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UNILATERAL PROBLEMS FOR THE KLEIN-GORDON
OPERATOR WITH NONLINEARITY OF

KIRCHHOFF-CARRIER TYPE

CARLOS RAPOSO, DUCIVAL PEREIRA, GERALDO ARAUJO, ANTONIO BAENA

Abstract. This work concerns the unilateral problem for the Klein-Gordon

operator

L =
∂2u

∂t2
−M(|∇u|2)∆u + M1(|u|2)u− f.

Using an appropriate penalization, we obtain a variational inequality for a
perturbed equation, and then show the existence and uniqueness of solutions.

1. Introduction

The one-dimensional nonlinear equation of motion of an elastic string of the
length L (1.1) was proposed by Kirchhoff [12], in connection with some problems
in nonlinear elasticity, and later rediscovered by Carrier [6],

∂2u

∂t2
−
(τ0
m

+
k

2mL

∫ L

0

(∂u
∂x

)2
dx
)∂2u

∂x2
= 0, (1.1)

where τ0 is the initial tension, m the mass of the string and k the Young’s modulus
of the material of the string. This model describes small vibrations of a stretched
string when only the transverse component of the tension is considered, and for
mathematical aspects of (1.1) see Bernstein [5] and Dickey [8].

Model (1.1) is a generalization of the linearized problem

∂2u

∂t2
− τ0
m

∂2u

∂x2
= 0,

obtained by d’Alembert and Euler. A particular case of (1.1) can be written, in
general, as

∂2u

∂t2
−M

(∫
Ω

|∇u(x, t)|2dx
)

∆u = 0, (1.2)

or
∂2u

∂t2
+M

(
‖u(t)‖2

)
Au = 0, (1.3)
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in operator notation, where we consider the Hilbert spaces V ↪→ H ↪→ V ′, where
V ′ is the dual of V with the immersions continuous and dense. By ‖ · ‖ we denote
the norm in V and A : V → V ′ a bounded linear operator.

Problem (1.3) is called nonlocal because of the presence of the term

M(‖u(t)‖2) = M
(∫

Ω

|∇u(x, t)|2dx
)
,

which implies that the equation is no longer a pointwise identity. The nonlocal term
provokes some mathematical difficulties which makes the study of such a problem
particulary interesting. On this subject, see a interesting work of Arosio-Panizzi [2],
where was proved that (1.3) is well-posedness in the Hadamard sense (existence,
uniqueness and continuous dependence of the local solution upon the initial data)
in Sobolev spaces.

Nonlocal initial boundary value problems are important from the point of view
of their practical application to modeling and investigation of various phenomena.
For the last several decades, various types of equations have been employed as
some mathematical model describing physical, chemical, biological and ecological
systems. See for example the nonlocal reaction-diffusion system given in Raposo et
all [19].

When we assume that M : [0,∞) → R real function, M(λ) ≥ m0 > 0,
M ∈ C1(0,∞), Pohozhaev [18] proved that the mixed problem for (1.2) has global
solution in t when the initial data u(x, 0), ut(x, 0) are restricted the class of functions
called Pohozhaev’s Class. This result can also be found in Lions [15] to the operator
given in (1.3), that was also analyzed by Arosio-Spagnolo [3] and Hazoya-Yamada
[10] when M(λ) ≥ 0 and many other authors, for example, Arosio-Espagnolo [3],
Dickey [8], Hazoya-Yamada [10] and Medeiros-Ĺımaco-Menezes [16].

Let Ω be a bounded and open set of Rn, with smooth boundary Γ, and let T be
a positive real number. Let Q = Ω×]0, T [ be the cylinder with lateral boundary
Σ = Γ×]0, T [. A unilateral mixed problem associated with a nonlinear perturbation

∂2u

∂t2
−M(|∇u|2)∆u+ θ ≥ f, in Q,

θt −∆θ + u′ ≥ g, in Q,

u = θ = 0 in Σ,

u(0) = u0; ut(0) = u1; θ(0) = θ0,

where f, g,M are given real-valued functions with M positive, was studied by Clark-
Lima in [7], where was proved existence and uniqueness of solution.

