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NONEXISTENCE OF POSITIVE SOLUTIONS FOR A
NONPOSITONE SYSTEM IN A BALL

SAID HAKIMI

Abstract. In this article, we prove the nonexistence of positive solutions for

a nonpositone system in a ball when the nonlinearities may have more than

one zero.

1. Introduction

Reaction-diffusion systems model many phenomena in biology, chemical reaction,
population dynamics etc. A typical example of these models is the boundary value
problem

−∆u(x) = λf(u(x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(1.1)

The fact that the reaction term f may be negative at the origin makes it very
challenging problem in showing the positivity of the solution. In the case of systems,
it is even more difficult since we have to the positivity of every component. In this
work we restrict our analysis to the system

−∆u(x) = λf(v(x)), x ∈ Ω

−∆v(x) = µg(u(x)), x ∈ Ω

u(x) = v(x) = 0, x ∈ ∂Ω,
(1.2)

where min(λ, µ) ≥ ε0 > 0, Ω = B(0, R) is a ball in RN with radius R, N ≥ 2, f
and g are smooth functions that grow at least linearly at infinity. When f and g
are a monotone nondecreasing nonlinearities and have only one zero, problem (1.2)
has been studied by Hai, Oruganti and Shivaji [6] in a ball, and by Hakimi [9] in
an annulus.

Let (u, v) be a positive solution of (1.2). Then u, v are radial, decreasing and
satisfy

−(rN−1u′)′ = λrN−1f(v), 0 < r < R

−(rN−1v′)′ = µrN−1g(u), 0 < r < R

u′(0) = v′(0) = 0

u(R) = v(R) = 0.

(1.3)
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In this note, we shall prove that the nonexistence result of positive solutions of (1.2)
remains valid when f and g have more than one zero (without loss of generality,
we assume that f and g have exactly three zeros) and are not strictly increasing
entirely [0,+∞); see [6, Theorem 1.1]. To be precise, we shall make the following
assumptions

(H1) f, g ∈ C1([0,+∞),R) such that f and g have three zeros α1 < α2 < α3 and
β1 < β2 < β3 respectively with f ′(αi) 6= 0, g′(βi) 6= 0 for all i ∈ {1, 2, 3}.
Moreover, f ′ ≥ 0 on [0, α1] ∪ [α3,+∞), g′ ≥ 0 on [0, β1] ∪ [β3,+∞) and
F (α3) < 0, G(β3) < 0 where F (x) =

∫ x
0
f(t)dt and G(x) =

∫ x
0
g(t)dt.

(H2) f(0) < 0 and g(0) < 0.
(H3) There exist two positive real numbers ai and bi, i = 1, 2 such that

f(z) ≥ a1z − b1, g(z) ≥ a2z − b2, ∀z ≥ 0.

2. Main result

Our main result is the following theorem.

Theorem 2.1. Assume that (H1)–(H3) are satisfied. Then there exists a positive
real number σ such that (1.2) has no positive solution for λµ > σ.

Remark. Existence result for positive solutions with superlinearities satisfying
(H1), (H2), λ = µ and λ small can be found in [4, 5]. For the single equation case,
see [1, 3, 7, 10] for existence results and [1, 2, 8] for nonexistence results.

To prove Theorem 2.1, we need the next three lemmas. We note that the proofs
of the first and the second lemma are analogous to those of [6, lemma 2.1, theorem
B]. On the other hand, the proof of the last is different from that of [6, Lemma 2.2].
This is so because our f and g have no constant sign in (α1,+∞) and (β1,+∞)
respectively. Here we use ideas adapted from Hai, Oruganti and Shivaji [6].

Let t1 ∈ (0, R). We have the following result.

Lemma 2.2. There exists a positive constant C such that for λµ large,

u(t1) + v(t1) ≤ C.

Proof. Let λ1 be the first eigenvalue of the −∆ with Dirichlet boundary condi-
tions. Multiplying the first equation in (1.3) by a positive eigenfunction, say φ
corresponding to λ1, and using (H3) we obtain

−
∫ R

0

(rN−1u′)′φdr ≥
∫ R

0

λ(a1v − b1)φrN−1dr;

that is, ∫ R

0

λ1ur
N−1φdr ≥

∫ R

0

λ(a1v − b1)φrN−1dr. (2.1)

Similarly, using the second equation in (1.3) and (H3), we obtain∫ R

0

λ1vr
N−1φdr ≥

∫ R

0

µ(a2u− b2)φrN−1dr. (2.2)

Combining (2.1) and (2.2), we obtain∫ R

0

[λ1 − λµ
a1a2

λ1
]vφrN−1dr ≥

∫ R

0

µ[−λa2b1
λ1
− b2]φrN−1dr.
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Now, if λµa1a2
2 ≥ λ2

