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FIXED POINT RESULTS FOR GENERALIZED
α-ψ-CONTRACTIONS IN METRIC-LIKE SPACES AND

APPLICATIONS

HASSEN AYDI, ERDAL KARAPINAR

Abstract. In this article, we introduce the concept of generalized α-ψ-con-
traction in the context of metric-like spaces and establish some related fixed

point theorems. As consequences, we obtain some known fixed point results

in the literature. Some examples and an application on two-point boundary
value problems for second order differential equation are also considered.

1. Introduction and preliminaries

The notion of metric-like (dislocated) metric spaces was introduced by Hitzler
and Seda [9] in 2000 as a generalization of a metric space. They generalized the
Banach Contraction Principle [5] in such spaces. Metric-like spaces were discov-
ered by Amini-Harandi [4] who established some fixed point results. Very recently,
Karapinar and Salimi [14] established some fixed point theorems for cyclic con-
tractions in the setting of metric-like spaces. Many other (common) fixed point
results in the context of metric-like (quasi) spaces have been proved, see for exam-
ple [1, 2, 14, 15, 21, 25, 26].

In the sequel, the letters R, R+
0 and N∗ will denote the set of real numbers, the set

of nonnegative real numbers and the set of positive integer numbers, respectively.

Definition 1.1 ([4]). Let X be a nonempty set. A function σ : X ×X → R+
0 is

said to be a dislocated (metric-like) metric on X if for any x, y, z ∈ X, the following
conditions hold:

(S1) σ(x, y) = σ(x, x) = 0 =⇒ x = y;
(S2) σ(x, y) = σ(y, x);
(S3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is then called a dislocated (metric-like) metric space.

Example 1.2. A trivial example of a metric-like space is the pair (R+
0 , σ), where

σ : R+
0 × R+

0 → R+
0 is defined as σ(x, y) = max{x, y}. Here, σ is also a partial

metric [16].
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Example 1.3. Take X = R and define the σ metric-like as

σ(x, y) =
|x− y|+ |x|+ |y|

2
for all x, y ∈ X.

Notice that σ is not a metric. Particularly, if X = R+
0 , we have σ(x, y) = max{x, y}

and so we return to Example 1.2. But, if X = R, we have σ(x, y) 6= max{x, y}.

As it is well known, a partial metric [16] is a metric-like. The converse is not
true. The following example concerns this statement.

Example 1.4. Take X = {1, 2, 3} and consider the metric-like σ : X ×X → R+
0

given by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2
3
, σ(1, 2) = σ(2, 1) =

9
10
,

σ(2, 3) = σ(3, 2) =
4
5
, σ(1, 3) = σ(3, 1) =

7
10
.

Since σ(2, 2) 6= 0, so σ is not a metric and since σ(2, 2) > σ(1, 2), so σ is not a
partial metric.

Each metric-like σ on X generates a T0 topology τσ on X which has as a base
the family open σ-balls {Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈ X :
|σ(x, y)− σ(x, x)| < ε}, for all x ∈ X and ε > 0.

Observe that a sequence {xn} in a metric-like space (X,σ) converges to a point
x ∈ X, with respect to τσ, if and only if σ(x, x) = limn→∞ σ(x, xn).

Definition 1.5 ([4]). Let (X,σ) be a metric-like space.
(a) A sequence {xn} in X is a Cauchy sequence if limn,m→∞ σ(xn, xm) exists

and is finite.
(b) (X,σ) is complete if every Cauchy sequence {xn} in X converges with

respect to τσ to a point x ∈ X; that is,

lim
n→∞

σ(x, xn) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

Definition 1.6 ([4]). Let (X,σ) be a metric-like space. A mapping T : (X,σ) →
(X,σ) is continuous if for any sequence {xn} in X such that σ(xn, x)→ σ(x, x) as
n→∞, we have σ(Txn, Tx)→ σ(Tx, Tx) as n→∞.

Lemma 1.7 ([14]). Let (X,σ) be a metric-like space. Let {xn} be a sequence in X
such that xn → x where x ∈ X and σ(x, x) = 0. Then, for all y ∈ X, we have

lim
n→∞

σ(xn, y) = σ(x, y).

Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(i) ψ is nondecreasing;
(ii)

∑+∞
n=1 ψ

n(t) <∞ for all t > 0.
Note that if ψ ∈ Ψ, we have ψ(t) < t for all t > 0.

In 2012, Samet et al [23] introduced the class of α-admissible mappings.

Definition 1.8. [23] For a nonempty set X, let T : X → X and α : X×X → [0,∞)
be given mappings. We say that T is α-admissible if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1. (1.1)
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The notion of α− ψ-contractive mappings is also defined in the following way.

Definition 1.9 ([23]). Let (X, d) be a metric space and T : X → X be a given
mapping. We say that T is a α−ψ contractive mapping if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), for all x, y ∈ X. (1.2)

Many authors have proved fixed point results for generalized contractions using
the function α, see for instance [3, 6, 7, 13]. Now, we state in the following definition
a generalization of the notion of α − ψ contractive mappings in the context of a
metric-like space.

Definition 1.10. Let (X,σ) be a metric-like space and T : X → X be a given
mapping. We say that T is a generalized α − ψ contractive mapping of type A if
there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)σ(Tx, Ty) ≤ ψ(M(x, y)), for all x, y ∈ X, (1.3)

where

M(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}. (1.4)

Our aim in this article is to provide some fixed point results for variant gener-
alized α− ψ contractive mappings in the setting of metric-like spaces. We support
our obtained theorems by some concrete examples and an application.

2. Main results

Our first fixed point result read as follows.

Theorem 2.1. Let (X,σ) be a complete metric-like space and T : X → X be a
generalized α− ψ contractive mapping of type A. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.

Then there exists a u ∈ X such that σ(u, u) = 0. Assume in addition that
(H1) If σ(x, x) = 0 for some x ∈ X, then α(x, x) ≥ 1.

Then such u is a fixed point of T , that is, Tu = u.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1.
We define a sequence {xn} in X by xn+1 = Txn = Tn+1x0 for all n ≥ 0. Suppose
that xn0 = xn0+1 for some n0. So the proof is completed since u = xn0 = xn0+1 =
Txn0 = Tu. Consequently, throughout the proof, we assume that

xn 6= xn+1 for all n. (2.1)

Observe that

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

since T is α-admissible. By repeating the process above, we derive that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . . (2.2)
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Step 1: We shall prove that

lim
n→∞

σ(xn, xn+1) = 0. (2.3)

Combining (1.3) and 2.2, we find that

σ(xn, xn+1) = σ(Txn−1, Txn) ≤ α(xn−1, xn)σ(Txn−1, Txn) ≤ ψ(M(xn−1, xn)),
(2.4)

for all n ≥ 1, where
M(xn−1, xn)

= max{σ(xn−1, xn), σ(xn−1, Txn−1), σ(xn, Txn),
σ(xn−1, Txn) + σ(xn, Txn−1)

4
}

= max{σ(xn−1, xn), σ(xn−1, xn), σ(xn, xn+1),
σ(xn−1, xn+1) + σ(xn, xn)

4
}

≤ max{σ(xn−1, xn), σ(xn, xn+1),
σ(xn−1, xn) + 3σ(xn, xn+1)

4
}

= max{σ(xn−1, xn), σ(xn, xn+1)}.
(2.5)

If for some n, max{σ(xn−1, xn), σ(xn, xn+1)} = σ(xn, xn+1)(6= 0), then (2.4) and
(2.5) turn into

σ(xn, xn+1) ≤ ψ(M(xn−1, xn)) ≤ ψ(σ(xn, xn+1)) < σ(xn, xn+1),

which is a contradiction. Hence, max{σ(xn−1, xn), σ(xn, xn+1)} = σ(xn−1, xn) for
all n ∈ N∗ and (2.4) becomes

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) for all n ≥ 1. (2.6)

This yields
σ(xn, xn+1) < σ(xn−1, xn) for all n ≥ 1. (2.7)

By (2.6), we find that

σ(xn, xn+1) ≤ ψn(σ(x0, x1)), for all n ∈ N. (2.8)

By the properties of ψ, we have

lim
n→∞

σ(xn, xn+1) = 0.

Step 2: We shall prove that {xn} is a Cauchy sequence. First, by using (S3) and
(2.8)

σ(xn, xn+k) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + . . .+ σ(xn+k−1, xn+k)

≤
n+k−1∑
p=n

ψp(σ(x0, x1))

≤
+∞∑
p=n

ψp(σ(x0, x1))→ 0 as n→∞.

