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EXISTENCE OF PERIODIC SOLUTIONS FOR SUB-LINEAR
FIRST-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

ABSTRACT. We prove the existence solutions for the sub-linear first-order
Hamiltonian system Ju(t) + Au(t) + VH(t,u(t)) = h(t) by using the least
action principle and a version of the Saddle Point Theorem.

1. INTRODUCTION
In this article, we consider the first-order Hamiltonian system
Ju(t) + Au(t) + VH(t,u(t)) = h(t) (1.1)

where A is a (2N x 2N) symmetric matrix, H € C*(R x R?N R) is T-periodic in
the first variable (T > 0) and h € C(R,R?") is T-periodic.

When A = 0 and h = 0, it has been proved that system has at least one
T-periodic solution by the use of critical point theory and minimax methods [11 2]
3, [ 5] 6] [7, 13, [15] [16]. Many solvability conditions are given, such as the convex
condition (see [3,5]), the super-quadratic condition (see [T, 4, @] [7, [9, 12| 13| 16]),
the sub-linear condition (see [2] [15]). When A is not identically null, the existence
of periodic solutions for has been studied in [7, [14]. In all these last papers,
the Hamiltonian is assumed to be super-quadratic. As far as the general case
(A not identically null) is concerned, to our best knowledge, there is no research
about the existence of periodic solutions for when H is sub-linear. In [2], the
authors considered the special case A = 0 and h = 0 and obtain the existence of
subharmonic solutions for under the following assumptions:

(A1) There exist constants a,b,c > 0, a € [0,1], functions p € L%(O,T; RT),
q € L?(0,T;R") and a nondecreasing function v € C(R*,R*) with the following
properties:
(1) v(s+1t) < c(y(s) +~(t)) for all s,t € RT,
(ii) y(t) < at* +b for all t € RT,
(iii) ~y(t) — +o0 as t — +o0, such that

IVH(t,2)| < p(t)y(|z]) +q(t), Yz €R*Y, ae. te[0,T];
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1 T
im 27/ H(t,z)dt = £oo.

jel—o0 72 ([2]) Jo

Similarly, in [15] the author considered the case A = 0 and h = 0 and obtained the

existence os subharmonic solutions for (1.1)) under the following assumptions:

(A2) There exist a positive constant a, g € L?(0,T;R) and a non-increasing function

w € C(R*,RT) with the properties:

lim inf w(s)

e ()

w(s) =0, w(s)s—o00 ass— oo,

>0,

such that
IVH(t,z)| < aw(|z|)|z| + g(t), Ve e R*™ ae. tecl0,T];

1 T

SR ) Hw = b as el = o
In Sections 4,5, we will use the Least Action Principle and a version of the Saddle
Point Theorem to study the existence of periodic solutions for , when A and
h are not necessary null and H satisfies some more general variants conditions
replacing conditions (A1), (A2).

2. PRELIMINARIES

Let T > 0 and A be a (2N x 2N) symmetric matrix. Consider the Hilbert space
H'Y?(S',R*N) where S* = R/(TZ) and the continuous quadratic form @Q defined
on E by

2

where z -y is the inner product of z,y € R?YN. Let us denote by E°, E~, E7 respec-
tively the subspaces of E on which @ is null, negative definite and positive definite.
It is well known that these subspaces are mutually orthogonal in L?(S', R?Y) and
in E with respect to the bilinear form

T
Q) = 5 [ (i) - ute) + Au(e) - u(p)a

T
B(u, v) = 1/0 (Jat) - v(t) + Au(t) - v(£)dt, w,v € B

2
associated with Q. If u € E* and v € E~, then B(u,v) = 0 and Q(u + v) =
Q(u) + Q(v).
For u = u~ +u’ +ut € B, the expression ||Ju|| = [Q(u") —Q(u~)+|u’|?]*/? is an

equivalent norm in E. It is well known that the space E is compactly embedded in
L5(SY,R?N) for all s € [1,00[. In particular, for all s € [1, 0c[, there exists As > 0
such that for all u € FE,

lullzs < Asllull- (2.1)

Next, we have a version of the Saddle Point Theorem [IT].