1, then∫ R

0

µ[−λa2b1 − b2λ1]φrN−1dr ≤
∫ R

0

−λµ
2
a1a2vφr

N−1dr;

that is, ∫ R

0

a1a2

2
vφrN−1dr ≤

∫ R

0

[a2b1 +
b2λ1

ε0
]φrN−1dr, (2.3)

(because min(λ, µ) ≥ ε0). Similarly∫ R

0

a1a2

2
uφrN−1dr ≤

∫ R

0

[a1b2 +
b1λ1

ε0
]φrN−1dr. (2.4)

Adding (2.3) and (2.4), we obtain the inequality∫ R

0

(u+ v)φrN−1dr ≤ 2
a1a2

∫ R

0

[a1b2 +
b1λ1

ε0
+ a2b1 +

b2λ1

ε0
]φrN−1dr.

Then

(u+ v)(t1)
∫ t1

0

φrN−1dr ≤
∫ t1

0

(u+ v)φrN−1dr

≤
∫ R

0

(u+ v)φrN−1dr

≤ 2
a1a2

∫ R

0

[a1b2 +
b1λ1

ε0
+ a2b1 +

b2λ1

ε0
]φrN−1dr,

because u and v are decreasing. The proof is complete. �

Now, assume that there exists z ≥ 0 (z 6≡ 0) on I where I = (a, b), and a constant
γ such that

− (rN−1z′)′ ≥ γrN−1z , r ∈ I. (2.5)

Let λ1 = λ1(I) > 0 denote the principal eigenvalue of

−(rN−1ψ′)′ = λrN−1ψ, r ∈ (a, b)

ψ(a) = 0 = ψ(b),
(2.6)

where 0 < a < b ≤ 1.

Lemma 2.3. Let (2.5) hold. Then γ ≤ λ1(I).

Proof. Multiplying (2.5) by ψ (ψ > 0), an eigenfunction corresponding to the prin-
cipal eigenvalue λ1(I), and integrating by parts (twice) we obtain∫ b

a

[γ − λ1(I)]rN−1zψdr ≤ bN−1ψ′(b)z(b)− aN−1ψ′(a)z(a). (2.7)

But ψ′(b) < 0 and ψ′(a) > 0. Hence the right-hand side of (2.7) is less than or
equal to zero. Then γ ≤ λ1(I), and the proof is complete. �

Now, we define

t0 = t1 +
R− t1

3
, t2 = t1 +

2(R− t1)
3

.

Lemma 2.4. For λµ sufficiently large, u(t2) ≤ β3 or v(t2) ≤ α3.
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Proof. We argue by contradiction. Suppose that u(t2) > β3 and v(t2) > α3.
Case 1: u(t0) > ρ2 or v(t0) > ρ1, where ρ1 = α3+θ1

2 and ρ2 = β3+θ2
2 (θ1 and θ2 are

the greatest zeros of F and G respectively. If u(t0) > ρ2 then

−(rN−1v′)′ = µrN−1g(u) ≥ ε0rN−1g(ρ2) in J = (t1, t0)

and v(r) ≥ α3 on J̄ . Let ω be the unique solution of

−(rN−1ω′)′ = ε0r
N−1g(ρ2) in J

ω = α3 on ∂J.

Then by comparison arguments, v(r) ≥ ω(r) = ε0g(ρ2)ω0(r) +α3 in J̄ , where ω0 is
the unique (positive) solution of

−(rN−1ω′0)′ = rN−1 in J

ω0 = 0 on ∂J.

In particular, there exists α3 > α3 (f(α3) 6= 0) such that

v(t1 +
2(t0 − t1)

3
) ≥ ω(t1 +

2(t0 − t1)
3

) ≥ α3

in J∗ = (t1 + t0−t1
3 , t1 + 2(t0−t1)

3 ). Then

−(rN−1(u− β3)′)′ = λrN−1f(v)

≥ λrN−1f(α3)

≥ (
λf(α3)
C

)rN−1(u− β3) in J∗,

(where C is as in Lemma 2.2). Since u− β3 > 0 in J̄∗, it follows that

λf(α3)
C

≤ λ1(J∗), (2.8)

where λ1(J∗) is the principal eigenvalue of (2.6) (with (a, b) = J∗).
Next we consider

(rN−1(v − α3)′)′ = µrN−1g(u)

≥ µrN−1g(ρ2)

≥ (
µg(ρ2)
C

)rN−1(v − α3) in J.

