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GLOBAL DISSIPATIVE SOLUTIONS FOR THE
TWO-COMPONENT CAMASSA-HOLM
SHALLOW WATER SYSTEM

YUJUAN WANG, YONGDUAN SONG

ABSTRACT. This article presents a continuous semigroup of globally defined
weak dissipative solutions for the two-component Camassa-Holm system. Such
solutions are established by using a new approach based on characteristics a
set of new variables overcoming the difficulties inherent in multi-component
systems.

1. INTRODUCTION

We consider the two-component Camassa-Holm shallow water system (see [B]
101 [13])
my + umg + 2u,m — Aug + pp =0, t >0, z € R,

M=U— Uy, t>0, z€R, (1.1)

pt + (up), =0, t>0, z€R.
Here A > 0 characterizes a linear underlying shear flow so that (|1.1) models wave-
current interactions. The variable u(z,t) represents the horizontal velocity of the
fluid, and p(z,t) is the scalar density. This system appears in [19]; it was also
derived by Constantin and Ivanov in [I0] in the context of shallow water theory. It
is an extension of the Camassa—Holm (CH), is formally integrable [5], [10] [13], and
also has a bi-Hamiltonian structure with Hamiltonians

Hy = %/(um+ (p—1)*)dx
and
H, = % / (u(p — 1?4 2u(p— 1) +u® + uu? — AuQ)dac.
For p = 0, one obtains the classical CH equation, which models the unidirectional
propagation of shallow water waves over a flat bottom. It has a bi-Hamiltonian
structure [6] and is completely integrable [4, [7]. The CH equation has attracted a
lot of attention just because it has peaked solitons [4, T1] and models wave breaking

[4, @]. The presence of breaking waves means the solution remains bounded while
its slope becomes unbounded in finite time [8] [9]. After wave breaking the solutions
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of the CH equation can be continued uniquely as either globally conservative [2] or
globally dissipative solutions|[3].

System (|L.1)) is an integrable multi-component generalization of the CH equation.
System as a physical interpretation[10], just like the CH equation, has an
integrable structure [13], and can be expressed as a flow [I7]. It has been shown
that the two-component CH system is locally well-posed with initial data (ug, pg) €
H*xH*™ s> 3/2 [15]. The system also has global strong solutions which blow up
in finite time [12]. More interestingly, it possesses a global continuous semigroup of
weak conservative solutions [21] 22]. The goal of the present paper is to construct
a global continuous semigroup of weak dissipative solutions for the two-component
Camassa-Holm system . It should be stressed that system is a multiple
(rather than single) component system in which the mutual effect between the
components u and p exits, making it quite challenging to address properties of the
solutions associated with the system.

To circumvent the difficulties coming from the two-component coupling effect,
we introduce a suitable characteristic and a new set of independent and dependent
variables to transfer the system into a semilinear hyperbolic system. By
solving the corresponding semilinear system which contains a discontinuous non-
local source term but has bounded directional variation, a global dissipative solution
is derived. Then, by mapping the solution of the semilinear system into the solution
of original system , the problem is solved. Furthermore, it is proved that the
solutions actually construct a semigroup.

The remainder of this article is organized as follows. Section 2 is the introduction
of the original system. In Section 3, a transformation from the original system to
an equivalent semilinear system is conducted by applying a new set of variables.
The unique global solution of the equivalent semilinear system is derived in Section
4 and then it is reversed to the weak dissipative solution of the original system in
Section 5, which constructs a global continuous semigroup.

2. THE ORIGINAL SYSTEM

Let G(z) = %e‘m and * denotes the spatial convolution such that G x f =
(1—02)71f for all f € L?(R). System (L.1)) can thus be rewritten as a form of
quasi-linear evolution equation

1 1
ut—l—uuw—l—@mG*(uQ—l—Eui—Au—|—§772+77)20, t>0, zeR,

M+ une +nug +u, =0, t>0, z€R,

which can be further represented in the form

up +uu, + P, =0, t>0, x€R,

2.1
N+ ung +nug +u, =0, t>0, 2R, (2.1)

where n = p—1 and P = G x (u® +u2 /2 — Au+n?/2+mn), with the initial condition
(ug,mo0) € H' x U with U = L? N L*. For smooth solutions, the total energy

