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LIMIT BEHAVIOR OF MONOTONE AND CONCAVE
SKEW-PRODUCT SEMIFLOWS WITH APPLICATIONS

BIN-GUO WANG

Abstract. In this article, we study the long-time behavior of monotone and
concave skew-product semiflows. We show that if there are two strongly or-

dered omega limit sets, then one of them is a copy of the base. Thus, we obtain

a global attractor result. As an application, we consider a delay differential
equation.

1. Introduction

Recently, monotone skew-product semiflows generated by nonautonomous sys-
tems, in particular almost periodic systems, have extensively investigated, see
[3, 5, 6, 7, 8, 9, 10]. Hetzer and Shen [3] considered the convergence of positive
solutions of almost periodic competitive diffusion systems. Jiang and Zhao [5]
established the 1-covering property of the omega limit set for monotone and uni-
formly stable skew-product semiflows with the componentwise separating property
of bounded and ordered full orbits, which is an important property for considering
the long-time behavior of skew-product semiflows. Novo et al [6, 7, 8] considered
the skew-product semiflow generated by almost periodic systems. Under the as-
sumption that there existed two strongly ordered minimal subsets or completely
strongly ordered minimal subsets, a complete description of the long-time behavior
of the trajectories was given and a global picture of the dynamics was provided for
a class of monotone and convex skew-product semiflows. Zhao [10] proved a global
attractivity theory for a class of skew-product semiflows.

In conclusion, the properties of the omega limit set of skew-product semiflows,
especially its structure, play an important role in considering the convergent be-
havior of the orbit. Shen and Yi [9] told us if the omega limit set O is linearly
stable, then there exists an integral number N such that O is the (N − 1)-almost
periodic extension; i.e., there exists a subset Y0 ⊂ Y (the definition of Y see Section
2) such that for any g0 ∈ Y0, card(O ∩ π−1(g0)) = N (π is the natural projector).
If it is uniformly stable, then it is the extension of Y ; i.e., card(O ∩ π−1(g)) = N
for any g ∈ Y . This is not enough to understand the structure of the omega limit
set thoroughly. If we can obtain the conclusion that O is the copy of the base Y ;
i.e., card(O ∩ π−1(g)) = 1 for any g ∈ Y , it would give a complete description
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for the long-time behavior of the orbit. For this purpose, under the assumption of
the existence of two completely strongly ordered omega limit sets and motivated
by [6, 7], we deduce that one of them is an equilibrium point set if monotonicity
and concavity are satisfied. Naturally, it is a copy of the base. Furthermore, we
establish the convergent results for skew-product semiflows.

This article is organized as follows. In Section 2, we present some definitions
and notation of skew-product semiflows. In Section 3, we establish global attractor
results and consider an almost periodic delay differential equation.

2. Preliminaries

Let (Y, d) be a compact metric space. A continuous flow (Y, σ,R) is defined by
a continuous mapping σ : Y × R→ Y , (g, t) 7→ σ(g, t), which satisfies (i) σ0 = id,
(ii) σt · σs = σt+s, for all t, s ∈ R, where σt(g) := σ(g, t) = g · t for g ∈ Y and t ∈ R
with g · 0 = g and g · (s+ t) = (g · s) · t. A continuous flow (Y, σ,R) is distal if for
any two distinct points g1 and g2 in Y , inft∈R d(σ(g1, t), σ(g2, t)) > 0.

A semiflow (X, Φ, R+) on Banach space X is a continuous map Φ : X×R+ → X,
(x, t) 7→ Φ(x, t), which satisfies (i) Φ0 = id, (ii) Φt · Φs = Φt+s, where Φt(x) :=
Φ(x, t) for x ∈ X and t ≥ 0.

A compact, positively invariant subset S of a semiflow (X, Φ, R+) is minimal if
it contains no nonempty, closed and proper positively invariant subset. If X itself
is minimal, then (X, Φ, R+) is called minimal semiflow.

