| = 0$.

Consider the almost periodic delay differential equation

$$y'(t) = f(t, y(t), y(t-1)), \quad \forall t \in \mathbb{R}^+, y(s) = \phi(s), \quad \forall s \in [-1, 0],$$
(3.8)

where $\phi \in C^+ := C([-1,0], \mathbb{R}^n_+)$, the function $f = (f_1, f_2, \dots, f_n) : \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^n$ is almost periodic (Let (X,d) be metric space, a function $f \in C(\mathbb{R}, X)$ is said to be **almost periodic** if for any $\epsilon > 0$, there exists $l = l(\epsilon) > 0$ such that every interval of \mathbb{R} of length l contains at least one point of the set $T(\epsilon) = \{\tau \in \mathbb{R} : d(f(t+\tau), f(t)) < \epsilon, \forall t \in \mathbb{R}\}$). In addition, we propose the following properties:

(i) for each $y, z \in \mathbb{R}^n$, $t \in \mathbb{R}$ and $i \neq j$, $\frac{\partial f_i}{\partial y_j}(t, y, z) \geq 0$; If \tilde{I} and \tilde{J} form a partition of $N = \{1, 2, \ldots, n\}$, then there exist $\delta > 0$, $i \in \tilde{I}$ and $j \in \tilde{J}$, such that

$$\left|\frac{\partial f_i}{\partial y_j}(t,y,z)\right| \ge \delta, \quad \forall y,z \in \mathbb{R}^n, t \in \mathbb{R};$$

(ii) for $y, z \in \mathbb{R}^n$, $t \in \mathbb{R}$ and $i, j \in \{1, 2, ..., n\}$, $\frac{\partial f_i}{\partial z_j}(t, y, z) \ge 0$. Furthermore, There exists $\delta > 0$ such that

$$\frac{\partial f_i}{\partial z_j}(t, y, z) \Big| \ge \delta;$$

- (iii) there exists $g_0 \in Y$ such that f
 - (a) is concave with respect to (y, z), i.e., whenever $y^1 \le y^2, z^1 \le z^2$,

$$f(t,\lambda(y^1,z^1) + (1-\lambda)(y^2,z^2)) \ge \lambda f(t,(y^1,z^1)) + (1-\lambda)f(t,(y^2,z^2))$$

for $\lambda \in [0, 1]$ and $t \in \mathbb{R}^+$;

(b) is strongly concave with respect to (y, z); i.e., whenever $y^1 \ll y^2$, $z^1 \ll z^2$,

$$\begin{aligned} f(t,\lambda(y^1,z^1) + (1-\lambda)(y^2,z^2)) &\gg \lambda f(t,(y^1,z^1)) + (1-\lambda)f(t,(y^2,z^2)); \\ & \text{for } \lambda \in (0,1) \text{ and } t \in [0,1]; \end{aligned}$$

(iv) $f(\cdot, 0, 0) \equiv 0$.

We embed (3.8) into the skew-product semiflow $\Pi : \mathbb{R}^+ \times Y \times C^+ \to Y \times C^+$

$$\Pi(t, g, \phi) \mapsto (\sigma_t(g), u(t, g, \phi)), \tag{3.9}$$

where for $\theta \in [-1,0]$, $u(t,g,\phi)(\theta) = y(t+\theta,g,\phi)$, and $\sigma_t(g(s,\cdot,\cdot)) = g(s,\cdot,\cdot) \cdot t = g(t+s,\cdot,\cdot)$. $y(t,g,\phi)$ is the solution of the equation

$$y'(t) = g(t, y(t), y(t-1)),$$
(3.10)

and for $\theta \in [-1,0]$ and $g = (g_1, g_2, \dots, g_n) \in Y$, $y(\theta, g, \phi) = \phi(\theta)$, where

 $Y := \operatorname{cls}\{f_t | t \ge 0, \quad f_t(s, \cdot, \cdot) = f(t+s, \cdot, \cdot)\},\$

the closure is defined in the topology of uniform convergence on compact set. From the above we deduce that Y is compact metric space and $(Y, \sigma, \mathbb{R}^+)$ is minimal. By the standard theory of delay differential equations (refer to [2, 4]), we know that for all $g \in Y$ and initial value $\phi \in C$, (3.8) admit a unique solution $y(t, g, \phi)$, i.e., for $\theta \in [-1, 0]$, $y(\theta, g, \phi) = \phi(\theta)$. If $y(t, g, \phi)$ is the unique solution of (3.8) in the existence interval of t, then $u(t, g, \phi)$ exists for all t > 0, and the forward orbit $\{u(t, q, \phi) | t \ge 1 + \delta\}$ is precompact for $\delta > 0$.

Theorem 3.15. The skew-product semiflow (3.9) is eventually strongly monotone and satisfies concavity and strongly concavity, respectively; i.e., there exists $g_0 \in Y$ such that

$$\lambda u(t,g,v) + (1-\lambda)u(t,g,w) \le u(t,g,\lambda v + (1-\lambda)w)$$

whenever $w \ge v, t \ge 0, \lambda \in [0, 1]$ and $g \in Y$, and

$$\lambda u(t, g_0, v) + (1 - \lambda)u(t, g_0, w) \ll u(t, g_0, \lambda v + (1 - \lambda)w)$$

whenever $w \gg v$, $t \ge 1$ and $\lambda \in (0, 1)$.