Lemma 2.1. Let E = E' @ E? be a real Hilbert space with E? = (EY)X. Suppose
that f € C1(E,R) satisfies
(a) f(u) = 3(Lu,u) + g(u) and Lu = LiPiu+ LyPyu with L; : E* — E'
bounded and self-adjoint, i = 1,2;
(b) ¢ is compact;
(c) There erists 3 € R such that f(u) < 3 for all u € E*;
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(d) There exists v € R such that f(u) >~ for all u € E?.

Furthermore, if f satisfies the Palais-Smale condition (PS). for all ¢ > =, then f
possesses a critical value ¢ € [y, 3].

3. LINEAR HAMILTONIAN SYSTEMS

Let A be a (2N x 2N) symmetric matrix, we consider the linear Hamiltonian
system
= JAz. (3.1)
Let A1,...,As be all the distinct eigenvalues of B = JA and Fi,..., F, be the
corresponding root subspaces. The dimension of the root subspace F, is equal
to the multiplicity m, of the corresponding root A, of the characteristic equation
det(B — May) =0 (mq + -+ +mgs = 2N). The space R?V splits into a direct sum
of the B-invariant subspaces F,:

RN =F@---@F.. (3.2)
Each subspace F, possesses a basis (af,...,as, ) satisfying
Bai = \,a], Bag = \,a3 +af,...,Ba;, = Xa;, +aj, .

The (my, X my) matrix

A 1 0 0 ... O

0 X 1 0 ... O

QsNs)=1| . L
0 0 0 ... X 1
0 0 0 ... 0 A,

is called an elementary Jordan matrix. We have B = SQS~! where Q is a direct
sum of elementary Jordan matrices

Q1(\) 0 0 ... 0
=| 0 @00 g nnee0
0 0 ... Qs(\s)
the columns of the matrix S,
a%,...,a,lnl; a%,...,a%w;...; ay,...,ay,.

form a basis for R*V and so det(S) # 0.
The matrizant of equation (3.1]) is given by

R(t) = e = Slexp(tQ1(\1)) @ - - © exp(tQs(As))] S~ = Se' @571
then the solution of equation (3.1)) with initial condition z(0) is
z(t) = eBx(0).

Therefore to each eigenvalue A\, corresponds a group of m-linearly independent
solutions:
£ (1) = 'ag

a3 (t) = X" (taf + a3)

1
z%, (t) = eMY( 'tmv‘la‘{+---+a” ).

(mo —1) "
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Moreover, combining the solutions of all the groups (there are obviously 2N in
all, since mj; +---+mgs = 2N), we obtain a complete system of linearly independent
solutions of . Now, assume that A\; = 0 is an eigenvalue of B = JA and let
1 < m < m; be the dimension of the corresponding eigenspace E;. We can replace
the basis (ai,...,al ) of the root subspace F; by the basis (b,...,bL ) where

' my »Ymy

(b1,...,by,) is a basis of Ey, b} = aj for m+1 < j < my and such that b}, , = Bb,,,.
To this basis corresponds the group of 2N linearly independent solutions:
ui(t) = by
Uy () = by,
U1 (1) = byt + bt (3.4)
oo () = Gt T 4 8

~ (my—m)
ug(t) =z5(t), 2<o0<s, 1<k<m,.

A solution u of (3.1) may be written in the form
s Mg
) =3 3 s
o=1j=1

Let T > 0 be such that A,T ¢ 2inZ for all 1 < o < s. If u is T-periodic, then for
any 1 <o <'s, we have

> afug(kT) =Y afuf(0), Vke€Z.