In this article, we assume that (X,X+) is an ordered Banach space with intX+ 6=
∅, where intX+ denotes the interior of the cone X+. For x, y ∈ X, we write x ≤ y
if y − x ∈ X+; x < y if y − x ∈ X+\{0}; x� y if y − x ∈ intX+. In addition, the
norm of Banach space X is monotone, namely, if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖ (see
[7]).

The ordering on X induces the ordering on Y ×X in the following way:

(g, x) ≤ (g, y)⇔ y − x ∈ X+, ∀g ∈ Y,
(g, x) < (g, y)⇔ y − x ∈ X+, x 6= y, ∀g ∈ Y,

(g, x)� (g, y)⇔ y − x ∈ intX+, ∀g ∈ Y.

Consider a skew-product semiflow: Π : R+ × Y ×X → Y ×X,

(t, g, x) 7→ (g · t, u(t, g, x)). (2.1)

We assume that (Y, σ,R) is a minimal flow defined by σ : Y ×R→ Y , (g, t) 7→ g · t
and u is locally C1 in x ∈ X; that is, u is C1 in x, and ux is continuous in g ∈ Y ,
t > 0 in a neighborhood of each compact subset of Y ×X. Moreover, for any v ∈ X,
limt→0+ ux(t, g, x)v = v uniformly in every compact subset of Y ×X. Sometimes,
we also use the notation Πt(g, x) ≡ Π(t, g, x). We denote π : Y × X → Y as the
natural projection.

The forward orbit of (g0, x0) is written as

O(g0, x0) = {Π(t, g0, x0) : t ≥ 0}.

If u(t, g0, x0) is convergent as t→∞, we can define the omega limit set of (g0, x0)
as

O(g0, x0) = {(g, x) ∈ Y ×X : ∃tn →∞ such that g0 · tn → g, u(tn, g0, x0)→ x}.
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Given a subset K ⊂ Y ×X, let us introduce the projection set of K into the fiber
space

KY := {g ∈ Y : there exists x ∈ X such that (g, x) ∈ K} ⊂ Y.

An equilibrium is a map a : Y → X such that a(g · t) = u(t, g, a(g)), for all
g ∈ Y , t ≥ 0. A set E ⊂ Y ×X is called an equilibrium point set if there exists
a map a such that a(g) = x, for all (g, x) ∈ E and a(g · t) = u(t, g, a(g)), for all
g ∈ EY , t ≥ 0.

We say that the skew-product semiflow (2.1) is monotone if

u(t, g, y) ≥ u(t, g, x), ∀y ≥ x, t ≥ 0, (2.2)

and strongly monotone if

u(t, g, y)� u(t, g, x), ∀y � x, t ≥ 0.

The skew-product semiflow (2.1) is said to be eventually strongly monotone if
there exists t0 > 0 such that

u(t, g, y)� u(t, g, x), ∀y > x, t > t0 (2.3)

and it preserves the ordering; i.e.,

u(t, g, y) >r u(t, g, x), ∀y >r x, t > 0,

where >r denotes the relations ≥, > or �.
The skew-product semiflow (2.1) is called concave, if, whenever x ≤ y,

u(t, g, λy + (1− λ)x) ≥ λu(t, g, y) + (1− λ)u(t, g, x) (2.4)

for g ∈ Y , λ ∈ [0, 1] and t ∈ R+; strongly concave, if, whenever x� y,

u(t, g, λy + (1− λ)x)� λu(t, g, y) + (1− λ)u(t, g, x) (2.5)

for g ∈ Y , λ ∈ (0, 1) and t ∈ R+.
From the continuous hypothesis for u, (2.4) is equivalent to, whenever y ≥ x,

ux(t, g, x)(y − x) ≥ ux(t, g, y)(y − x)

for g ∈ Y and t ∈ R+. Similarly, (2.5) is equivalent to, whenever y � x,

ux(t, g, x)(y − x)� ux(t, g, y)(y − x)

for g ∈ Y and t ∈ R+. Since x ≤ λy + (1− λ)x and λy + (1− λ)x ≤ y, we have

ux(t, g, y)(y − x) ≤ u(t, g, y)− u(t, g, x) ≤ ux(t, g, x)(y − x) (2.6)

for g ∈ Y and t ∈ R+.
Let y ≥ x, we have

u(t, g, y)− u(t, g, x) =
∫ 1

0

ux(t, g, λy + (1− λ)x)(y − x)dλ.