(2.9)

Thus, by the symmetry of σ, we obtain

lim
n,m→∞

σ(xn, xm) = 0. (2.10)
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We conclude that {xn} is a Cauchy sequence in (X,σ). Since (X,σ) is complete,
there exists u ∈ X such that

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n,m→∞

σ(xn, xm) = 0. (2.11)

Since T is continuous, from (2.11) we obtain that

lim
n→∞

σ(xn+1, Tu) = lim
n→∞

σ(Txn, Tu) = σ(Tu, Tu), (2.12)

On the other hand, by (2.11) and Lemma 1.7

lim
n→∞

σ(xn+1, Tu) = σ(u, Tu). (2.13)

Comparing (2.12) and (2.13), we get σ(u, Tu) = σ(Tu, Tu). By (1.3),

α(u, u)σ(Tu, Tu) ≤ ψ(M(u, u)),

where

M(u, u) = max{σ(u, u), σ(u, Tu), σ(u, Tu),
σ(u, Tu) + σ(u, Tu)

4
}

= max{0, σ(u, Tu)} = σ(u, Tu).

From hypothesis (H1) and the fact that σ(u, u) = 0, we have α(u, u) ≥ 1. Therefore,
by (1.3)

σ(u, Tu) ≤ α(u, u)σ(u, Tu) ≤ ψ(σ(u, Tu)),
which holds unless σ(u, Tu) = 0, that is Tu = u. So u is a fixed point of T . �

Theorem 2.1 remains true if we replace the continuity hypothesis by the following
property:

If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)} of
{xn} such that α(xn(k), x) ≥ 1 for all k.

This statement is given as follows.

Theorem 2.2. Let (X, d) be a complete metric-like space and T : X → X be a
generalized α− ψ contractive mapping of type A. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then, there exists u ∈ X such that Tu = u.

Proof. Following the proof of Theorem 2.1, we know that the sequence {xn} defined
by xn+1 = Txn for all n ≥ 0 is Cauchy in (X,σ) and converges to some u ∈ X.
Also, (2.11)) holds, so

lim
k→∞

σ(xn(k)+1, Tu) = σ(u, Tu). (2.14)

We shall show that Tu = u. Suppose, on the contrary, that Tu 6= u, i.e, σ(Tu, u) >
0. From (2.2) and condition (iii), there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), u) ≥ 1 for all k.

By applying (1.3), we obtain

σ(xn(k)+1, Tu) ≤ α(xn(k), u)σ(Txn(k), Tu) ≤ ψ(M(xn(k), u)) (2.15)
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where
M(xn(k), u)

= max{σ(xn(k), u), σ(xn(k), Txn(k)), σ(u, Tu),
σ(xn(k), Tu) + σ(u, Txn(k))

4
}

= max{σ(xn(k), u), σ(xn(k), xn(k)+1), σ(u, Tu),
σ(xn(k), Tu) + σ(u, xn(k)+1)

4
}.

(2.16)

By (2.3) and (2.14), we have

lim
k→∞

M(xn(k), u) = σ(u, Tu). (2.17)

Letting k →∞ in (2.15))

σ(u, Tu) ≤ ψ(σ(u, Tu)) < σ(u, Tu), (2.18)

which is a contradiction. Hence, we obtain that u is a fixed point of T , that is,
Tu = u. �

Definition 2.3. Let (X,σ) be a metric-like space and T : X → X be a given
mapping. We say that T is a generalized α − ψ contractive mapping of type B if
there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)σ(Tx, Ty) ≤ ψ(M0(x, y)), for all x, y ∈ X, (2.19)

where
M0(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty)}. (2.20)

Theorem 2.4. Let (X, d) be a complete metric-like space and T : X → X be a
generalized α− ψ contractive mapping of type B. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.
Then there exists a u ∈ X such that σ(u, u) = 0. If in addition (H1) holds, then
such u is a fixed point of T , that is, Tu = u.

Proof. Along the lines of the proof of Theorem 2.1, we get the desired result. Be-
cause of the analogy, we skip the details of the proof. �

Theorem 2.5. Let (X, d) be a complete metric-like space and T : X → X be a
generalized α− ψ contractive mapping of type B. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then, there exists u ∈ X such that Tu = u.