Jj=1 Jj=1

Itiseasytoseethata} =0form+1<j<m anda}’:OforQSagsaHd
1< j < my,,. Therefore, u(t) = Z;n:l oz]lb;. Hence the set of T-periodic solutions

of (3.1)) is equal to N(A).
Example 3.1. Let

-12 6 5 1
-2 1 0 1
A= 2 -1 0 -1

2 -1 0 -1

The characteristic equation corresponding to B = JA is det(JA — X1;) = X3(X —
5) = 0. To the eigenvalue A\; = 0 corresponds the eigenspace

E, = span{ey, es}

and the root subspace

Fy = span{ey, eq,e3}
where e; = (1,2,0,0), e2 = (1,1,1,1), e3 = (0,0,0,1) with Bes = es. To the
eigenvalue Ay = 5 corresponds the root subspace

Ey = F; = span{e4},
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where e4 = (0,0,1,0). Then we have JA = SQS~! with

1 1.0 0 00 0 O
2 1 0 1 0 010
§= 01 0 1}’ Q= 0 0 0O
01 1 0 0 005
The matrizant of the corresponding equation (3.1)) is then
1 0 0 0
_ -1 01 ¢t O 1
R()=5SQS™" =S8 001 0 ST
0 0 0 e

To the basis (e1, e2, €3, e4) corresponds the group of 4-linearly independent solutions
ui(t) =eq
us(t) = eq

uz(t) = teg + e3
ug(t) = eley.

A solution of equation (3.1]) takes the form

(3.5)

u(t) = arug () + agua(t) + asus(t) + aguq(t)

and it is easy to verify that w is T-periodic for T' > 0 if and only if a3 = ay = 0,
ie. ue N(A).

4. FIRST CLASS OF SUB-LINEAR HAMILTONIAN SYSTEMS
Consider the first-order Hamiltonian system
Ju(t) + Au(t) + VH(t,u(t)) = h(t) (4.1)

where A is a (2N x 2N) symmetric matrix, H : R x R?N — R is a continuous
function, T-periodic in the first variable (T' > 0) and differentiable with respect to
the second variable with continuous derivative VH (t,z) = 2 (t,2), h € C(R,R?M)
is T-periodic and J is the standard symplectic matrix J = (0 -1 ) Lety:RT — R*

I0
be a nondecreasing continuous function satisfying the properties:

(i) v(s+1t) <ec(y(s) +(t)) for all s,t € RT,
(ii) v(t) < at™+b for all t € RT,
(iil) y(t) — +oo as t — 400,
where a, b, ¢ are positive constants and « € [0, 1[. Consider the following assump-
tions
(C1) dim(N(A)) =m >1 and A has no eigenvalue of the form ki%r (k € N*);
(H1) There exist two functions p € Lﬁ(O,T; RT) and ¢ € L%(0,T;R") such
that
IVH(t,z)| < p(t)y(|z]) +q(t), Vo eR*M, ae. tel0,T].

Our main results in this section are the following theorems.

Theorem 4.1. Assume (C1) and (H1) hold and
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(H2) H satisfies
||

limsup ————— < o0, lim / H(t,z)dt = +o0.
|| —oc0,z€N(A) Y (=) |z|—o0,zEN(A) ¥2 |.13‘
Then (4.1) possesses at least one T-periodic solution.
Example 4.2. Let A be the matrix defined in Example [3.1] and let

H(t,x) = (%T— H)|z3°, Ve e RN, vtelo,T].

Then
_ 83 3/5
IVH(t,2)| = 17T = tl|=]*".

Let y(t) = t3/5,t > 0. It is clear that properties (i), (ii), (iii) are satisfied. Moreover,
we have

) ol 2l _
im sup 5 = im sup s = 0 < 400,
lo|—oo,wen(A) V2(1Z])  |aj—oc,wen(A) |z|F
1 T L72,(8/5
lim 27/ H(t,x)dt = im % = 400
|z|—o0,zeN(A) V2(|z]) Jo |z|—o0,zEN(A)  |z|F

Hence, by Theorem the corresponding system (4.1)) possesses at least one T-
periodic solution.