A forward orbit {Π(t, g0, x0)|t ≥ 0} of the skew-product semiflow (2.1) is said to
be uniformly stable if for any ε > 0 there is a δ = δ(ε) > 0, such that if s > 0
and ‖u(s, g0, x0)− u(s, g0, x)‖ ≤ δ(ε), we have

‖u(t+ s, g0, x0)− u(t+ s, g0, x)‖ ≤ ε, ∀t ≥ 0.

A forward orbit {Π(t, g0, x0)|t ≥ 0} of the skew-product semiflow (2.1) is said to
be uniformly asymptotically stable if it is uniformly stable and there is δ0 > 0



4 B.-G. WANG EJDE-2015/13

with the following property: for each ε > 0 there exists a t0(ε) > 0 such that if
s ≥ 0 and ‖u(s, g0, x0)− u(s, g0, x)‖ ≤ δ0, we get

‖u(t+ s, g0, x0)− u(t+ s, g0, x)‖ ≤ ε, ∀t ≥ t0(ε).

3. Global attractor result

In this section, we assume that the skew-product semiflow (2.1) satisfies even-
tually strong monotonicity and (strong) concavity. Based on this, we establish the
global attractor results.

Definition 3.1. Two subsets S1, S2 of Y × X are ordered S1 ≤ S2 if for each
(g, x1) ∈ S1, there exists (g, x2) ∈ S2 such that x1 ≤ x2. We say S1 < S2 if S1 ≤ S2

and they are different.

Definition 3.2. We say the subset S1, S2 of Y ×X to be ordered S1 � S2 if for
each (g, x1) ∈ S1, there exists (g, x2) ∈ S2 such that x1 � x2.

Definition 3.3. Two subsets S1, S2 are said to be completely strongly ordered
S1 �C S2 if x1 � x2 holds for all (g, x1) ∈ S1 and (g, x2) ∈ S2.

Definition 3.4. Let M ⊂ Y ×X be a compact, positively invariant subset of the
skew-product semiflow (2.1). For (g, x) ∈M , we define the Lyapunov exponent
λ(g, x) as

λ(g, x) = lim sup
t→∞

ln ‖ux(t, g, x)‖
t

.

The number λM = sup(g,x)∈M λ(g, x) is called the upper Lyapunov exponent
on M . If λM ≤ 0, then M is said to be linearly stable.

In addition, the following assumptions are necessary.
(A1) Every bounded forward orbit {Π(t, g, x) : t ≥ 0} is precompact.
(A2) u(t, g, 0) = 0, for all g ∈ Y , t ∈ R+.

Theorem 3.5. Assume that (A2) holds and O ⊂ Y × intX+ with λO < 0. Then
O is uniformly asymptotically stable, that is, for each g ∈ Y , the forward orbit
{Π(t, g, a(g)|t ≥ 0} is uniformly asymptotically stable. Moreover, O is the copy of
the base Y , i.e., card(O ∩ π−1(g)) = 1, for all g ∈ Y .

Proof. The proof of the uniformly asymptotical stability is completely similar to
[6, Theorem 8.1], we omit the details here.

In view of the theory of [9] about the structure of omega limit sets, we deduce
that O is an (N − 1)-extension of Y as λO < 0, that is, card(O ∩ π−1(g)) = N for
any g ∈ Y , where N is an integral number, and hence, we denote O ∩ π−1(g) =
{x1(g), . . . , xN (g)}. Since X+ is a normal cone and intX+ 6= ∅, it is easy to deduce
that, for each g ∈ Y , the finite set {x1(g), . . . , xN (g)} is bounded with respect to
the ordering induced by X+. Thus, there exists the supremum

b(g) = sup{x1(g), . . . , xN (g)},
which is a continuous map on Y . The positive invariance and monotonicity of the
semiflow imply that

b(g · t) ≤ u(t, g, b(g)), ∀g ∈ Y, t ≥ 0. (3.1)