In this subject, we consider Ω a bounded open set of Rn. A nonlinear perturba-
tion of the problem (1.3), is given by

ρ
∂2u

∂t2
+M(‖u(t)‖2)Au ≥ f,

where ρ : Ω× (0, T )→ R and f : Ω× (0, T )→ R are real functions. The unilateral
problem associated with this nonlinear perturbation was studied in Frota-Lar’kin
[9] without geometrical restrictions and ρ a positive function.

In the case where ρ is a constant function equal to one, Medeiros-Milla [17] proved
the local existence and uniqueness theorem in non-degenerated case. Lar’kin-
Medeiros [13] under condition M(λ) ≥ m0 > 0 for all λ ≥ 0 under Ω being a
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square (0, 1)× (0, 1) ⊂ R2, showed the existence and uniqueness of a global solution
theorem.

Unilateral problem is very interesting too, because in general, dynamic contact
problems are characterized by nonlinear hyperbolic variational inequalities. For
contact problem in elasticity and finite element method see Kikuchi-Oden [11] and
reference there in. For Contact Problem Viscoelastic Materials see Rivera-Oquendo
[20]. For dynamic contact problems with friction, for example problems involving
unilateral contact with dry friction of Coulomb, see Ballard-Basseville [4].

For Ω be a bounded and open set of Rn, with smooth boundary Γ, consider the
Cauchy problem associated with the Klein-Gordon operator

∂2u

∂t2
−M(|∇u|2)∆u+M1(|u|2)u = f,

with initial data
u(t) = u0 ∈ H1

0 (Ω) ∩H2(Ω)

u′(t) = u1 ∈ H1
0 (Ω),

u = 0 on Γ,

(1.4)

and f ∈ L2(0, T ;H1
0 (Ω)), where

M,M1 ∈ C1([0,∞); R),

M(s) ≥ m0 > 0, ∀s ∈ [0,∞),

M1(s) ≥ m1 > 0, ∀s ∈ [0,∞).

(1.5)

For the problem above, the existence and uniqueness of solution was proved in [14]
where the abstract model was considered.

Motivated by the problem (1.4)-(1.5) this work deals with a unilateral problem
associated with the perturbed operator type Klein-Gordon

∂2u

∂t2
−M(|∇u|2)∆u+M1(|u|2)u ≥ f.

More precisely, here we study a unilateral problem, i.e. a variational inequality,
see Lions [15], for the operator L under standard hypothesis on f, f ′, u0 and u1.
Making use of the penalty method and Galerkin’s approximations, we prove the
existence and uniqueness of solution.

This work is organized as follows. In the section 2 we introduce the notation and
functional spaces, we use the classical theory of Sobolev spaces as in Adams [1]. In
the section 3 we present the main Theorem. In the section 4 prove the theorem of
existence of solution and finally in the section 5 we prove the uniqueness of solution.

2. Notation and functional spaces

Let T > 0 be a real number, Ω a bounded open set of Rn with boundary Γ
regular and the cylinder Q = Ω×]0, T [ with lateral boundary Σ = Γ×]0, T [.

We propose the variational inequality

u′′ −M(|∇u|2)∆u+M1(|u|2)u ≥ f in Q. (2.1)

This inequality is satisfied by the unknown; that is, we formulate our problem as
follows. Let K = {v ∈ L2(Ω); v ≥ 0 a. e. in Ω} be a closed and convex subset of
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H1
0 (Ω) ∩ L2(Ω), the variational problem consists in find the solution u = u(x, t)

satisfying∫
Q

(u′′ −M(|∇u|2)∆u+M1(|u|2)u− f) (v − u′) dx dt ≥ 0, ∀v ∈ K,

with u′(x, t) ∈ K, a. e. on [0, T ] and taking the initial and boundary values

u = 0 on Σ,

u′ = 0 on Σ,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.
(2.2)

To study the existence an uniqueness of solutions for the Problem (2.1)-(2.2), we
consider the following hypothesis

(H1) M,M1 ∈ C1([0,∞); R),
(H2) M(s) ≥ m0 > 0 for all s ∈ [0,∞),
(H3) M1(s) ≥ m1 > 0 for all s ∈ [0,∞).