Theorem 4.3. Assume (C1) and (H1) hold and
(H3) H satisfies

2 1 /7
lim sup 7 (lz]) <oo, lim —/ H(t,z)dt = +o0.
|z]—o00,2EN(A) |:L‘| || —o00 |IL“ 0

Then (4.1) possesses at least one T-periodic solution.

Theorem 4.4. Assume (C1) and (H1) hold and
(H4) H satisfies
2
lim sup (=) _ =0, lim / H(t,x)dt >/ | (t)|dt.
|z|—oco,zEN(A) || || —o0 |ff|

Then (4.1) possesses at least one T-periodic solution.

Example 4.5. Let A be the matrix defined in Example [3.1] and let

1 3 1(t)|=[?
H(t,z) = (5T = )ln> (1+ |z]?) + Tt 22 Ve e R*V, vt € [0,T],

where [ € C([0,T],R™) with fo t)dt > fo |h(t)|dt. Then

/2 |z| 1(t)(5]z]*) + 3Jz)

1+ |z? 1+ 2[z? + |zl
|z

1+ |x]2

3,1
|VH(t,z)| < 3137 - t[(In(1 + |z[*))

1
< g|§T—t|(1n(1+|x|2))1/2 +e
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where c¢; is a positive constant. Let v(¢) = (In(1 + \t|2))1/2
conditions (i), (ii), (iii) are satisfied. Moreover,

72 (|=))

, : In(1 + |z[*)
lim sup = limsup ———=
|| —o0,2E€ N (A) |z || —o00,2€N(A) ||

1 /T T T
lim */ Ht,wdt:/ ltdt>/ h(t)|dt.
|z|—o00,z€N(A) ‘J:| 0 ( ) 0 ( ) 0 | ( )|

Hence, by Theorem the corresponding system (4.1)) possesses at least one T-
periodic solution.

,t > 0. It is clear that

=0 < 400,

Theorem 4.6. Assume (C1) and (H1) hold and
(H5) H satisfies

T
/ h(t)dt LN (A), lim / H(t,z)dt = +o0.
0 |z| =00,z EN(A) Y2 |a:|
Then (4.1) possesses at least one T-periodic solution.

Theorem generalizes the result concerning the existence of periodic solutions

for (4.1) in [2| Theorem 3.1].
Example 4.7. Let A be the matrix defined in Example [3.1] and let

mey:GT—wma1+uPyuuxmu+mf»”% 2 eR ¢ e (0,T],

where [ € C([0,T],RT) and h(t) = c(t)vy + d(t )’Ug, with v1 = (2,-1,0,—1),v5 =
(0,0,1,—1) € (N(A))*, ¢,d € C(R,R). Then [ h(t)dt LN(A) and

|VH@mng§ET_ﬂ@m1+mﬁf”+nu

Let y(t) = (1n(1 + |J:|2))1/27 t > 0. It is easy to verify that v satisfies conditions
(i), (ii), (iii). Moreover,
L ! 7° 1/2
lim 7/ H(t,z)dt = lim In(1 + = 400
oy 2] fy HGDE =t (1)

Hence, by Theorem the corresponding system (4.1)) possesses at least one T-
periodic solution.

Remark 4.8. Let u(t) be a periodic solution of (4.1, then by replacing ¢ by —t
in (4.1), we obtain
u(— H'(—t,u(-1)).

t) =
So it is clear that the function v(t) = (— ) is a periodic solution of the system

() = —JH'(—t,v(t)).

Moreover, —H (—t,x) satisfies (H2)—(H5) whenever H (¢, x) satisfies the following
assumptions

(H2')

. || ~ /
limsup ———= < o0, lim H(t,z)dt = —o0;
e —o0,zeN(4) V2 ([2]) |z —oo,zeN(A V2(|z]) Jo
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(H3")
2 T
lim sup 7~ (Jz]) , lim — H(t,x)dt = —o0;
2| >oo,zeN(A) 1T |zl—oo || Jo
(H4")
2 1 /T T
lim sup 7~ (lz]) =0, lim —/ H(t,x)dt < f/ |h(t)|dt;
|| —o00,zeN(A) |$‘ || —o00 |.’17| 0 0
(H5")
T 1 T
h(t)dt LN(A), lim 7/ H(t,z)dt = —o0.
/0 ®) (4) lz|—oo,zeN(A) Y2 (|z|) Jo (t,2)

Consequently, the previous Theorems remains true if we replace (H2)-(H5) by
(H2")-(H5).