E(t) = / u? +u? +ntde (2.2)
R
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is constant in time. Indeed, by using the identity 92G  f = G x f — f and differ-
entiating the two equations in (2.1) with respect to = respectively, we have
1 1
Ugs + Uy + U2 — (u2—|—§ui—Au—|— §n2+n)+P:0,
Multiplying the first equation in (2.1)) by u and the second equation by 7, and
multiplying the first one in (2.3)) by u,, we obtain the following conservation laws
2 3

(2.3)

u u
il — P, =0, 24
(2)t+(3)z+u 0 24)
2 1 1 1 1
(%)t + (iuui - gug + §Au2)$ - 57721;9; —Nug +u P =0, (2.5)
2
(;)t + 10%ug + nug + unn, = 0. (2.6)
It then follows from (2.4)-(2.6) that
d d
S = /S (W2 + 12 + 02)(t, 2)dz = 0.

Thus (2.1)) possesses the H!-norm conservation law given by

2, .2, 2 1/2
el = ([ 1?2+ aPlae)
R
where 2z = (u,7). Since z = (u,n) € H* x U, Young’s inequality ensures P € H?!.
Definition 2.1. By a solution of the Cauchy problem (2.1) we mean a Holder

continuous function z = z(t, z) defined on [0,7] x R with the following properties:

(i) 2(t, -) € H* x [L?> N L*°] for each fixed t.

(i) The map t — z(t,-) is Lipschitz continuous from [0, 7] to L?, satisfying

2 = —uzy — f(2),
2(0,z) = z(x),
where z = (u,n), 2z = (Uz,nz) and f(2) = (Pe, (7 + Dug).
Definition 2.2. We call a solution of the Cauchy problem a dissipative solu-
tion if it satisfies the Oleinik type inequality
up(t, ), ne(t,x) <C(L+t71), t>0

for some constant C' depending only on the norm of the initial data ||Z||z: and its
energy E(t) in (2.2) is a non-increasing function of time.

(2.7)

3. THE EQUIVALENT SEMILINEAR SYSTEM

In this section, a transformation is conducted by introducing a characteristic and
a new set of Lagrangian variables, with which the original system is transformed
into an equivalent semilinear hyperbolic system.

For given initial data z = (u,7) € H' x U, we consider the following initial
problem,

%Q(t’g) =u(t,q(t,€)), tel0,T],

p) (3.1)
q(07 5) = (1(6), z €R,



4 Y. WANG, Y. SONG EJDE-2015/14

where the solution z = (u,n) to (2.1) remains Lipschitz continuous for ¢ € [0,T],
and the non-decreasing maps £ — () is defined as

a)
/ uidr = ¢&. (3.2)
0
The following notation is used:

U(t, 5) = u(t’ q(t’g))’ n(t’ 5) = 77(15’ Q(t,ﬁ))7 (t g) = (t q(t E))
uz(t, §) = ug(t, q(t,€)), m(t, &) =na(t, q(t,8)), Pult, §) = Pult, q(t,8)).

Define the variables 8 = 0(¢,&) and w = w(t, ) as

0 = 2arcsecu,, w=u?- g—z (3.3)
(0 in [0,7) U (7, 27]).

We remark that the transformed variable 6 used in this paper is of the form
0 = 2 arcsec u,, which makes the calculation much simple and convenient to set up
the dissipative solution in contrast to the applied variable v = 2 arctan u, in [2} 3],
which further overcomes the difficulties existing in the multi-component system.

The following useful identities are prepared for later use from (3.1)-(3.3)),

w(0,6) = 1, (3.4)
1

Uy = Sec Z oz = cos? g, (3.5)

dg w50
a—f z cos” o - w. (3.6)

According to , we obtain

¢ 0

€)= alt. ) = [ cos? §(t,5) - wit.s)ds. (3.7)
3

By using the new variable &, we represent P and P, as follows,

P@zé[mwpﬂfcm w(s)ds] )

50
X [(u —Au—|—277 + 1) cos 5—&-2] w(&)de’,

/+°O / exp —|/ cos? (s)ds|} 338)

x [ (u? —Au+277 + 1) cos® €+1] (&)d¢,

2
System (2.1)) can be further rewritten with the new variables (¢,&) as
0
au(tv 5) = U + UlU; = *P’r(t7 5)7
(3.9)

0
777@,5) = +une = —(n+ Dug(t,§)
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From (3.1)), (3.3) and (2.3)), we obtain

0 2
59(@5) = W(Umt + Ullyy)

p ) ) (3.10)
= fcsc§+(2u2 72Au+n2+27]72p)cos§ ocoté.