Furthermore, we claim that b is invariant under the flow σ, that is, b(g · t) =
u(t, g, b(g)) for each g ∈ Y and t ≥ 0.
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On the contrary, we assume that there exist g ∈ Y and s > 0 such that

b(g · s) < u(s, g, b(g)). (3.2)

Our assumption implies that xi � 0, i = 1, . . . , N , from which we deduce that
b(g)� 0. For e� 0 we define e-norm by

‖x‖e =: inf{γ > 0 : −γe ≤K x ≤K γe}. (3.3)

Let e = b(g)� 0 and

α = inf{‖b(g)− xi(g)‖e : i = 1, . . . , N}. (3.4)

Obviously, α < 1 and there exists j ∈ {1, . . . , N} such that α = ‖b(g) − xj(g)‖e.
Hence, b(g)− xj(g) ≤ αb(g), which is equivalent to

xj(g) ≥ (1− α)b(g).

The monotonicity and concavity of the skew-product semiflow and (A2) imply that

u(s, g, xj(g)) ≥ (1− α)u(s, g, b(g)) > (1− α)b(g · s).

If α = 0, then we obtain b(g · s) ≥ xj(g · s) = u(s, g, xj(g)) ≥ u(s, g, b(g)), which
contradicts to (3.2), and hence, α is strictly positive. Moreover, the eventually
strong monotonicity and strong concavity of the semiflow show that

u(s+ t0, g, xj(g))� (1− α)u(t0, g · s, b(g · s)).

The property of cones implies that we can find 0 < α0 < α such that

u(s+ t0, g, xj(g))� (1− α0)u(t0, g · s, b(g · s)).

Using the eventually strong monotonicity and strong concavity of the semiflow
again, it then follows from (3.1) that

u(t, g, xj(g))� (1− α0)b(g · t), ∀t ≥ s+ t0.

Since the flow is minimal, there exists a sequence tn →∞ such that

lim
n→∞

(g · tn, u(tn, g, xj(g)) = (g, xk(g))

for some k ∈ {1, . . . , N}. Thus, we have

xk(g) ≥ (1− α0)b(g);

i.e., b(g)− xk(g) ≤ α0b(g) = α0e, which contradicts to (3.4). Hence, b is invariant
under the flow σ.

Define
Ob = {(g, b(g)) : g ∈ Y }.

Finally, we verify that Ob = O. On the contrary, assume that there exist g ∈ Y and
j ∈ {1, . . . , N} such that b(g) > xj(g). The eventually strong monotonicity of the
semiflow implies that b(g)� xj(g), for all g ∈ Y , j ∈ {1, . . . , N}, which contradicts
that b is the supremum. Hence, we get Ob = O. Furthermore, the conclusion that
O is a copy of the base Y can be obtained straight. �

Corollary 3.6. Let the assumptions of Theorem 3.5 hold. Then O is an equilibrium
point set.
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Proof. By Theorem 3.5, we have

O = {(g, b(g)) : g ∈ Y },
and the map g 7→ b(g) is a bijection with b(g · t) = u(t, g, b(g)), ∀g ∈ Y , t ≥ 0.
Hence, O is the equilibrium point set. �

Lemma 3.7. Assume that two omega limit sets satisfy O1 �C O2. Then there
exists a positive constant c1 such that

‖ux(t, g, x2)‖ ≤ c1, ∀(g, x2) ∈ O2, t ≥ 0.

Proof. In view of the proof of [6, Lemma 5.6], we know that, for e� 0 there exists
a constant c̄ (depending on e) such that

‖ux(t, g, x)‖ ≤ c̄‖ux(t, g, x)e‖, ∀(g, x) ∈ Y ×X, t ≥ 0. (3.5)

The conclusion of [6, Lemma 5.3] implies that there exists a positive constant β > 0
such that x2 − x1 ≥ βe, for all (g, x1) ∈ O1, (g, x2) ∈ O2. The positiveness of the
linear operator ux(t, g, x2) shows that

ux(t, g, x2)(x2 − x1) ≥ βux(t, g, x2)e.