We omit the proof because of the similarity to Theorem 2.2.

Definition 2.6. Let (X,σ) be a metric-like space and T : X → X be a given
mapping. We say that T is a α−ψ contractive mapping if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)σ(Tx, Ty) ≤ ψ(σ(x, y)), for all x, y ∈ X, (2.21)
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Theorem 2.7. Let (X, d) be a complete metric-like space and T : X → X be a
α− ψ contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.

Then there exists a u ∈ X such that σ(u, u) = 0. If in addition (H1) holds, then
such u is a fixed point of T , that is, Tu = u.

The above theorem is a simple consequence of Theorem 2.1.

Theorem 2.8. Let (X, d) be a complete metric-like space and T : X → X be a
α− ψ contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then, there exists u ∈ X such that Tu = u.

The above theorem follows from Theorem 2.2.

3. Consequences of the main results

In the following, we present some illustrated consequences of our obtained results
given by Theorem 2.1 and Theorem 2.2.

3.1. Standard fixed point results in metric-like spaces.

Corollary 3.1. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X
where M(x, y) is defined by (1.4). Then, T has a fixed point.

To prove the above corollary it suffices to take α(x, y) = 1 in Theorem 2.2.

Corollary 3.2. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ λM(x, y) for all x, y ∈ X
where λ ∈ [0, 1). Then, T has a fixed point.

Proof. To prove the above corollary it suffices to take ψ(t) = λt in Corollary 3.1. �

Corollary 3.3. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ ψ(M0(x, y)) for all x, y ∈ X
where M0(x, y) is defined by (2.20). Then, T has a fixed point.

To prove the above corollary it suffices to take α(x, y) = 1 in Theorem 2.4.

Corollary 3.4. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ λM0(x, y) for all x, y ∈ X
where λ ∈ [0, 1). Then, T has a fixed point.
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To prove the above corollary it suffices to take ψ(t) = λt in Corollary 3.3.

Corollary 3.5. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ ψ(σ(x, y)) for all x, y ∈ X.
Then, T has a fixed point.

To prove the above corollary it suffices to take α(x, y) = 1 in Theorem 2.8.

Corollary 3.6. Let (X,σ) be a complete metric-like space and T : X → X be such
that

σ(Tx, Ty) ≤ λσ(x, y) for all x, y ∈ X
where λ ∈ [0, 1). Then, T has a fixed point.

To prove the above corollary it suffices to take ψ(t) = λt in Corollary 3.5.

3.2. Standard fixed point results in partial metric spaces. The partial met-
ric spaces were introduced by Matthews [16] as a part of the study of denotational
semantics of data for networks.

Definition 3.7 ([16]). A partial metric on a nonempty set X is a function p :
X ×X → [0,+∞) such that for all x, y, z ∈ X:

(P1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X.

If p is a partial metric on X, then the function dp : X ×X → R+
0 given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), (3.1)

is a metric on X.

Lemma 3.8. Let (X, p) be a partial metric space. Then, (a) {xn} is a Cauchy
sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, dp),
(b) X is complete if and only if the metric space (X, dp) is complete.

Corollary 3.9. Let (X,σ) be a complete partial space and T : (X, p) → (X, p) be
such that

α(x, y)p(Tx, Ty) ≤ ψ(N(x, y)) for all x, y ∈ X
where N(x, y) is defined as

N(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
}.

Suppose that
(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.

Then there exists a u ∈ X such that p(u, u) = 0. If in addition (H1) holds, then
such u is a fixed point of T , that is, Tu = u.



EJDE-2015/133 FIXED POINT RESULTS IN METRIC-LIKE SPACES 9

Proof. It suffices to replace the metric-like σ in Theorem 2.1 by the partial metric
p which itself a metric-like. Note that we considered in N(x, y) the fourth term
p(x,Ty)+p(y,Tx)

2 instead of p(x,Ty)+p(y,Tx)4 due to the inequality p(x, x) ≤ p(x, y). Its
proof is evident. �

Similar to Corollary 3.9, from Theorem 2.2 we deduce the following result.