Furthermore, it follows from (3.1f), (3.3)) and (2.5)) that
9
ot

The functions P and P, used in the above (3.9)-(3.11)) are given in (3.8).

BI)-B11

Now the corresponding Cauchy problems for the variables (u, 7, 6, w)
becomes the semilinear system

0
(t,€) = (u2); + (uu?), = (2u® — 2Au +n* + 2n — 2P) cos 5w (3.11)

ou
“__p
at )
? :—(77+1)secg,
o0 ; t 2 ; (3.12)
— = —csc— + (2u® — 24 2 429 —2P)cos — - cot —
5t csc2+(u u+n°+2n )0052 cot2,
ow 0
— =(2u®*-24 24 92p—2P —.
m (2u u—+n°+2n )cos2 w,
with the initial condition
u(0,8) = u(q(§)),
0’ =n(q )
1(0,€) = 1(q(£)) (3.13)

w(0,¢) =1,
which can be regarded as an ordinary differential equation (ODE) in the Banach
space
X =H"x[L?’NL>®] x [L? N L>®] x L>,
endowed with the norm

1w, m,0,w) | x = llullar + lInllzz + nllze + 0]z + 0]z + [lw] e~

In the dissipative case, we need modify the system ((3.12)) suitably. Suppose that,
along a given characteristic t — ¢(t, £), the wave breaks at a first time ¢t = 7(£). As

t 1 7(€), the variable 8 = 2 arcsec u, implies that wu,(t,§) — —oco. For all t > 7, we
set 0(t,€) = m. Then the P and P, in (3.8) are replaced by

1 0(s
P(¢) = 5/ exp {—| cos? % w(s)ds|}
{0(¢")#m} {s€l€.&'].0(s)7#} (3.14)

1 1 0
x (u?® 4 iuﬁ — Au+ 5772 + 1) cos? 5 w(&)d¢'
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1

P.(§) = f/ exp{—|/ cos
2 Jigr>e.0(e)#n) {s€l€.€).0(s)%m}
1 1 0
x (u? + iui —Au+ 5772 +1) - cos® 3 ~w(E)de’
1 0
- = / exp {—| cos? 0s) | w(s)ds|}
2 Jier<e0en#n) {s€l6.£1,6(s)%m) 2
1 1 0
x (u® + 5“3 — Au + 5772 +17) - cos” 5 ~w(¢')de,
System (3.12)) can thus be rewritten in the form
Ju
-, — _sz
ot
o f-(m+1)secs ifO#m
ot o if 0 =m,

2 0(s)

w(s)ds|}

(3.15)

00 {—cscg+(2u2—2Au+n2+2n—2P)cosg-cotg ifo#£nw (3.16)

at o if 6 =m,

ow (2u? —2Au+n?+2n—2P)cos§-w O£
ot o if 0 =7.

where the right hand side is now discontinuous. The discontinuity occurs precisely
when 6 = 7.
4. GLOBAL SOLUTIONS OF THE EQUIVALENT SEMILINEAR SYSTEM

A unique local solution of the equivalent semilinear system defined on some time
interval [0, T is first obtained, and then it is proved that this local solution can be
globally extended for all times ¢ > 0. Denote

U = (u7’r” G’w) G R47
(O, —(n+1)sec g, —cscg + (2u? — 2Au + n? + 2n) cosg

FU) = XCOtg’(2u272Au+772+277)cosg-w> i
(0’ 07 070> if 0 = ,
G(&U() = (= Pry0,~2Pcos§ - cot §, ~2Pcos § -w) i 04,
(=P,0,0,0) if0=m.