The monotonicity and concavity of the semiflow and (2.6) show that

‖ux(t, g, x2)‖ ≤ c̄

β
‖ux(t, g, x2)− ux(t, g, x1)‖, ∀t ≥ 0.

From the above and the compact positive invariance of O1 and O2 we can conclude
that there exists a positive constant c1 such that

‖ux(t, g, x2)‖ ≤ c1, ∀(g, x2) ∈ O2, t ≥ 0.

The proof is complete. �

Proposition 3.8. If O1 �C O2 holds, then O2 is a linearly stable set, i.e., λO2 ≤
0.

Proof. By Definition 3.4 and Lemma 3.7, the conclusion can be obtained immedi-
ately. �

Proposition 3.9. There exists the function g 7→ a(g) such that the set

Y0 = {g ∈ Y : (g, a(g)) ∈ O}
is the continuous point set of the mapping g 7→ a(g).

Proof. It is sufficient to prove that for any gk → g there exists g 7→ a(g) such that
a(gk) → a(g). Because of the minimality of the flow, we only to prove a(g · tk) →
a(g · t0) for any tk → t0. Let (g, x) ∈ O, from the definition of the omega limit set,
there exists a sequence tn →∞ such that g0 · tn → g, u(tn, g0, x0)→ x. Let

a(g) := lim
n→∞

u(tn, g0, x0) = x.

Then

a(g · t0) = lim
n→∞

u(tn, g0 · t0, u(t0, g0, x0))

= lim
n→∞

u(tn + t0, g0, x0)

= lim
n→∞

u(t0, g0 · tn, u(tn, g0, x0))

= u(t0, g, x),
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and for any k ∈ N,

lim
k→∞

a(g · tk) = lim
k→∞

lim
n→∞

u(tn, g0 · tk, u(tk, g0, x0))

= lim
k→∞

lim
n→∞

u(tk, g0 · tn, u(tn, g0, x0))

= lim
k→∞

u(tk, g, x)

= u(t0, g, x) = a(g · t0).

The proof is complete. �

From [6, Proposition 6.1], we have the following result .

Proposition 3.10. Suppose that O1 �C O2. If λO2 = 0, there exist positive
constant ĉ and c such that

ĉ ≤ ‖ux(t, g, x2)‖ ≤ c, ∀(g, x2) ∈ O2, t ≥ 0. (3.6)

Proposition 3.11. Assume that O1 �C O2 holds and λO2 = 0. Then there exists
a minimal subset O∗ of Y ×X such that O1 � O∗ < O2.

Proof. As in Proposition 3.9, define Y0 = {g ∈ Y : (g, a(g)) ∈ O2}. Let g0 ∈ Y0,
from the definition of Y0, we have (g0, a(g0)) ∈ O2. Since O1 �C O2, for each
(g0, x1) ∈ O1, we have x1 � a(g0). Fixed 0 < α < 1, define

yα = αx1 + (1− α)a(g0).

Obviously, x1 � yα < a(g0). The precompactness of the forward orbit {π(t, g0, yα) :
t ≥ δ, δ > 0} implies that its closure contains a minimal subset, denoted by Oα,
i.e.,

Oα ⊂ cls{(g0 · t, u(t, g0, yα)) : t ≥ δ}.
The monotonicity of the skew-product semiflow implies O1 ≤ Oα ≤ O2. In the
following, we prove that Oα is required.

First we check O1 � Oα. For (g, z) ∈ Oα, there exist a sequence tn → ∞ such
that

lim
n→∞

Π(tn, g0, yα) = (g, z).

The concavity implies that

u(tn, g0, yα) ≥ αu(tn, g0, x1) + (1− α)u(tn, g0, a(g0)).

In addition, there exists a subsequence (assume the whole sequence), (g, z1) ∈ O1

and (g, z2) ∈ O2 such that

lim
n→∞

Π(tn, g0, x1) = (g, z1), lim
n→∞

Π(tn, g0, a(g0)) = (g, z2).

Hence, we have
z ≥ αz1 + (1− α)z2.

Since O1 �C O2, z1 � z2 holds, from which we have z � z1, Definition 3.2 tells
us O1 � Oα.