Corollary 3.10. Let (X,σ) be a complete partial space and T : (X, p)→ (X, p) be
such that

α(x, y)p(Tx, Ty) ≤ ψ(N(x, y)) for all x, y ∈ X.
Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then, there exists u ∈ X such that Tu = u.

Remark 3.11. It is clear that one can easily state the analog of Theorem 2.4,
Theorem 2.5, Theorem 2.7 and Theorem 2.8 in the setting of partial metric spaces.

3.3. Fixed point results with a partial order. The study of the existence of
fixed points on metric spaces endowed with a partial order can be considered as one
of the very interesting improvements in the field of fixed point theory. This trend
was initiated by Turinici [24] in 1986, but it became one of the core research subject
after the publications of Ran and Reurings in [20] and Nieto and Rodŕıguez-López
[17].

Definition 3.12. Let (X,�) be a partially ordered set and T : X → X be a given
mapping. We say that T is nondecreasing with respect to � if

x, y ∈ X, x � y =⇒ Tx � Ty.

Definition 3.13. Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is
said to be nondecreasing with respect to � if xn � xn+1 for all n.

Definition 3.14. Let (X,�) be a partially ordered set and σ be a metric-like on
X. We say that (X,�, σ) is regular if for every nondecreasing sequence {xn} ⊂ X
such that xn → x ∈ X as n→∞, there exists a subsequence {xn(k)} of {xn} such
that xn(k) � x for all k.

Corollary 3.15. Let (X,�) be a partially ordered set and σ be a metric-like on
X such that (X,σ) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a function ψ ∈ Ψ such that

σ(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
(ii) (T is continuous and the property (H) holds) or ((X,�, σ) is regular).

Then, T has a fixed point.
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Proof. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x � y or x � y,
0 otherwise.

Clearly, T is a generalized α− ψ contractive mapping of type A; that is,

α(x, y)σ(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ X. From condition (i), we have α(x0, Tx0) ≥ 1. Moreover, for all
x, y ∈ X, from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

Thus, T is α-admissible. Now, if T is continuous and the hypothesis (H1) holds, the
existence of a fixed point follows from Theorem 2.1. Suppose now that (X,�, d)
is regular. Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ X as n→∞. From the regularity hypothesis, there exists a subsequence
{xn(k)} of {xn} such that xn(k) � x for all k. This implies from the definition of
α that α(xn(k), x) ≥ 1 for all k. In this case, the existence of a fixed point follows
from Theorem 2.2. �

Remark 3.16. Notice that we may obtain the analog of Theorem 2.4, Theorem
2.5, Theorem 2.7, Theorem 2.8 and the results of Subsection 3.1 and Subsection
3.2 in the setting of partially ordered metric-like spaces.

3.4. Fixed point results for cyclic contractions. Kirk, Srinivasan and Veera-
mani [12] proved very interesting generalizations of the Banach Contraction Map-
ping Principle by introducing a cyclic contraction. This remarkable paper [12] has
been appreciated by many several researchers (see, for example, [10, 11, 18, 19, 22]
and the related reference therein). In this subsection, we derive some fixed point
theorems for cyclic contractive mappings in the setting of metric-like spaces.

Corollary 3.17. Let {Ai}2i=1 be nonempty closed subsets of a complete metric-like
space (X,σ) and T : Y → Y be a given mapping, where Y = A1 ∪A2. Suppose that
the following conditions hold:

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists a function ψ ∈ Ψ such that

σ(Tx, Ty) ≤ ψ(M(x, y)), for all (x, y) ∈ A1 ×A2.

Then T has a fixed point that belongs to A1 ∩A2.

Proof. Since A1 and A2 are closed subsets of the complete metric-like space (X,σ),
then (Y, σ) is complete. Define the mapping α : Y × Y → [0,∞) by

α(x, y) =

{
1 if (x, y) ∈ (A1 ×A2) ∪ (A2 ×A1),
0 otherwise.

From (II) and the definition of α, we can write

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ Y . Thus T is a generalized α− ψ contractive mapping of type A. Let
(x, y) ∈ Y × Y such that α(x, y) ≥ 1.

If (x, y) ∈ A1×A2, from (I), (Tx, Ty) ∈ A2×A1, which implies that α(Tx, Ty) ≥
1.
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If (x, y) ∈ A2×A1, from (I), (Tx, Ty) ∈ A1×A2, which implies that α(Tx, Ty) ≥
1.