The Cauchy problem for ([3.16)) is rewritten in more compact form with this nota-
tion,
0
with the initial condition
U(0,8) = U(9).

After a solution (u,n,6,w) of (4.1) is obtained, a solution of (3.16]) will be soon
provided by the mapping (¢,&) — (u,n,0,w). We regard (4.1) as an ODE on the
space L°°(R,R*). Observe that the vector field F : R* — R* is uniformly bounded
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and Lipschitz continuous as long as w,n remain in a bounded set. However, the
nonlocal operator G is discontinuous.

To prove the unique local solution of the system , we begin with some
assumptions.

Assumption 1. Suppose F and G are given in , there exists some constant
C > 0 and constant k* > 0 depending only on C such that, for U = (u,v,0,w) €
L®R,RY), U = (4,9,0,w) € L®(R,R*), the following inequalities hold:

Z<u®, wOsc (1)

meas({§:6(6) # 7. 16(6) — 7| = 7)) < C, (4.3)
meas({¢:0(¢) # m, 10(6) — 7| > T} < C. (4.4)
|Pllzee + |1 Pl < K5, (4.5)

1P + | Pellze < w5+ Ifullzr + [l + 10]120). (4.6)
(4.7)

(4.8)

[ullzoe s [l zoe s 1l poo, 77| 2 < C,

[E(U)]|oe, [[GU) [ e < K7,
IF(U) = F(O)| >~ < &llU = U =,
IGU) = G(U)|| 1~
< k[|IU - Ullpe + meas({€;0 # 7,0 = w}) + meas({&;0 # 7,0 = 1],
where k is a Lipschitz constant.

Assumption 2. Given initial data z = (u,7) € H' x L?, there exists a constant
C > 0 such that

[ullzee, Inllzee <

| Q

s C
. meas({6:6(6) £ m, 106) ~ | 2 TH < T

Define the set Q° = {¢ € R;0(¢) € (m, 7+ 6] }, where § > 0 is a constant small
enough. By possibly reducing the size of § > 0, thus we can assume that meas(2°) <

1/(8k).
Given T > 0, let D be the set of all continuous mappings t — U(t) : [0,T] —
L (R, R*), with the following properties:
U(0) =0,
1U(t) = U(s)llL~ < 2k"|t — 5],

t—s

0(t, &) — 0(t, &) < — 5 e 0<s<t<T.

Let IT : D — D be defined by

() (t,€) = U + / [F(U(r,€)) + G(€, U(r,-))dr, (4.10)

then a solution ¢t — U () will be obtained as the unique fixed point of the contractive
transformation II: D — D.

With assumptions 1-2 and the definition of D, we are ready to prove the existence
and uniqueness of a local solution for Cauchy problem .

Theorem 4.1. Given z = (4, ) € H' x L?, the Cauchy problem (4.1) has a
unique local solution defined on a time interval [0, T] with T > 0 .
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Proof. We first show that Il : D — D defined above is a strict contraction. Choose
T > 0 sufficiently small and U,U € D. Define

A= max [U®) = U@)|eee, 7(€) = sup {t6(t,€) # },

t€[0,T)
7(€) = sup {t:6(t,€) # 7}
t€[0,T)
For each ¢ € 99, we have |7(&) — 7(€)| < 2\. For t € [0, T], we have
TV (t) — O (t)]
< [ IFUE) - FOENIdr + [ 160 - GO ar
<2fi/ U (7 )||Lood7+n/ meas({&;0 # 7,0 = 7} )dr

+ KJ/ meas({£;0 # 7,0 = 7})dr
0

S R MEGELGI:

A
< 2T\ + 2K meas(Q‘s))\ < 5

where T is chosen as T' < 1/(8k). This shows that II is a strict contraction, which
yields the desired local solution of Cauchy problem .