The notation for the functional spaces are contained in Lions [15]. We denote
the inner product and norm in H1

0 (Ω) and L2(Ω) , respectively, by

((u, v)) =
n∑
i=1

∫
Ω

∂u

∂xi
(x)

∂v

∂xi
(x) dx, ‖u‖2 =

n∑
i=1

∫
Ω

( ∂u
∂xi

(x)
)2
dx,

(u, v)=

∫
Ω

u(x)v(x) dx, |u|2 =
∫

Ω

|u(x)|2 dx.

We introduce the bilinear form

a(u, v) =
n∑
i=1

∫
Ω

∂u

∂xi
(x)

∂v

∂xi
(x) dx = ((u, v)) ∀v ∈ H1

0 (Ω). (2.3)

By 〈·, ·〉 we denote the duality V and V ′, where V ′ is the topological dual of the
space V .

3. Existence and uniqueness of weak solution

For the rest of this article, C denotes various positive constants. Next, we present
the main results of this paper.

Theorem 3.1. If

f ∈ L2(0, T ;H1
0 (Ω)), f ′ ∈ L2(0, T ;L2(Ω)), (3.1)

u0 ∈ H1
0 (Ω) ∩H2(Ω), u1 ∈ H1

0 (Ω) ∩K, (3.2)

and hypothesis (H1)–(H3) hold, then there exists T0 < T and a unique function u
such that

u ∈ L∞(0, T0;H1
0 (Ω) ∩H2(Ω)), (3.3)

u′ ∈ L∞(0, T0;H1
0 (Ω)), u′(t) ∈ K ∀t ∈ [0, T ], (3.4)

u′′ ∈ L∞(0, T0;L2(Ω)), (3.5)
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satisfying ∫ T

0

(u′′, v − u′)dt+
∫ T

0

a
(
M(|∇u|2)u, v − u′

)
dt

+
∫ T

0

(M1(|u|2)u, v − u′)dt

≥
∫ T

0

(f, v − u′)dt ∀v ∈ K, a.e. in t,

(3.6)

u(0) = u0, u′(0) = u1, (3.7)

where a(M(|∇u|2)u, v − u′) = ((M(|∇u|2)u, v − u′)) = −(M(|∇u|2)∆u, v − u′).

The proof of Theorem 3.1 is made by the penalty method. The method consists
in to consider a perturbation of the operator L with adding singular term, called
penalization, depending on a parameter ε > 0. We solve the mixed problem in Q
for the penalized operator and the estimates obtained for the local solution of the
penalized equation that allow to pass to the limit, when ε > 0, in order to obtain
a function u which is the solution of our problem.

First of all, let us consider the penalty operators β : L2(Ω)→ L2(Ω) associated
to the closed convex sets K, cf. Lions [15, p. 370]. The operator β is monot-
onous, hemicontinuous, takes bounded sets of L2(Ω) into bounded sets of L2(Ω),
its kernel is K and β : L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)) is equally monotone and
hemicontinous.

The penalized problem associated with the variational inequality (2.1) and (2.2)
consists in given 0 < ε < 1, find uε solution in Q of the mixed problem:

u′′ε −M(|∇uε|2)∆uε +M1(|uε|2)uε +
1
ε
β(u′ε) = f in Q,

uε = 0 on Σ,

u′ε = 0 on Σ,

uε(x, 0) = uε0(x) u′ε(x, 0) = uε1(x) in Ω.

(3.8)

Definition 3.2. We suppose that f ∈ L2(0, T ;H1
0 (Ω)), f ′ ∈ L2(0, T ;L2(Ω)), uε0 ∈

H1
0 (Ω) ∩H2(Ω), uε1 ∈ H1

0 (Ω) and hypothesis (H1) − (H3) hold. A weak solution
to the boundary value problem(3.8) is a functions uε, such that for each 0 < ε < 1,
uε ∈ L∞(0, T0;H1

0 (Ω) ∩ H2(Ω)), u′ε ∈ L∞(0, T0;H1
0 (Ω)), u′′ε ∈ L∞(0, T0;L2(Ω))),

for T0 > 0, satisfying

(u′′ε , ϕ) + a(M(|∇uε|2uε, ϕ) + (M1|uε|2uε, ϕ) +
1
ε

(β(u′ε), ϕ)

= (f, ϕ), ∀ϕ ∈ L2(0, T0;L2(Ω)),

uε(0) = uε0 , u
′
ε(0) = uε1 .