Hence, in all cases, we conclude that α(Tx, Ty) ≥ 1 which yields that that T is
α-admissible.

Notice also that, from (I), for any a ∈ A1, we have (a, Ta) ∈ A1 × A2, which
implies that α(a, Ta) ≥ 1.

Now, let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ X as n→∞. This implies from the definition of α that

(xn, xn+1) ∈ (A1 ×A2) ∪ (A2 ×A1), for all n.

Since (A1×A2)∪ (A2×A1) is a closed set with respect to the metric-like σ, we get
that

(x, x) ∈ (A1 ×A2) ∪ (A2 ×A1),
which implies that x ∈ A1 ∩A2. Thus we get immediately from the definition of α
that α(xn, x) ≥ 1 for all n.

Now, all the hypotheses of Theorem 2.2 are satisfied and T has a fixed point in
Y . �

Note that Corollary 3.17 is a generalization of [14, Corollary 1.10].

4. Examples

We present the following two concrete examples to support our results.

Example 4.1. Consider X = {0, 1, 2}. Take the metric-like σ : X × X → R+
0

defined by

σ(0, 0) = σ(1, 1) = 0, σ(2, 2) =
9
20
,

σ(0, 2) = σ(2, 0) =
2
5
, σ(1, 2) = σ(2, 1) =

3
5
,

σ(0, 1) = σ(1, 0) =
1
2
.

Note that σ(2, 2) 6= 0, so σ is not a metric and σ(2, 2) > σ(0, 2), so σ is not a
partial metric. Clearly, (X,σ) is a complete metric-like space. Given T : X → X
as T0 = T1 = 0 and T2 = 1. Take ψ(t) = 5t/6 for each t ≥ 0. Define the mapping
α : X ×X → [0,∞) by

α(x, y) =

{
1 if x = 0,
0 otherwise.

First, let x, y ∈ X such that α(x, y) ≥ 1. By the definition of α, this implies that
x = 0 and since T0 = 0, so α(Tx, Ty) = 1 for each y ∈ X, that is, T is α-admissible.
We distinguish two cases:
Case 1: If (x = 0 and y = 0) or (x = 0 and y = 1), we have

α(Tx, Ty)σ(Tx, Ty) = σ(Tx, Ty) = 0.

Case 2: If x = 0 and y = 2, we have

α(Tx, Ty)σ(Tx, Ty) = σ(Tx, Ty) = σ(0, 1) =
1
2

=
5
6
σ(2, 1)

= ψ(σ(y, Ty))
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≤ ψ(M(x, y))

where M(x, y) is defined by (1.4). It is also obvious that hypothesis (iii) of Theorem
2.2 is satisfied. Thus, we map apply Theorem 2.2 and so T has a fixed point, which
is u = 0.

Example 4.2. Let X = [0,∞) be endowed with the metric-like σ given as σ(x, y) =
max{x, y}. Define the mapping T : X → X by

Tx =

{
1
2x

2 if x ∈ [0, 1],
3x− 1 otherwise.

Consider ψ : [0,∞)→ [0,∞) defined by

ψ(t) =

{
1
2 t

2 if 0 ≤ t < 1,
1
2 otherwise.

Obviously, ψ ∈ Ψ. Consider α : X ×X → [0,∞) as

α(x, y) =

{
1 if x, y ∈ [0, 1],
0 otherwise.

First, let x, y ∈ X such that α(x, y) ≥ 1, so x, y ∈ [0, 1]. In this case,

α(Tx, Ty) = α(
1
2
x2,

1
2
y2) = 1;

that is, T is α-admissible. Here we also have

α(Tx, Ty)σ(Tx, Ty) = σ(Tx, Ty) = σ(
1
2
x2,

1
2
y2)

= σ(ψ(x), ψ(y)) = max(ψ(x), ψ(y))

= ψ(max(x, y)) = ψ(σ(x, y))

≤ ψ(M(x, y)).

Note that hypothesis (iii) of Theorem 2.2 is also satisfied. Applying Theorem 2.2,
T has a fixed point in X, which is u = 0.