Next we show that the local solutions of the semilinear system can be
globally extended for all times ¢t > 0. In the following, we prove that the “extended
energy”

E(t) = / <u2 cos? O + 12 cos? b + 1)w(t, &)d¢
" 2 2

remains constant in time. We remark that the extended energy E(t) is strictly
larger than the total energy

E(t) = / (u2 cos? 0 + 1? cos? 0 + 1)w(t,§)(t,§)d§
{0662} 2 2

in the sense that here the integration ranges over the entire real line.
For future use, we show the following identities

U = U ~@—secg-cos2g~w—cosf-w
¢ e e T 2~ T2 (4.11)
, .
P§:P:cay PI'COSQ*"LU,

o 2
hold for all times ¢ > 0, as long as thi solution is defined. Moreover, when 6 = m,
a separate computation yields
u§:0:cosg-w, P5=O:Pz~COSQg-w.
Thus the identity in still holds for the cases § = w. Then we obtain
(uP)e = ueP + uPy = w(P - cosg + uP, - cos? g),

(u®)e = 3uPug = 3wu? - cos 2’
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0
(u?)¢ = 2uug = 2uw - cos .
Differentiating the extended energy E (t) with respect to the variable ¢, we obtain

d ~ _d s o0 5 50
£/1~2E(t)d£_£/1~2(u cos 54—77 cos §+1>wd§

0 0 0 0 0 00
_/R{(u200s22+n2c0522+1>%1;+(2uut c08257u20037s1n§%)

0 0 . 000
27 J— —
+ (ant cos” 5 n? cos 5 sm2 at) }df
2

0 0
:/ {2(u2c0527+n200827—|—1)<u2—Au—i—n——i—n—P)
{66} 2 2 2
0 9 oy . 0
—2uP, rcos 5 —2n(n+1)— (u"+n )Slni
0 9 9 0 0 0
X [fcsc§+(2u —2Au+n +27772P)COS§ ~cot§]}cos§wd£
0 0 0 0
= / w{3u2 cos — — 2Aucos = — 2P cos — — 2uP, cos? f}df
n 2 2 2 2

= / ¢ (u® — Au* — 2uP)d¢ = 0.
R

(4.12)
In the sense that cos g = 0 whenever 0 = 7, thus we are again integrating over the

entire real line R on the fourth identity of (4.12)). This implies that the extended
energy FE(t) is consistent, namely

- 0 0 5
E(t) = / (u2 cos? ?1 + 1? cos? 51 + 1)w(t,£)d§ = E(0) = Ey. (4.13)
R
From (4.11)) and (4.13)), we can obtain the bound
0
sup |[u?(t, €)| < 2/ |uue|dg < 2/ |u| + |cos = |wd€ < Ey. (4.14)
¢eRr R R 2

This provides a priori bound on ||u(?)|| Loo similarly we can derive an a priori bound

on ||n(¢t)||rs. Also from the estimation and the definitions (3.13)) and (3.14),

we obtain
IP(E)[ Lo, | Pr(t)]| oo

1 A 1
<Gl |l (u? + 5l SOl + 5 (||G||L2 + [lullz:) + 5(\|G||iz + [Inl72)
Al 1
_*Eo+2( + Ep) + 2(4+E0)
2+ A A+1
< E .
S 0o+ 3

(4.15)

Then by (4.14]), (4.15) and the fourth equation in (3.16)), we deduce that there
exists a constant B, depending only on the total energy Fj, such that

| |<Bw

which yields
e Bt <aw(t) < Pt
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From the third equation in (3.16]), we know that 0 < 6(¢) < 2.

All the above estimates show that a priori bounds 1) which we needed
to construct a local solution with a constant C' exist over any given time interval
[0,7]. This completes the proof that the local solution can be extended globally
for all times ¢ > 0. O

5. GLOBAL DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT
CAMASSA-HOLM SYSTEM

In this section, we show that the global solution of the system yields a
global dissipative solution of system , in the original variables (¢,z). In the
following, we shall show the continuous dependence of solutions to system .
Recalling that we have obtained the local existence theorem by representing the
solution of as the fixed point of a contraction in a suitable space, this yields
uniqueness and continuous dependence with respect to convergence on the initial
data in L™ x L*°.

Theorem 5.1. Let Z,, = (U, 7,) be a sequence of initial data with ||Z, — Z|| g — 0.
Then, for any T > 0, the corresponding solutions z,(t,&) = (un,Nn)(t, &) converge
to z(t,&) = (u,n)(t, &) uniformly with (t,£) € [0,T] x R.