Proof. The eventually strong monotonicity can be obtained from [6, 7]. Let $\lambda \in (0,1)$ and $Z_g(t) = \lambda y(t,g,v) + (1-\lambda)y(t,g,w)$, so

$$Z'_g = \lambda g(t, y(t, g, v), v(t-1)) + (1-\lambda)g(t, y(t, g, w), w(t-1)), \ \forall t \in [0, 1].$$

By the monotonicity of the skew-product semiflow, if $v \le w$, then $y(t,g,v) \le y(t,g,w)$. It then follows from (iii)(a) that

$$Z'_g(t) \le g(t, Z_g(t), \lambda v(t-1) + (1-\lambda)w(t-1)), \quad \forall t \in [0, 1].$$

From (i), (ii) and comparison theorems for this kind of ordinary differential equation (see [1]), we have

$$\lambda y(t,g,v) + (1-\lambda)y(t,g,w) \le y(t,g,\lambda v + (1-\lambda)w), \quad \forall t \in [0,1]$$

An inductive argument shows that for each $n \in \mathbb{N}$,

$$\lambda y(t,g,v) + (1-\lambda)y(t,g,w) \le y(t,g,\lambda v + (1-\lambda)w), \quad \forall t \in [n,n+1].$$

Hence,

$$\lambda u(t, g, v) + (1 - \lambda)u(t, g, w)) \le u(t, g, \lambda v + (1 - \lambda)w), \quad \forall t \ge 0.$$

If $v \ll w$, the strong monotonicity implies $y(t, g_0, v) \ll y(t, g_0, w)$. From (iii)(b), for each $t \in [1, 2]$,

$$z'_{g_0}(t) \ll g_0(t, z_{g_0}(t), \lambda v(t-1) + (1-\lambda)w(t-1)).$$

Using a same process, comparison theorems provide $Z_{g_0}(t) \ll y(t, g_0, \lambda v + (1-\lambda)w)$. Hence,

$$\lambda y(t, g_0, v) + (1 - \lambda)y(t, g_0, w)) \ll y(t, g_0, \lambda v + (1 - \lambda)w), \quad \forall t > 0.$$

That is,

$$\lambda u(t, g_0, v) + (1 - \lambda)u(t, g_0, w)) \ll u(t, g_0, \lambda v + (1 - \lambda)w), \quad \forall t > 1.$$

The proof is complete.

Theorem 3.16. If (3.8) admits a bounded solution $y(t, \phi)$, then there exists an almost periodic solution $y^*(t)$, $\lim_{t\to\infty} ||y(t,\phi) - y^*(t)|| = 0$ for $\phi \in C^+$ with $\phi(0) > 0$.

Proof. Theorem 3.15 tells us that the skew-product semiflow (3.9) is eventually strongly monotone and (strongly) concave. For any $(g, \phi) \in Y \times C^+$ with $\phi(0) > 0$, we conclude $\mathcal{O}^* := \mathcal{O}(g, \phi) \subset Y \times \operatorname{int} C^+$. It then follows from Theorem 3.14 that $\lim_{t\to\infty} \|y(t,\phi) - y^*(t)\| = 0$, where $(g, y^*(t)) = \mathcal{O}^* \cap \pi^{-1}(g)$.

Acknowledgments. This research was supported by the NSF of China under grant 10926091, and by the Fundamental Research Funds for the Central Universities lzujbky-2010-166.

References

- [1] M. de Guzmán; Ecuaciones Diferenciales Ordinaries, Ed. Alhambra, Madrid, 1975.
- [2] J. K. Hale, S. M. Verduyn Lunel, ; Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, V. 99, Springer, Berlin, Heidelberg, New York, 1993.
- [3] G. Hetzer, W. Shen; Convergence in almost periodic competition diffusion systems, J. Math. Anal. Appl., 262(2001), 307–338.
- [4] Y. Hino, S. Murakami, T. Naiko; Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, V. 1473, Springer, Berlin, Heidelberg, 1991.
- J. Jiang, X-Q. Zhao; Convergence in monotone and uniformly stable skew-product semiflows with applications, J. Reine Angew. Math., 589 (2005), 21–55.
- [6] S. Novo, R. Obaya; Strictly ordered minimal subsets of a class of convex monotone skewproduct semiflows, J. Differential Equations, 196 (2004), 249–288.
- [7] S. Novo, R. Obaya, A. M. Sanz; Attractor minimal sets for cooperative and strongly convex delay differential system, J. Differential Equations, 208 (2005), 86–123.
- [8] S. Novo, R. Obaya, A. M. Sanz; Attractor minimal sets for non-autonomous delay functional differential equations with applications for neural networks, *Proc. Roy. Soc. London*, 461A (2005), 2767–2783.
- W. Shen, Y. Yi; Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows, Skew-product Semiflows, in: Memoirs of the American Mathematical Society, V. 136, No. 647, Providence, RI, 1998, 1–93.
- [10] X-Q. Zhao; Global attractivity in monotone and subhomogeneous almost periodic systems, J. Differential Equations, 187 (2003), 494–509.

BIN-GUO WANG

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

E-mail address: wangbinguo@lzu.edu.cn