In the following we prove O2 6= Oα. On the contrary, we assume that O2 =
Oα with (g0, a(g0)) ∈ O2 ∩ Oα. Thus, there exists a sequence tk → ∞ such
that limn→∞Π(tk, g0, yα) = (g0, a(g0)). Proposition 3.10 implies that there exist a
positive constant ĉ > 0 such that ĉ ≤ ‖ux(t, g0, a(g0))‖, ∀t ≥ 0. From the inequality
(2.6) we deduce that for all k ∈ N,

u(tk, g0, a(g0))− u(tk, g0, yα) ≥ ux(tk, g0, a(g0))(a(g0)− yα)
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= αux(tk, g0, a(g0))(a(g0)− x1).

It then follows from (3.5) and the monotonicity of the skew-product semiflow that
for e = (a(g0)− x1), we can find l (which only depends on a(g0) and x1) such that

‖a(g0 · tk)− u(tk, g0, yα)‖ ≥ l > 0, ∀k ∈ N.

This contradicts that g0 is a point of continuity of a(g0), which implies limn→∞(g0 ·
tk, u(tk, g0, yα)) = (g0, a(g0)). The proof is complete. �

Theorem 3.12. If O1 �C O2, then λO2 < 0.

Proof. Proposition 3.8 implies that λO2 ≤ 0, hence, it is sufficient to prove λO2 6= 0.
On the contrary, we assume that λO2 = 0. It follows from Proposition 3.11 that
there exists the subset O∗ of Y ×X such that O1 � O∗ < O2. Let g0 ∈ Y0, then
(g0, a(g0)) ∈ O2 and there exist (g0, z) ∈ O∗ and (g0, x1) ∈ O1 such that

x1 � z < a(g0).

Let e = a(g0)− x1 � 0 in (3.3) and define

γ = inf{‖a(g0)− x‖e : (g0, x) ∈ O∗}.

It is easy to see that there exists (g0, x) ∈ O∗ such that γ = ‖a(g0) − x‖e with
0 < γ < 1, which implies that a(g0)− x ≤ γ(a(g0)− x1); i.e.,

x ≥ (1− γ)a(g0) + γx1.

Since a(g0) � x1, the monotonicity and strong concavity of the skew-product
semiflow implies that

u(t, g0, x)� (1− γ)u(t, g0, a(g0)) + γu(t, g0, x1). (3.7)

In view of the property of the cone, there exists γ0 with 0 < γ0 < γ such that

u(t, g0, x)� (1− γ0)a(g0 · t) + γ0u(t, g0, x1),

Hence, there exists (g0, y) ∈ O∗ such that

y ≥ (1− γ0)a(g0) + γ0x1;

i.e., a(g0) − y ≤ γ0(a(g0) − x1) = γ0e, which implies that ‖a(g0) − y‖e ≤ γ0 < γ.
This contradicts the definition of γ. �

Theorem 3.13. If O1 �C O2, then O2 is the copy of the base Y , i.e., for each
g ∈ Y , card(O2 ∩ π−1(g)) = 1.

Proof. Since O1 �C O2, Theorem 3.12 tells us λO2 < 0, the remaining is concluded
by Theorem 3.5. �

Next, we introduce the main result of this article.

Theorem 3.14. If (A1) and (A2) hold, then for any (g, x) ∈ Y ×X+ \ {0} either

(i) limt→∞ ‖u(t, g, x)‖ = +∞, or
(ii) there exists an equilibrium point set O∗ ⊂ Y × intX+ such that O(g, x) =
O∗ and limt→∞ ‖u(t, g, x)− u(t, g, x∗)‖ = 0, where (g, x∗) = O∗ ∩ π−1(g).



EJDE-2015/13 LIMIT BEHAVIOR 9

Proof. On the contrary, we assume that (i) does not hold; i.e., the forward orbit
of the skew-product semiflow is bounded, From (A1) we know {Π(t, g, x)|t ≥ 0}
is precompact. The eventually strong monotonicity implies that if (g, x) ∈ Y ×
(X+ \ {0}), then O(g, x) =: O∗ ⊂ Y × intX+. It then follows from (A2) that
O(g, 0) =: O0 ⊂ Y × {0}. Hence, O0 �C O∗. Thus, Theorem 3.12 implies that
λO∗ < 0. Furthermore, Theorem 3.13 and Corollary 3.6 show that O∗ is a copy of
the base Y and an equilibrium set, i.e., card(O∗ ∩ π−1(g)) = 1, for all g ∈ Y .