Proof. Let (u,n,0,w) and (@, 7, 0,%) be any two solutions of (3.16), with the initial

condition (3.13). Let Fy be an upper bound for the energies of the two solutions.
Suppose that at time ¢t = 0, there exists a constant o,

HZ(O) - 2(0)”[/“’ < 607 H9<0’§) - é<07£)HL2 < 60-

Next, for t € [0,T], we will establish an a-priori bound depending only on &y, T
and Ey on

12(t) = Z(t) | o - (5.1)
Define the set
A={£eRO(T,&) =7} U{ € R;O(T,€) = 7},

thus a* = meas(A) is a uniformly bounded number depending only on 7" and Ejy.

Let 7(€) = inf{t € [0, T]; min{0(¢, ), 0(t, )} = n} such that 7(&) is the first time
when one of the two solutions reaches the value 7. We now construct a measure-
preserving mapping: [0, a*] — A, which is denoted as o — £(«) with the additional

property:
a < o if and only if 7(&(a)) > T(£(a)). (5.2)

According to the mapping [0, a*] — A, we define the distance function
I((u,n,0,0), (@, 7, 0,))
= ([lu = allpe + [l = 7llee + [0 = O]l 2 + lw — @] 2)

) (5.3)
%4@/ X (|6(e(a)) — B((a)) )da
0
For convenience, we set
J(t) = J((u,v,0,w), (4,0,0,0))(t) = J*(t) + Ko JJ*(t), (5.4)

where

Tt = (= alls + I = ill e + 110 = 822 + lw = @2,
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TH) = [ e (a(ela)) = el do. (55
In the following we show that, for suitable constants Ky, K, M depending only on
T and Ey, the inequality
%J(t) < MJ(t) (5.6)
holds. Moreover, this will imply
J(t) < eMiy(0), telo,T),

which provides an a-priori estimate on the distance at (5.1)).
For each fixed t € [0,T], we define the sets

L) ={€ € A:0(t.€) #m 0(t,6) =n} U{E € A:0(t,€) # m,0(t€) =},
TH() = {§ e A:0(t,§) = 0(t. &) =},
T™(t) = {£ € A: 6(1,6),0(,8) # 7} ={€ € A:7(t) >},
with the following properties
FNTHE) =T NI~ ) =TT NI (t)=®, TEHUTTHUT (t)=A
for each t € [0,T]. Set m(t) = meas(I'(t)), such that
() = {¢(a);a € [0,m(t)]}. (5.7)

From the equations in , we have the estimate

d ~ . ~ -
(=@l + I = ll= +110 = Ol 22 + w = @2

) (5.8)
< (= @llzo + Il = ll o + 110 = 2 + w = @] 2 + meas(T(1))).
Moreover, from (5.7) we can deduce that
d [ -
= | R0 €(@) - 8t &(@))])da
0
o ~
- / Xe© 2 (1 ¢()) — (1. £()) ) da
T(#)UT+ (£)UT— (¢) ot (5.9)

_ / (Kale) . %w(t,g(a)) — 0t £(a)))de
r(t)

me 9 ;
+/0 oK <f).a(w(t,g(a))—G(t,é(a))Dda-

Indeed, the integral over I'*(¢) is zero.
Choosing ¢ > 0 which depends only on T', E; sufficiently small, we have

for £ € I'(¢), which implies
0 ~ 1

On the other hand, choosing a constant k large enough such that |6(¢, &) — é(t, 8| >
§, we obtain

0 ~ 1 ~
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Finally, for £ € T~ (t), we have

0 ~ -
alﬁ(t,f) =0, &) < k- (lu—a|lpe + |7 = Allpe + 10 — Ol 2 + ||w — @ 2
+ meas(T'(t)) + |0(t, &) — 0(¢, €)]).

Therefore,

m(®) Ka 0 0
| e G0t e, o

m(t)

< w(J*(t) + meas(F(t)))/

0

eKoda + /Om(t) " (10(1,€(0)) — (1, €(0)]) da

m(t) i
< w(JH(t) + meas(I‘(t)))/O "o+ K /r—@ R @ (j0(t, &) — 0(t,€)|)de.