(3.9)

The solution of (3.8) is given by the following theorem.

Theorem 3.3. Assume that

f ∈ L2(0, T ;H1
0 (Ω)), f ′ ∈ L2(0, T ;L2(Ω)), (3.10)

uε0 ∈ H1
0 (Ω) ∩H2(Ω), (3.11)

uε1 ∈ H1
0 (Ω), (3.12)
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and hypothesis (H1)–(H3) hold. Then for each 0 < ε < 1 there exists a unique weak
solution of (3.8).

In the next section, we prove the Theorem 3.1. Our goal is first prove the
penalized Theorem 3.3, applying Faedo-Galerkin method.

4. Proof of main results

Proof of Theorem 3.3. To prove Theorem 3.1, we first prove the penalized The-
orem 3.3. We apply the Faedo-Galerkin method, noting that the immersions

H1
0 (Ω) ∩H2(Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω)

are continuous and dense and that H1
0 (Ω) is compact L2(Ω). Let {wν , λν} eigen-

vectors and eigenfunctions of −∆. We consider (wν) ⊂ H1
0 (Ω)∩H2(Ω) a Hilbertian

basis for Faedo-Galerkin method and Vm = [w1, w2, . . . , wm] the subspace generated
by the vectors w1, w2, . . . , wm. Let us consider

uεm =
m∑
j=1

gεjm(t)wj

solution of the approximate problem

(u′′εm , wj) +M(|∇uεm |2((uεm , wj)) +M1(|uεm |2)(uεm , wj)

+
1
ε

(
β(u′εm), wj

)
= (f, wj), j = 1, 2, . . .m,

uεm(x, 0)→ uε(x, 0) strongly in H1
0 (Ω) ∩H2(Ω),

u′εm(x, 0)→ u′ε(x, 0) strongly in H1
0 (Ω).

(4.1)

The system of ordinary differential equation (4.1) has a solution uεm(t) defined in
[0, tm[, 0 < tm ≤ T . The next estimate implies that uεm(t) is defined in the whole
[0, T ].

To obtain a shorter notation, in the calculation of the following three estimates,
we omit the parameter ε in the approximate problem .
First estimate. We consider wj = 2u′m in (4.1) to obtain

d

dt
|u′m(t)|2 +M(‖um(t)‖2)

d

dt
‖um(t)‖2

+M1(|um(t)|2)
d

dt
|um(t)|2 +

2
ε

(β(u′m), u′m) = 2(f(t), u′m(t)).
(4.2)

Now, if we consider

M̂(λ) =
∫ λ

0

M(s) ds and (4.3)

M̂1(λ) =
∫ λ

0

M1(s) ds, (4.4)

from (4.2), (4.3) and (4.4) it follows that

1
2
d

dt

[
|u′m(t)|2 + M̂(‖um(t)‖2) + M̂1(|um(t)|2)

]
≤ (f(t), u′m(t)), (4.5)

because (βu′m(t), u′m(t)) ≥ 0.
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Integrating (4.5) from 0 to t, we obtain

1
2

[|u′m(t)|2 + M̂(‖um(t)‖2) + M̂1(|um(t)|2)]

≤
∫ t

0

(f(t), u′m(t)) +
1
2

[|u′m(0)|2 + M̂(‖um(0)‖2) + M̂1(|um(0)|2)].
(4.6)

From (4.6), (4.1), (3.10) and Cauchy-Schwarz’s inequality it follows that

|u′m(t)|2 + ‖um(t)‖2 + |um(t)|2 ≤ C + C

∫ t

0

|u′m(t)|2ds. (4.7)

Then Gronwall’s inequality implies

(um) is bounded in L∞(0, T ;H1
0 (Ω)), (4.8)

(u′m) is bounded L∞(0, T ;L2(Ω)). (4.9)

Second estimate. Considering wj = −∆u′m in (4.1), we obtain

d

dt
‖u′m(t)‖2 +M(‖um(t)‖2)

d

dt
|∆um(t)|2

+M1(|um(t)|2)
d

dt
‖um(t)‖2 +

2
ε

(βu′m,−∆u′m)

= 2((f(t), u′m(t))).