5. Applications

Here, we consider the following two-point boundary-value problem for the second-
order differential equation

−d
2x

dt2
= f(t, x(t)), t ∈ [0, 1]

x(0) = x(1) = 0,
(5.1)

where f : [0, 1]×R→ R is a continuous function. Recall that the Green’s function
associated to (5.1) is

G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1
s(1− t) if 0 ≤ s ≤ t ≤ 1.

(5.2)

Let X = C(I)(I = [0, 1]) be the space of all continuous functions defined on I. We
consider on X, the metric-like σ given by

σ(x, y) = ‖x− y‖∞ + ‖x‖∞ + ‖y‖∞ for all x, y ∈ X,
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where ‖u‖∞ = maxt∈[0,1] |u(t)| for each u ∈ X.
Note that σ is also a partial metric on X and since

dσ(x, y) := 2σ(x, y)− σ(x, x)− σ(y, y) = 2‖x− y‖∞,
so by Lemma 3.8, (X,σ) is complete since the metric space (X, ‖ · ‖∞) is complete.

It is well known that x ∈ C2(I) is a solution of (5.1) is equivalent to that
x ∈ X = C(I) is a solution of the integral equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds, for all t ∈ I. (5.3)

Theorem 5.1. Suppose the following conditions hold:

• there exists a continuous function p : I → R+
0 such that

|f(s, a)− f(s, b)| ≤ 8 p(s) |a− b|,
for each s ∈ I and a, b ∈ R;

• there exists a continuous function q : I → R+
0 such that

|f(s, a)| ≤ 8 q(s) |a|,
for each s ∈ I and a ∈ R;

• sups∈I p(s) = λ1 <
1
3 ;

• sups∈I q(s) = λ2 <
1
3 .

Then problem 5.1 has a solution u ∈ X = C(I,R).

Proof. Consider the mapping T : X → X defined by

Tx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds.

for all x ∈ X and t ∈ I. Then, problem (5.1) is equivalent to finding u ∈ X that is
a fixed point of T .

Now, let x, y ∈ X. We have

|Tx(t)− Ty(t)| = |
∫ 1

0

G(t, s)f(s, x(s))ds−
∫ 1

0

G(t, s)f(s, y(s))ds|

≤
∫ 1

0

G(t, s)|f(s, x(s))− f(s, y(s))| ds

≤ 8
∫ 1

0

G(t, s)p(s) |x(s)− y(s)| ds

≤ 8λ1‖x− y‖∞ sup
t∈I

∫ 1

0

G(t, s) ds

= λ1‖x− y‖∞.

In the above equality, we used that for each t ∈ I, we have
∫ 1

0
G(t, s) ds = − t

2

2 + t
2 ,

and so supt∈I
∫ 1

0
G(t, s) ds = 1

8 . Therefore,

‖Tx− Ty‖∞ ≤ λ1‖x− y‖∞. (5.4)

Again, we have

|Tx(t)| = |
∫ 1

0

G(t, s)f(s, x(s))ds|
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≤
∫ 1

0

G(t, s) |f(s, x(s))| ds

≤ 8
∫ 1

0

G(t, s) q(s) |x(s)| ds

≤ 8λ2‖x‖∞ sup
t∈I

∫ 1

0

G(t, s) ds

≤ λ2‖x‖∞.

Thus
‖Tx‖∞ ≤ λ2‖x‖∞. (5.5)

Proceeding similarly,
‖Ty‖∞ ≤ λ2‖y‖∞. (5.6)

Take λ = λ1 + 2λ2. Under assumptions in Theorem 5.1, we have λ < 1. Summing
(5.4) to (5.6), we find

σ(Tx, Ty) = ‖Tx− Ty‖∞ + ‖Tx‖∞ + ‖Ty‖∞
≤ λ1‖x− y‖∞ + λ2‖x‖∞ + λ2‖y‖∞
≤ (λ1 + 2λ2)(‖x− y‖∞ + ‖x‖∞ + ‖y‖∞)

= λσ(x, y) ≤ λM(x, y).

So all hypotheses of Corollary 3.2 are satisfied, and so T has a fixed point u ∈ X,
that is, the problem (5.1) has a solution u ∈ C2(I). �

Conclusion. All fixed point results presented in this article are also valid for met-
ric spaces. Consequently, our results extend and unify several results from the
literature.
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