Next we prove that limt→∞ ‖u(t, g, x) − u(t, g, x∗)‖ = 0. On the contrary, we
assume there exists a sequence tn → ∞ and a positive constant ε > 0 such that
‖u(tn, g, x) − u(tn, g, x∗)‖ > ε for all n ≥ 1. Denote limn→∞Π(tn, g, x) = (ḡ, x̄1)
and limn→∞Π(tn, g, x∗) = (ḡ, x̄2), where (g, x∗) = O∗ ∩ π−1(g). Since card(O∗ ∩
π−1(ḡ)) = 1, we have x̄1 = x̄2. Thus, 0 = ‖x̄1 − x̄2‖ = limn→∞ ‖u(tn, g, x) −
u(tn, g, x∗)‖ ≥ ε, a contradiction holds. Hence, limt→∞ ‖u(t, g, x) − u(t, g, x∗)‖ =
0. �

Consider the almost periodic delay differential equation

y′(t) = f(t, y(t), y(t− 1)), ∀t ∈ R+,

y(s) = φ(s), ∀s ∈ [−1, 0],
(3.8)

where φ ∈ C+ := C([−1, 0],Rn+), the function f = (f1, f2, . . . , fn) : R+ × Rn × Rn
is almost periodic ( Let (X, d) be metric space, a function f ∈ C(R, X) is said to
be almost periodic if for any ε > 0, there exists l = l(ε) > 0 such that every
interval of R of length l contains at least one point of the set T (ε) = {τ ∈ R :
d(f(t+ τ), f(t)) < ε,∀t ∈ R}). In addition, we propose the following properties:

(i) for each y, z ∈ Rn, t ∈ R and i 6= j, ∂fi

∂yj
(t, y, z) ≥ 0; If Ĩ and J̃ form a

partition of N = {1, 2, . . . , n}, then there exist δ > 0, i ∈ Ĩ and j ∈ J̃ , such
that ∣∣ ∂fi

∂yj
(t, y, z)

∣∣ ≥ δ, ∀y, z ∈ Rn, t ∈ R;

(ii) for y, z ∈ Rn, t ∈ R and i, j ∈ {1, 2, . . . , n}, ∂fi

∂zj
(t, y, z) ≥ 0. Furthermore,

There exists δ > 0 such that∣∣∂fi
∂zj

(t, y, z)
∣∣ ≥ δ;

(iii) there exists g0 ∈ Y such that f
(a) is concave with respect to (y, z), i.e., whenever y1 ≤ y2, z1 ≤ z2,

f(t, λ(y1, z1) + (1− λ)(y2, z2)) ≥ λf(t, (y1, z1)) + (1− λ)f(t, (y2, z2))

for λ ∈ [0, 1] and t ∈ R+;
(b) is strongly concave with respect to (y, z); i.e., whenever y1 � y2,

z1 � z2,

f(t, λ(y1, z1) + (1− λ)(y2, z2))� λf(t, (y1, z1)) + (1− λ)f(t, (y2, z2));

for λ ∈ (0, 1) and t ∈ [0, 1];
(iv) f(·, 0, 0) ≡ 0.