(4.10)

Observe that

M(‖um(t)‖2)
d

dt
|∆um(t)|2 +M1(|um(t)|2)

d

dt
‖um(t)‖2

=
d

dt

[
M(‖um(t)‖2)|∆um(t)|2 +M1(|um(t)|2)‖um(t)‖2

]
− d

dt
M(‖um(t)‖2)|∆um(t)|2 − d

dt
M1(|um(t)|2)‖um(t)‖2.

(4.11)

On the other hand
d

dt
M(‖um(t)‖2)|∆um(t)|2 +

d

dt
M1(|um(t)|2)‖um(t)‖2

= 2M ′(‖um(t)‖2)((um(t), u′m(t)))|∆um(t)|2

+ 2M ′1(|um(t)|2)(um(t), u′m(t))‖um(t)‖2.

(4.12)

Using (βu′m,−∆u′m) ≥ 0 and H1
0 (Ω) ↪→ L2(Ω), follows from (4.10), (4.11) and

(4.12) that

d

dt

[
‖u′m(t)‖2 +M(‖um(t)‖2)|∆um(t)|2 +M1(|um(t)|2)‖um(t)‖2

]
≤ 2|M ′(‖um(t)‖2)|‖um(t)‖‖u′m(t)‖|∆um(t)|2

+ 2|M ′1(|um(t)|2)| |um(t)|C‖u′m(t)‖‖um(t)‖2

+ ‖f(t)‖2 + C‖u′m(t)‖2.

(4.13)

Note that (4.8) implies ‖um(t)‖ ≤ C, therefore ‖um(t)‖ ∈ [0, C], for each m and
t ∈ [0, tm[. Since M ∈ C1([0,∞); R), this implies that

|M ′(‖um(t)‖2)| ≤ C, ∀m,∀t ∈ [0, tm[, (4.14)
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and analogously for M1. Therefore, using (4.14), (4.8), (4.9) and (3.10) we can
write

2|M ′(‖um(t)‖2)| ‖um(t)‖‖u′m(t)‖|∆um(t)|2

+ 2|M ′1(|um(t)|2)| |um(t)|C‖u′m(t)‖‖um(t)‖2 + ‖f(t)‖2 + C‖u′m(t)‖2

≤ C + C|∆um(t)|2 + 2C‖u′m(t)‖2|∆um(t)|2 + C‖u′m(t)‖2

≤ C + C
[
‖u′m(t)‖2 + |∆um(t)|2 +

(
‖u′m(t)‖2 + |∆um(t)|2

)2]
.

(4.15)

Making
ϕ(t) = ‖u′m(t)‖2 + |∆um(t)|2 (4.16)

and using (4.12), (H2), (H3), (4.1), (4.15) we can write, after integration from 0 to
t,

ϕ(t) ≤ C + C

∫ t

0

(ϕ(s) + ϕ(s)2)ds. (4.17)

Observe that ϕ(t) is continuous in [0, T0], therefore there exists T0 < T such that
ϕ(t) ≤ C for all m and all t ∈ [0, T0].

From (4.17) it follows that

‖u′m(t)‖ ≤ C, ∀m, ∀t ∈ [0, T0], (4.18)

|∆um(t)| ≤ C, ∀m, ∀t ∈ [0, T0]. (4.19)

That is,

(u′m) is bounded in L∞(0, T0;H1
0 (Ω)), (4.20)

(∆um) is bounded in L∞(0, T0;L2(Ω)). (4.21)

Statements (4.8) and (4.21) imply that

um is bounded in L∞(0, T0;H1
0 (Ω) ∩H2(Ω)). (4.22)

Third estimate. Taking derivatives in the distribution sense in (4.1), we obtain

(u′′′m(t), wj) +
d

dt
M(‖um(t)‖2)a(um(t), wj) +M(‖um(t)‖2)a(u′m(t), wj)

+
d

dt
M1(|um(t)|2)(um(t), wj) +M1(|um(t)|2)(u′m(t), wj) +

1
ε

((βu′m(t))′, wj)

= (f ′(t), wj).

Considering wj = 2u′′m(t) in the above equation, we have

d

dt
|u′′m(t)|2 + 2

d

dt
M(‖um(t)‖2)a(um(t), u′′m(t)) +M(‖um(t)‖2)

d

dt
‖u′m(t)‖2

+ 2
d

dt
M1(|um(t)|2)(um(t), u′′m(t)) +M1(|um(t)|2)

d

dt
|u′m(t)|2

+
2
ε

((βu′m(t))′, u′′m(t))

= 2(f ′(t), u′′m(t)).