(5.10)
Now, (5.8) can be rewritten in the form
d
%J*(t) < k- (J*(t) + meas(I'(t))). (5.11)
Notice that £ € I'(¢) implies a(&) > m(t), together (5.9) and (5.10) imply
GO <5 [ O [ KO, - e, )
dt 2 Jre T(¢)UT'— (1)
m(t)
+ 1(J*(t) + meas(T(1))) - / Koda
0
1 o
< 3O meas(T(1)) + wTH (1) + (1) / Ko (5.12)
0

m(t)
+ rmeas(T(t)) K™ / oK (amm(®) gy
0

< —ieKm(t) meas(T'(t)) + wJ7 (1) + %GKQ*J*(U

We choose the constant K = 4« in the above inequality such that
m(t) 1
K(a=m(t) o < & _
H/O e as =7

From (5.11)) and (5.12), choosing Ky = 4k, we obtain
4
dt

1 .
< k- (J*(t) + meas(I'(t))) + 4&(—1 meas(T'(t)) + wJ ¥ (t) + %eKa J*(t))

< RJH(t) 4 462 T* (1) 4 ket > T (1),

(J*(t) + 4rJ¥# (1))

with J* and J# are defined in (5.5). With M = k + ke**® | our claim (5.6) is
satisfied. O

Next we revert to the original variables (¢, z), and show that the global solution
of system (3.16|) yields a global dissipative solution of the original system ([2.1)).
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Let us begin with a global solution (u,n,6,w) of system (3.16)). Define

a(t.€) = q(6) + /0 u(r, €)dr. (5.13)

Then for each fixed &, the function ¢ — ¢(t, ) provides a solution to the Cauchy
problem

0
EQ(t, 6) = u(t7 6)7

(5.14)

q(0,¢) = ().
We claim that, if ¢(¢,&) = x, a solution of system can be obtained by setting
z(t, @) = 2(t,§), (5.15)

where z(t,x) = (u, n)(t,z), 2(t,€) = (u, )(t,€). The main result reads as follows.

Theorem 5.2. If (u,n,0,w) is a global solution to the Cauchy problem (3.16))-

(3.13), then the function z = z(t,x) defined by (5.12)-(5.15|) provides a global dis-
sipative solution of system ([2.1)).

Proof. Using the uniform bound |u(t,§)| < Eé/z, from (5.12)) we obtain
7€) — By*t < q(t,©) < q(&) + B*t, t>0.
The definition of £ in (3.2) yields
li q(t,&) = too.
Jim q(t,§) = o0

Then the image of the continuous map (¢,£) — (¢, q(¢,£)) covers the entire plane
[0,00] x R. It is clear that the map & — ¢(t, &) is non-decreasing. Then the map
(t,x) — z(t,x) at (5.15) is well defined, for all ¢t > 0 and x € R.

For every fixed t, we claim

meas({g(t,£);0(t, &) = 7}) = /{ o BEE0E

= / w cos? Q(t, £)dé =0,
{6(t,6)=m} 2

which implies that, in the z-variable, the image of the singular set, where § = 7,
has measure zero.
By changing the variable of integration, we compute

/ (u? +ug +n*)(t, 2)da

R

0 0 (5.16)

= / (u? cos® = + n?cos® — + Vw(t, £)dé < Ey.
{cos #—-1} 2 2

This implies the uniform Holder continuity with exponent 1/2 of z as a function of z.
From the first and second equations in and the bounds on || P||p<, ||Ps|l L,
we can obtain that the map ¢t — z(t,¢(¢)) is uniformly Lipschitz continuous along
the characteristic curve ¢ — ¢(t). Hence, z = z(t, z) is globally Holder continuous
for (t,z) € Rt x R.

We know that the map ¢ — z(t) is Lipschitz continuous with values in L?(R).
Since L?(R) is a reflexive space, we can deduce that the map ¢ — ¢(t) is differ-
entiable for almost every (a.e.) time ¢ > 0. Note that the right hand side of the
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first equation in lies in L?(R), to establish the equality, one may proceed as
follows.