Since v − α3 > 0 in J̄ , it follows that
µg(ρ2)
C

≤ λ1(J), (2.9)

where λ1(J) is the principal eigenvalue of (2.6) (with (a, b) = J). Combining (2.8)
and (2.9), we obtain

λµf(α3)g(ρ2)
C2

≤ λ1(J∗)λ1(J),

but f(α3), g(ρ2) and C are fixed positive constants. This is a contradiction for λµ
large. A similar contradiction can be reached for the case v(t0) > ρ1.
Case 2: u(t0) ≤ ρ2 and v(t0) ≤ ρ1. Then β3 < u ≤ ρ2 and α3 < v ≤ ρ1 in
J1 = [t0, t2]. Then by the mean value theorem, there exist c1, c2 ∈ (t0, t2) such that

|u′(c2)| ≤ 3ρ2

R− t1
, |v′(c1)| ≤ 3ρ1

R− t1
.
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Since −(rN−1u′)′ ≥ 0 on [t0, t2), it follows that

−rN−1u′(r) ≤ −cN−1
2 u′(c2) on J2 = [t0, c2);

thus

|u′(r)| ≤ cN−1
2

rN−1
|u′(c2)| ≤ (

t2
t0

)N−1 3ρ2

R− t1
in J2.

Similarly, we obtain

|v′(r)| ≤ (
t2
t0

)N−1 3ρ1

R− t1
in J3 = [t0, c1).

Hence there exists r0 ∈ [t0, R) such that

|u′(r0)| ≤ c̃, |v′(r0)| ≤ c̃,
where

c̃ =
3

R− t1
(
t2
t0

)N−1 max(ρ2, ρ1).

Now, define the energy function

E(r) = u′(r)v′(r) + λF (v(r)) + µG(u(r)).

Then

E′(r) = −2(N − 1)
r

u′(r)v′(r) ≤ 0,

and hence E ≥ 0 in [0, R], since E(R) = u′(R)v′(R) ≥ 0. However,

E(r0) ≤ c̃2 + λF (ρ1) + µG(ρ2), (2.10)

and F (ρ1) < 0 and G(ρ2) < 0. Hence E(r0) < 0 for λµ large which is a contradic-
tion. The proof is complete. �

Proof of Theorem 2.1. Assume λµ is large enough so that both lemmas 2.2, 2.4
hold. We take the case when u(t2) ≤ β3 (we assume that u(t2) ≤ β1, unless we can
choose t∗2 > t2 such that u(t∗2) ≤ β1). Then

−(rN−1v′)′ = µrN−1g(u) ≤ 0 in J3 = (t2, R)

v(t2) ≤ C, v(R) = 0,

hence, by comparison arguments, v(r) ≤ ω̃(r), where ω̃ is the solution of

−(rN−1ω̃′)′ = 0 in J3

ω̃(t2) = C, ω̃(R) = 0.

However, ω̃(r) = C
∫ R
r
s1−Nds/

∫ R
t2
s1−Nds decreases from C to 0 on [t2, R], hence

there exists r1 ∈ (t2, R) (independent of λµ) such that ω̃(r1) = α1
2 .

Hence v(r1) ≤ α1/2, and

−(rN−1(β3 − u)′)′ = −λrN−1f(v)

≥ −λrN−1f(
α1

2
)

≥ λ
(
− f(

α1

2
)
)
rN−1 β3 − u

β3
in J4 = (r1, R).

Since β3 − u > 0 in J̄4, we have

λK̃1

β3
≤ λ1(J4), (2.11)
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where K̃1 = −f(α1/2) and λ1(J4) is the principal eigenvalue of (2.6) (with (a, b) =
J4). Similarly, there exists r2 ∈ (r1, R) (independent of λµ) such that

v(r2) <
α1

2
.

Hence

−(rN−1u′)′ = µrN−1f(v) ≤ 0 in J5 = (r2, R)

u(r2) ≤ C, u(R) = 0,

then, by comparison arguments we obtain

u(r) ≤ ω1(r) =
C∫ R

r2
s1−Nds

∫ R

r

s1−Nds;

which satisfies

−(rN−1ω′1)′ = 0, in J5,

ω1(r2) = C, ω1(R) = 0.

Arguing as before there exists r3 ∈ (r2, R) (independent of λµ) such that

u(r3) ≤ ω1(r3) ≤ β1

2
< C.

Hence

−(rN−1(α3 − v)′)′ = −µrN−1g(u)

≥ −µrN−1g(
β1

2
)

≥ µ
(
− g(

β1

2
)
)
rN−1α3 − v

α3
on J6 = (r3, R).

Since α3 − v > 0 in J̄6, it follows that

µK̃2

α3
≤ λ1(J6), (2.12)

where K̃2 = −g(β1
2 ) and λ1(J6) is the principal eigenvalue of (2.6) (with (a, b) =

J6). Combining (2.11) and (2.12), we obtain

λµK̃1K̃2

α3β3
≤ λ1(J4)λ1(J6),

which is a contradiction to λµ being large.
A similar contradiction can be reached for the case v(t2) ≤ α3. Hence Theorem

2.1 is proven. �
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