(4.23)

Since

((βu′m(t))′, u′′m(t)) = lim
h→0

(β(u′m(t+ h))− β(u′m(t))
h

,
u′m(t+ h)− u′m(t)

h

)
≥ 0,
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and because β is monotone, we have

d

dt
|u′′m(t)|2 +M(‖um(t)‖2)

d

dt
‖u′m(t)‖2 +M1(|um(t)|2)

d

dt
|u′m(t)|2

≤ 2|(f ′(t), u′′m(t))|+ 2
∣∣ d
dt
M(‖um(t)‖2)a(um(t), u′′m(t))

∣∣
+ 2
∣∣ d
dt
M1(|um(t)|2)(um(t), u′′m(t))

∣∣.
(4.24)

Using (4.14), (4.8), (4.9) and (4.21), we conclude that∣∣ d
dt
M(‖um(t)‖2)a(um(t), u′′m(t))

∣∣
= 2

∣∣M ′(‖um(t)‖2)(um(t), u′m(t))(−∆um(t), u′′m(t))
∣∣

≤
∣∣M ′(‖um(t)‖2)(um(t), u′m(t))

∣∣ {|∆um(t)|2 + |u′′m(t)|2
}

≤ C + C |u′′m(t)|2 .

(4.25)

Analogously, ∣∣ d
dt
M1(|um(t)|2)(um(t), u′′m(t))

∣∣
= 2

∣∣M ′1 (|um(t)|2)(um(t), u′m(t)
)

(um(t), u′′m(t))
∣∣

≤
∣∣M ′1 (|um(t)|2)(um(t), u′m(t)

)∣∣ {|um(t)|2 + |u′′m(t)|2
}

≤ C + C |u′′m(t)|2 .

(4.26)

By Young’s inequality,

2|(f ′(t), u′′m(t))| ≤ |f ′(t)|2 + |u′′m(t)|2. (4.27)

We observe that (4.3), (4.4), (4.24), (4.25), (4.26) and (4.27) lead to

d

dt

{
|u′′m(t)|2 + M̂(‖u′m(t)‖2) + M̂1(|u′m(t)|2)

}
≤ C + |f ′(t)|2 + C|u′′m(t)|2. (4.28)

Integrating (4.28) from 0 to t < T0, using (H2), (H3), (3.1), (4.1) we have

|u′′m(t)|2 + ‖u′m(t)‖2 + |u′m(t)|2 ≤ C + C

∫ t

0

|u′′m(s)|2ds+ |u′′m(0)|2. (4.29)

We observe that, making t = 0 and wj = u′′m(0) in approximate problem (4.1) we
obtain

|u′′m(0)|2 ≤
{
M(‖u0m‖2)|∆u0m|+M1(|u0m|2)|u0m|+

1
ε
|β(u1m)|+ |f(0)|

}
|u′′m(0)|;

that is,
|u′′m(0)| ≤ C, (4.30)

because u1m → u1 in H1
0 (Ω) ↪→ L2(Ω) and β : L2(Ω)→ L2(Ω) is continuous.

From (4.29) and (4.30) it follows that

|u′′m(t)|2 ≤ C + C

∫ T

0

|u′′m(s)|2ds. (4.31)

Using Gronwall’s inequality we conclude that

(u′′m) is bounded in L∞(0, T0;L2(Ω)). (4.32)
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Now we return to the notation uεm . The estimates above and Aubin-Lions
compactness Theorem implies that the existence of a subsequence of (uεm), still
denoted by (uεm), such that

uεm → uε weak star in L∞(0, T0;H1
0 (Ω) ∩H2(Ω)), (4.33)

u′εm → u′ε weak star in L∞(0, T0;H1
0 (Ω)), (4.34)

u′′εm → u′′ε weak star in L∞(0, T0;L2(Ω)), (4.35)

uεm → uε strong in L2(0, T0;L2(Ω)) and a.e in Q, (4.36)

u′εm → u′ε strong in L2(0, T0;L2(Ω)) and a.e in Q. (4.37)

Statements (4.36) and (4.37), the continuity of de norm and of β imply

‖uεm‖ → ‖uε‖ a.e in Q, (4.38)

β(u′εm)→ β(u′ε) a.e in Q. (4.39)

Using (H1) in (4.38) it follows that

M(‖uεm‖2)→M(‖uε‖)2 a.e in Q, (4.40)

analogously,
M1(|uεm |2)→M1(|uε|)2 a.e in Q. (4.41)

The convergences above are sufficient to pass to the limit with m → ∞ and then
we prove the Theorem 3.3.