Proofs of Theorems. Consider the functional

o(u) = %/0 (Ju(t) - u(t) + Au(t) - u(t))dt +/0 H(t,u(t))]dt —/0 h(t) - u(t))dt

Let E be the space introduced in Section 2. By assumption (H1) and the property
(ii) of ~y, [T, Proposition B37] implies that ¢ € C'(E,R) and the critical points of
¢ on E correspond to the T-periodic solutions of (4.1)), moreover

cp’(u)v:/o [Ju(t)—l—Au(t)—l—VH(t,u(t))]-v(t)dt—/o h(t) - v(t) dt.

Lemma 4.9. Assume (H1) holds. Then for any (PS) sequence (u,) C E of the
functional @, there exists a constant co > 0 such that

lanll < co(y(lupll) +1), VneN (4.2)
where @, = u} +u,; = u, —ul, with u® € E°, u,, € E=, uf € ET.
Proof. Let (un)nen be a (PS) sequence, ie. p(uy) is bounded and ¢'(u,) — 0 as
n — 00. We have

T T

)0 = ) = 2P+ [ V() e~ [ o) (g
0 0

Since ¢’ (u,) — 0 as n — oo, there exists a constant ¢ > 0 such that

0" (un) (ust — U;){ < col|@n||, Vn € N.

n

By Hoélder’s inequality and (H1), we have
T T
[ VHG )~ )] < [l [ (VA ()P
0 0
T
<ol () + a0l (43

T
<lialll( | 2207 (D)2 + 2]
Now, by nondecreasing condition and the properties (i) and (ii) of 7, we have

([ rorcupa) < ([

2 201~ 0 1/2
P27 (] + [ )t
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<o [ wonaD +agenra)”

A
o

IN
o

IN
o

On the other hand, by we have
2] @] < I (wn) (uf —u)| + I/ VH(t, un) - (uyy — uy, )dt|

T
+ |/ h(t) - (uf - u7)| < ealliinl] + inllz2ca
0

+0llpllze + llallze + ey (lup D] + 12l 22 1| 2
<acllpll, 2 A3 @[ + [e1 + cblpllLe

+llgllzz + [Pl ze]Xell@nll + eXallpll Loy (Jun]) 1 -

Since 0 < a < 1, we deduce that there exists a constant ¢y > 0 satisfying (4.2)).

We will apply Lemma [2:1] to the functional ¢ to obtain critical points.

<<[( / Pty (\un|>dt) "+ el ()

:(/OTP2(t)(a|ﬂn|a + b)zdt)l/2 + ||p||L2’y(|u9L|)]

[ L s a2 0
o | @l de) -+ blple + (D)

< clallpll, 2, )2 + bllplz2 + llpll 2y (Jun])].

Lemma 4.10. If (H1) holds and H satisfies one of the assumptions (H2)—(H5),

then ¢ satisfies the (PS). condition for all ¢ € R.

Proof. Let (un)nen be a (PS). sequence, that is ¢(u,) — ¢ and ¢'(u,) — 0 as

n — oo. Then there exists a positive constant cs such that
lp(un)l < cs, g’ (un)ll < es, YneN.