We embed (3.8) into the skew-product semiflow Π : R+ × Y × C+ → Y × C+

Π(t, g, φ) 7→ (σt(g), u(t, g, φ)), (3.9)
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where for θ ∈ [−1, 0], u(t, g, φ)(θ) = y(t + θ, g, φ), and σt(g(s, ·, ·)) = g(s, ·, ·) · t =
g(t+ s, ·, ·). y(t, g, φ) is the solution of the equation

y′(t) = g(t, y(t), y(t− 1)), (3.10)

and for θ ∈ [−1, 0] and g = (g1, g2, . . . , gn) ∈ Y , y(θ, g, φ) = φ(θ), where

Y := cls{ft|t ≥ 0, ft(s, ·, ·) = f(t+ s, ·, ·)},
the closure is defined in the topology of uniform convergence on compact set. From
the above we deduce that Y is compact metric space and (Y, σ,R+) is minimal. By
the standard theory of delay differential equations (refer to [2, 4]), we know that
for all g ∈ Y and initial value φ ∈ C, (3.8) admit a unique solution y(t, g, φ), i.e.,
for θ ∈ [−1, 0], y(θ, g, φ) = φ(θ). If y(t, g, φ) is the unique solution of (3.8) in the
existence interval of t, then u(t, g, φ) exists for all t > 0, and the forward orbit
{u(t, g, φ)|t ≥ 1 + δ} is precompact for δ > 0.

Theorem 3.15. The skew-product semiflow (3.9) is eventually strongly monotone
and satisfies concavity and strongly concavity, respectively; i.e., there exists g0 ∈ Y
such that

λu(t, g, v) + (1− λ)u(t, g, w) ≤ u(t, g, λv + (1− λ)w)
whenever w ≥ v, t ≥ 0, λ ∈ [0, 1] and g ∈ Y , and

λu(t, g0, v) + (1− λ)u(t, g0, w)� u(t, g0, λv + (1− λ)w)

whenever w � v, t ≥ 1 and λ ∈ (0, 1).

Proof. The eventually strong monotonicity can be obtained from [6, 7]. Let λ ∈
(0, 1) and Zg(t) = λy(t, g, v) + (1− λ)y(t, g, w), so

Z ′g = λg(t, y(t, g, v), v(t− 1)) + (1− λ)g(t, y(t, g, w), w(t− 1)), ∀t ∈ [0, 1].

By the monotonicity of the skew-product semiflow, if v ≤ w, then y(t, g, v) ≤
y(t, g, w). It then follows from (iii)(a) that

Z ′g(t) ≤ g(t, Zg(t), λv(t− 1) + (1− λ)w(t− 1)), ∀t ∈ [0, 1].

From (i), (ii) and comparison theorems for this kind of ordinary differential
equation (see [1]), we have

λy(t, g, v) + (1− λ)y(t, g, w) ≤ y(t, g, λv + (1− λ)w), ∀t ∈ [0, 1]

An inductive argument shows that for each n ∈ N,

λy(t, g, v) + (1− λ)y(t, g, w) ≤ y(t, g, λv + (1− λ)w), ∀t ∈ [n, n+ 1].

Hence,

λu(t, g, v) + (1− λ)u(t, g, w)) ≤ u(t, g, λv + (1− λ)w), ∀t ≥ 0.

If v � w, the strong monotonicity implies y(t, g0, v)� y(t, g0, w). From (iii)(b),
for each t ∈ [1, 2],

z′g0(t)� g0(t, zg0(t), λv(t− 1) + (1− λ)w(t− 1)).

Using a same process, comparison theorems provide Zg0(t)� y(t, g0, λv+(1−λ)w).
Hence,

λy(t, g0, v) + (1− λ)y(t, g0, w))� y(t, g0, λv + (1− λ)w), ∀t > 0.

That is,

λu(t, g0, v) + (1− λ)u(t, g0, w))� u(t, g0, λv + (1− λ)w), ∀t > 1.
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The proof is complete. �

Theorem 3.16. If (3.8) admits a bounded solution y(t, φ), then there exists an
almost periodic solution y∗(t), limt→∞ ‖y(t, φ)−y∗(t)‖ = 0 for φ ∈ C+ with φ(0) >
0.

Proof. Theorem 3.15 tells us that the skew-product semiflow (3.9) is eventually
strongly monotone and (strongly) concave. For any (g, φ) ∈ Y ×C+ with φ(0) > 0,
we conclude O∗ := O(g, φ) ⊂ Y × intC+. It then follows from Theorem 3.14 that
limt→∞ ‖y(t, φ)− y∗(t)‖ = 0, where (g, y∗(t)) = O∗ ∩ π−1(g). �
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