Proof of Theorem 3.1. Finally, we prove the main Theorem of this work. Let
v ∈ L2(0, T0;H1

0 (Ω)) be v(t) ∈ K a. e. for t ∈ (0, T0). From (3.8)1 it follows that∫ T0

0

(u′′ε , v − u′ε)dt+
∫ T0

0

M(|∇uε|)2a(uε, v − u′ε)dt

+
∫ T0

0

M1(|uε|2)(uε, v − u′ε)dt−
∫ T0

0

(f, v − u′ε)dt

=
1
ε

∫ T0

0

(β(u′ε), u
′
ε − v) dt

=
1
ε

∫ T0

0

(β(u′ε)− βv, u′ε − v) dt ≥ 0,

(4.42)

because v ∈ K (β(v) = 0) and β is monotone.
From (4.33)-(4.37) and the Banach-Steinhauss Theorem, it follows that there

exists a subnet (uε)0<ε<1, such that it converges to u as ε → 0, in the sense of
(4.33)-(4.37); that is,

uε → u weak star in L∞(0, T0;H1
0 (Ω) ∩H2(Ω)), (4.43)

u′ε → u′ weak star in L∞(0, T0;H1
0 (Ω)), (4.44)

u′′ε → u′′ weak star in L∞(0, T0;L2(Ω)), (4.45)

uε → u strong in L2(0, T0;L2(Ω)) and a.e in Q, (4.46)

u′ε → u′ strong in L2(0, T0;L2(Ω)) and a.e in Q. (4.47)

The convergences above are sufficient to pass to the limit in (4.42) with ε → 0
to conclude that (3.6) is valid. To complete the proof of Theorem 3.1, it remains
to show that u′(t) ∈ K. a. e..
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In this position we observe that using convergences (4.33)-(4.37), leting m→∞
in (4.1), we can find uε such that

u′′ε −M(|∇uε|2)∆uε +M1(|uε|2)uε +
1
ε
β(u′ε) = f in L2(0, T ;L2(Ω)). (4.48)

On the other hand, from (4.48) we have

β(u′ε) = ε[f − u′′ε +M(|∇uε|2)∆uε −M1(|uε|2)uε]. (4.49)

Then

β(u′ε)→ 0 in D′(0, T ;H−1(Ω)). (4.50)

From (4.48) It follows that

β(u′ε) is bounded in L2(0, T ;L2(Ω)). (4.51)

Therefore,

β(u′ε)→ 0 weak in L2(0, T ;L2(Ω)). (4.52)

On the other hand we deduce from (4.49) that

0 ≤
∫ T

0

(β(u′ε), u
′
ε) dt ≤ ε C. (4.53)

Thus ∫ T

0

(β(u′ε), u
′
ε)dt→ 0. (4.54)

We have ∫ T

0

(β(u′ε)− β(ϕ), u′ε − ϕ) dt ≥ 0, ∀ϕ in L2(0, T ;L2(Ω)),

because β is a monotonous operator. Thus,∫ T

0

(β(u′ε), u
′
ε) dt−

∫ T

0

(β(u′ε), ϕ) dt−
∫ T

0

(β(ϕ), u′ε − ϕ) dt ≥ 0. (4.55)

From (4.52) (4.54) and (4.55) we have∫ T

0

(β(ϕ), u′(t)− ϕ) dt ≤ 0. (4.56)

Taking ϕ = u′ − λv, with v ∈ L2(0, T ;L2(Ω)) and λ > 0, using the hemicontinuity
of β we deduce that

β(u′(t)) = 0, (4.57)

and this implies that u′(t) ∈ K a. e. and the proof of the existence of solution is
complete.