By the Mean Value Theorem and Holder’s inequality, we have

’/ H(t,u,)— H(t ,u%))dt’

_|/ /VHt,u + Sty - Uy ds dt|
1/2
gnunup/ (/ IVH (0l + siv,)Pdt) s,
0

As in the proof of Lemma we have

T 1/2
(/ \VH(t,u® + sﬂn)|2dt)
0

<aclpll 2 l1anllz2 + ebllpllze + llallzz + cllpll 2y (unl)llal 2]

Llu

(4.4)
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Therefore, by properties (2.1)), (.2), ([4.4), (4.5) and since 0 < o < 1, there exists
a positive constant ¢4 such that

[ B0~ HOA] < colao) + el 2, 800 + 1)

4.6
+elpllzer () + e+ alle] 4O
< ca(y*(Jup) +1).
Combining (2.1)), (4.2), (4.3) and (4.6) yields
c3 2 (un)
T T
>l + [ ()~ B+ [ Hal)de
0 0
T
—/ h(t) (@, + u®)dt
Y ) - (4.7)
> —c5(V(Jup)l +1)* = ca(PP(lup)]) +1) = collAll 2 (v(Jup)| + 1)
T
o]+ [ A e
0
T
> —es(P () + 1) = Wl + [ Hu)at
0
where c5 is a positive constant.
Case 1: H satisfies (H2). By (L.7)), we have
s 2 72 (W)Dles — Il e o | H s
(g |u
It follows from (H2) that (u?) is bounded.
Case 2: H satisfies (H3) or (H4). Note that by m
7 (lun)])
e3> [ud|[~cs g2 — b H n)dt] — cs.
up)]| P 0|
Hence (H3) or (H4) implies that (u!) is bounded.
Case 2: H satisfies (H5). Since fo (t)dt LN (A), we get as in (4.7
cz > o(un)
T T
>l + [ ()~ B+ [ Hal)de
0 0
T
— h(t) - undt
/0 (t) (4.8)

T
> —es(2(Wd)]) + 1) + / H(t, ul)dt
> P()Dl-es + s / H(t

Hence (H5) implies that (u2) is bounded.
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In all the above cases, (u2) is bounded. We deduce from Lemma that (uy,)
is also bounded in E. By a standard argument, we conclude that (u,) possesses a
convergent subsequence. The proof of Lemma [4.10|is complete. (]

Now, decompose E = E~ @ (E°® ET) and let E' = E~ and E? = E* @ E*.
Remark that by Section 3, we have E° = N(A). We will verify that ¢ satisfies
condition ¢) of Lemma [2.1} For u € E*, we have

T T T
o) = —[[ul]? +/ (H(t,u) — H(t,O))dt+/ H(t,0)dt —/ h(t) - udt.
0 0 0
As in the proof of Lemma

|/ H(t,0))dt| <

Hence by (2.1] -, we deduce
p(u) < —lull?

Il z2-

2 A9 |ul|F + (cblpll

T (4.9)
Hlalls + bl el + [ H(E,0)dt
0

Since 0 < a < 1, implies that ¢(u) — —oo as ||ul| — oo. Hence there exists
B € R such that f(u) < 8 for all u € E'. Condition (c) of Lemma is then
proved.

Let us verify that ¢ satisfies condition (d) of Lemma In fact, for u € E* =
E° @ E*, as in the proof of Lemma [4.10] we have

0
|/ H{t, u))d| (4.10)

TN Fe + ebllpllce + cllpll2y([u®]) + llall 2] [lu |72

From and -, we deduce that

@(u) > IIM’LII2 S fu ot

= cllpllzzXallu* [y (Ju"l)

2
Li-

T T
— (cbllpllze + lgllzs + [1llz2)Aellut ) / ] + / H(t, u0)dr.
0 0

(4.11)
For € > 0, there exists a constant C(¢) such that
cllpllz2 Az llu Iy ([u®]) < ellu™* + Cle)y*(u’]).
Taking e = 1/2, it follows from (4.11]) that
1 [0 «
p(u) = Sllut* = aclpll, 2 A w7 = Aa(ebllplzz + [lall 2
(4.12)

1 T T
) = O = [ hlatal] + [ (e

Since 0 < o < 1, the term
7

1
St =acllpll, 2 A5 w4 = da(ebllpl e + llallzz + [1Allz2) Ju* |

approaches +occ as ||u™| — oco. It remains to study the following member of (4.12))