For each smooth function with compact support ¢ € C2°, at a. e. time t > 0,
we have

d
— [ u(t,x)p(x)dx = | (—uuy — Pp)(t, 2)p(x)dx
di / (5.17)
= / [w?(t, 2)¢' (2) — Pu(t, )¢ () + ult, 2)us(t, o) p(a)]dz.
Let us set
7(§) = inf{t > 0;0(t) = 7} (5.18)
for each ¢ € R. Note that, for a. e. time ¢t > 0
meas({&;7(&) =t}) =0. (5.19)

Choosing a time ¢ such that (5.19) holds. Integrating with respect to the variable
¢ and thus we obtain from (3.5)) that

d

@[ utt 9(att, ) w - cos? (1, e

5 0 sin 6

3~ upwb; 5

0 0
= / {utgow cos? 3 + ug’ gpw cos? 3 + upwy cos }df

0 0
= / {—ngow cos? = + u?@'wcos® — + up(2u? — 2Au +n* + 21 — 2P)
0(t.6) A 2 2

0 0 0
X cosgwcos2§ —ucpw[—csci + (2u® — 2Au +1* + 2 — 2P)

0 0, sinf
cosicoti] 5 }d§

0
:/ [~ P 4 u?p" + uugplw cos® —dE.
0(t,6)#n 2

It can be seen ([5.17) holds, and therefore we can conclude that z = (u,n) is a global
solution of the two-component Camassa-Holm system in the sense of Definitions
and O

Next we prove that global dissipative solutions of the two-component Camassa-
Holm system (2.1)) construct a semigroup. To do this some relevant properties are
first given.

Property 1. The total energy is a non-increasing function of time, namely
2Ol @®) < 2| @) i 0 <" <t

Proof. By (5.16)), we have
=@l = [ 4 a2 o)t 2)do
R

0 0
= / <u2 cos® = + 1% cos® = + l)w(t, &)d¢
{cos 0#—1} 2 2

=Fy— / (u2 cos? o + n? cos? 0 + 1)w(t,£)d§
{r©<t) 2 2

g%—/ wit, €)de
{r(&)<t}
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< Ey —/ w(t, §)ds = |[2(t')[|
{r(©)<t'}

with 7(&) given in (5.18]). O

Property 2. Given a sequence of initial data z, such that z, — z in H' x L?,
the corresponding solutions z, (¢, ) — z(t,z) uniformly for (¢,2) in bounded sets.

Theorem 5.3. Let z, € H' x [L> N L*] be an initial data, and 2(t) = SiZ the
corresponding global solution of system (2.1) constructed in Theorem . Then the
mapping S: H' x [L?> N L*°] x [0,00) — H' is a semigroup.

Proof. Let (t,&) — (u,n,0,w)(t, &) be the corresponding solutions to systems ([3.16)
and (3.13). For the fixed 7 > 0 and all ¢ € R, one needs to prove that
Si(S:2) = Srye2.

A new energy variable p is defined as

d w(T if 9(r T
CUR e o
with initial data
p(Eo) = 0. (5.21)
Choose the value & such that ¢(7,&y) = 0. By setting 2 = S, z, we define
i(t,p) = 2(7 +1,£(p)),
0(t.p) = 0(r + 1.€(0)). —_—

w4 e)
WP = =)

such that p — £(p) provides an a.e. inverse to the mapping in (5.20))-(5.21]), namely,
§(p*) = sup{s; p(s) < p*}.
Recalling the identities (3.6) and (3.5)), one has

7€) 2 (7 q(r plO))) = w(r, &) = 2

jfp(g)'

ol
o
By an integration and using (5.20]), one gets that

q(1,€)
/0 (7, 2)da = p(€).

Now it can be shown that the functions in (5.22) provide a solution to system
(3.16)). The identities w(r +t,&)d¢ = % : d’;—(f) - dp = w(t, p(§))dp imply that
the corresponding integral source terms in (3.16)) satisfy

P(t,p) = P(t +1,£(p)), Pu(t,p) = Pu(T +1,£(p))- (5.23)

Since the last equation in is linear with respect to the variable w, then we
can draw the conclusion that the functions in provide a solution to system
. In summary, the global dissipative solutions of system construct a
semigroup. ([l
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