In the next section we prove the uniqueness of solution to achieve our goal.
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5. Uniqueness of solution

Suppose that u1, u2 are two solutions of (3.6) and set w = u2−u1 and t ∈ [0, T0].
Taking v = u′1 (resp. u′2) in (3.6) relative to v2 (resp. v1) and adding up the results
we obtain

−
∫ t

0

(w′′, w′)dt+
∫ t

0

M(‖u2‖2∆u2, w
′)dt−

∫ t

0

M(‖u1‖2∆u1, w
′)dt

−
∫ t

0

(M1(|u2|2)u2, w
′)dt+

∫ t

0

(M1(|u1|2)u1, w
′)dt ≥ 0,

(5.1)

or equivalently

−
∫ t

0

(w′′, w′)ds+
∫ t

0

(M(‖u2‖2∆u2, w
′)ds−

∫ t

0

(M(‖u2‖2∆u1, w
′)ds

+
∫ t

0

(M(‖u2‖2∆u1, w
′)ds−

∫ t

0

(M(‖u1‖2∆u1, w
′)ds

−
∫ t

0

(M1(|u2|2)u2, w
′)ds+

∫ t

0

(M1(|u1|2)u1, w
′)ds

−
∫ t

0

(M1(|u2|2)u1, w
′)ds+

∫ t

0

(M1(|u2|2)u1, w
′)ds

= −
∫ t

0

(w′′, w′)ds+
∫ t

0

(M(‖u2‖2∆w,w′)ds−
∫ t

0

(M1(|u2|2)w,w′)ds

+
∫ t

0

([M(‖u2‖2 −M(‖u1‖2)]∆u1, w
′)ds

−
∫ t

0

([M1(|u2|2)−M1(|u1|2)]u1, w
′)ds ≥ 0,

(5.2)

By hypothesis (H1), we can use the Mean Value Theorem to write∫ t

0

(w′′, w′)ds−
∫ t

0

(M(‖u2‖2∆w,w′)ds+
∫ t

0

(M1(|u2|2)w,w′)ds

−
∫ t

0

(M ′(ε)[‖u2‖2 − ‖u1‖2]∆u1, w
′)ds

+
∫ t

0

(M ′1(ε1)[|u2|2 − |u1|2]u1, w
′)ds ≤ 0,

(5.3)

where

‖u1‖2 ≤ ε ≤ ‖u2‖2, |u1|2 ≤ ε ≤ |u2|2. (5.4)

From (5.3) It follows that∫ t

0

d

dt
|w′|2ds+

∫ t

0

M(‖u2‖2)
d

dt
‖w‖2ds+

∫ t

0

M1(|u2|2)
d

dt
|w|2ds

≤ 2
∫ t

0

|M ′(ε)| [(‖u2‖ − ‖u1‖) (‖u2‖+ ‖u1‖)] |∆u1||w′|ds

+ 2
∫ t

0

|M ′1(ε1)| [(|u2| − |u1|) (|u2|+ |u1|)] |u1||w′|ds,

(5.5)
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using an argument similar to that used in (4.11) and (4.12), from (5.5) it follows
that ∫ t

0

d

dt

{
|w′|2 +M(‖u2‖2)‖w‖2 +M1(|u2|2)|w|2

}
ds

≤ 2
∫ t

0

|M ′(ε)| [(‖u2‖ − ‖u1‖) (‖u2‖+ ‖u1‖)] |∆u1||w′|ds

+ 2
∫ t

0

|M ′1(ε1)| [(|u2| − |u1|) (|u2|+ |u1|)] |u1||w′|ds

+ 2
∫ t

0

(|M ′(‖u2‖2)|‖u2‖‖u′2‖‖w‖2 + 2|M ′1(|u2|2)||u2||u′2||w|2)ds.

(5.6)

Using (H2), (H3), (4.18) (4.19) and (5.6), we conclude that

|w′|2 + ‖w‖2 + |w|2 ≤ C
∫ t

0

‖w‖|w′|ds+ C

∫ t

0

|w||w′|ds+ C

∫ t

0

|w|2ds. (5.7)

This implies

|w′|2 + ‖w‖2 + |w|2 ≤ C
∫ t

0

(|w′|2 + C‖w‖2 + |w|2)ds. (5.8)

Using Gronwall’s inequality in (5.8), we conclude that w(t) = 0; therefore u1 = u2.
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