’LLO = — 1 2 UO — ! UO ! ’LLO .
v®) = =C0A0D — [ i)+ [ a0
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Case 1: (H2) holds. We have

I y
00 22~ 0q) ~ [ e e [ ),

It follows from (H2) that ¥ (u’) — +o00 as |[u’| — oc.
Case 2: (H3) or (H4) holds. We have

1 2 0
P(u®) > [u|( - (1(5)7 |(|§”| D —/ Bt + - / H(t,u®)dt).
u
It follows from (H3) or (H4) that 1 (u") — 400 as [u®| — oo.
Case 3: (H5) holds. Since fo (t)dt LN(A), we have

0l) = P (u0) (= CG) + s [ Ha)a).

It follows from (H5) that ¥ (u®) — +o00 as [u’| — oco.
Therefore, if one of assumptions (H2)-(H5) is satisfied, then ¢(u) — +oo as
lul| — oo. So there exists a constant p such that p(u) > p for all u € E?. Condition
d) of Lemma u is satisfied. Moreover, it is well known that the derivative of the

functional d(u fo (t,u)dt — fOT hudt is compact. All the conditions of Lemma
21 are satlsﬁed S0 @ possesses a critical point u which is a T-periodic solution of
system (4.1)

5. SECOND CLASS OF HAMILTONIAN SYSTEMS
For A, H and h be defined as in Section 4, we have the following result.

Theorem 5.1. Let w € C(RT,R™") be a non-increasing function with the following
properties:
T w(s)

(a) liminf,_ oy 0,

(b) w(s) — 0 and w(s)s — 400 as s — 0.
Assume that A satisfies (C1), and H satisfies

(H6) There exist a positive constant a and a function g € L*(0,T;R) such that
\VH(t,z)| < aw(|z|) + g(t), Yo cR?*M, ae tec0,T);

(H7)

1 T
lim 7/ H(t,z)dt = +o0;
ottinen ) @l Jy 1)
(H8) There exists f € L'(0,T;R) such that
H(t,x) > f(t), Yz cR*™ ae tel0,T).
Then system (4.1) possesses at least one T-periodic solution.

The above theorem generalizes [I5, Theorem 1.1].

Example 5.2. Take w(s) = ln(2+32), s>0,
H(t,x) = ( + cos(zt))i vt € 0,T], YV € R?N
’ 2 In(2 + |z[?)’ Y
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and let A be the matrix defined in Section 3, h € C([0,T],R). Then A, H, h satisfy
assumptions of Theorem

Proof of Theorem[5.1} As in Section 4, we will apply Lemma[2.1]to the functional
 defined on the space E introduced in section 2.

Lemma 5.3 ([I5]). Assume (H6) and (HT7) hold, then there exists a non-increasing
function 6 € C(]0, +o0o[,RT) and a positive constant co such that
(i) 6(s) — 0 and 6(s)s — 00 as s — o0,
(i) [[VH(t,u)ll2 < co(@(ul))l[ull + 1) for allu € E
(i)
-
(OluOlD[101])?

Lemma 5.4. Assume (H6) holds. Then for any (PS) sequence of the functional
@, there exists a constant c; > 0 such that

I | < ex (O(|lup DIl ]| +1). (5.1)

T
/ H(t,u)dt — +o00 as |[u’]| — oco.
0

Proof. Let (u,) be a Palais-Smale sequence, that is (¢(uy)) is bonded and ¢’ (u,,) —
0,as n — co. We have

M) (ur —u) = 2|, ' JUn (D) - (uh — s )dt — ! (uf —u>)dt.
o () (i 1) = 2| +/0 VH(t, un(t)) - (u — 3 )dt / ht)- (u — ) )dt

Since 6 is non-increasing and |u| > maz (||, [[u°]), we have
O(llull) < min(8(||al), o([[«°[]))- (5.2)
By Holder’s inequality, inequalities (2.1)), (5.1)), (5.2)) and Lemma we have

T
[V 0)- 6 = )

T
< et — w1z / VH(t,u,)dt) 2
0

< col[tn[(O([[un ) un | + 1)
< ca || (Ol @n ) l|anll + OClun ) llun | + 1)
Thus there exists positive constants cs, ¢4 such that

eslltin]| = @' (un) (usy — )

> 2lan|* = eall@n ]| (O anDllanl + 0llup Dllunll +1) = call@n]-
Hence
caf(|lup Dllunll 2 1|@nll2 = e2|@n|] = e5 — ca.
Since 6(s) — 0 as s — oo, this implies the existence of a constant ¢; satisfying

B1). O

Lemma 5.5. ¢ satisfies the (PS). condition for all real c.

Proof. Let (uy) be a (PS).sequence. Assume that (u) is unbounded. Going to
a subsequence if necessary, we can assume that [|[ul| — oo as n — oco. By the
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Mean Value Theorem, Holder’s inequality, inequality (2.1) and Lemma (ii),
there exists a positive constant cs such that

|/ H(t,u,) — H(t, u%))dt|
_|/ / VH(t, 00 + sily) - i ds di]| (5.3)

1/ 2
SHunHLz/ (/ VAW + s, )at])d
0

< s/l | [O(lunIDllun ]l + OCllun Dl + 1]

Hence by Lemma [5.4] there exists a positive constant cg such that
| / H(t,un) = ()] < co (001D +1). (5.4
Combining ([2.1] , and (| . yields
) 1 [T T
() = —er (O DRI +1) = 7 [ Imoladl + [ ey

where c7 is a positive constant.

On the other hand, it is easy to see that lim infsﬁoo% > 0. So there exists a
positive constant cg such that for s large enough 0(s) > ¢s6(1/s). Hence for n large
enough

o 1
[OCud DI >~ E[OudIM/2)[lug [|1/2]2
Therefore,

0
I —0 asn—o0.

0 01112[_¢ _l g [[up |
p(un) = [0(]|uy, ) lun [[17[—c7 T/o Ih(t)ldt[ 0

O(llu D llup 1112

H(t dt — 7 — +00
DR IIUOII [[u 112 /

as n — oo, which contradicts the boundedness of (p(uy,)). Hence (|[u?||) is bounded,
and by Lemma (uy,) is also bounded. By a standard argument, we conclude
that (u,) possesses a convergent subsequence. The proof is complete. ([l

Now, for u = u® + ut € E? = E° @ E*, we have as in (5.3),
T
|/0 (H (t,u) = H(t,u®))dt] < esllu™ | [0(][u’[D]w’] + O(u®)ut] +1].
Since es0([|[u®)|u|[ [l < 3llut 1>+ 2¢3[6(/[u®])[|u’[|]?, we obtain
1
p(u) > (5 = esf([[u’ ) lu]]? = esllu

2
[ u

o —2¢ - L [ imeear 12
+ [0 )] ( 2c3 T/o Ih(t)Idt[9(||u0||)||u0m2
1 T .
+[9(||u°|)||u0|]2/0 H(t,u )dt),
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Since 6(s) — 0 as s — oo, there exists r > 0 such that ¢50(s) <
if |u®]| > r, we have

i for s > r. Then,

1
p(u) = Tl = esllwt ] + [O(Iu® ) 1w ] (=2¢3

T Tl | T
F . PO o oo * G S, H .

then p(u) — +o0 as ||u® + ut|| — oo, [|Ju’|| > r.
If |u®|] < 7, we have by (H8) and (2.1)

T T
T
ol > [t P+ [ a7 [ b= ralhl el

then p(u) — +oo as |[u® + ut| — oo, ||[u®|| < r. Therefore p(u) — +oo as
lul| = oo, u € E%

In E', as in [I5], we obtain ¢p(u) — —o0 as |lu|| — co. Hence, by Lemma ®
possesses at least a critical point u which is a T-periodic solution of (4.1]).
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