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ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC
BEHAVIOR FOR A LINEAR COUPLED SYSTEM OF

MAXWELL AND HEAT EQUATIONS

CELENE BURIOL, MARCIO V. FERREIRA

Abstract. We study the asymptotic behavior in time of the solutions of a

coupled system of linear Maxwell equations with thermal effects. We have two
basic results. First, we prove the existence of a strong solution and obtain

the orthogonal decomposition of the electromagnetic field. Also, choosing a

suitable multiplier, we show that the total energy of the system decays expo-
nentially as t → +∞. The results obtained for this linear problem can serve

as a first attempt to study other nonlinear problems related to this subject.

1. Introduction

It is undisputed the growing interest in understanding phenomena involving pro-
cesses of reciprocal action between variations in the electromagnetic field in a region
and the temperature or even other situations that are related to electromagnetic
waves propagation (see [2, 4, 11, 14]).

In this work we consider a coupled system that describes interactions of the
electromagnetic field with the temperature variation governed by the linear model

εEt −∇×H + σ(x)E + γ∇θ = 0 in Ω× (0,+∞), (1.1)

µHt +∇×E = 0 in Ω× (0,+∞), (1.2)

θt − div(∇θ − λE) = 0 in Ω× (0,+∞), (1.3)

div(µH) = 0 in Ω× (0,+∞) (1.4)

with initial and boundary conditions

E(x, 0) = E0(x), H(x, 0) = H0(x) and θ(x, 0) = θ0(x) in Ω, (1.5)

η ×E = 0, η ·H = 0, θ = 0 on Γ× (0,+∞). (1.6)

Here Ω is a bounded, open, simply-connected domain of R3 with a regular boundary
Γ = ∂Ω. The functions E = E(x, t) = (E1(x, t), E2(x, t), E3(x, t)), H = H(x, t) =
(H1(x, t), H2(x, t), H3(x, t)) and θ = θ(x, t) (hereafter, a bold letter means a vector
or a vector function in R3) represent, respectively, the electric field, the magnetic
field and the difference of temperature between the actual state and a reference
temperature at location x ∈ Ω and time t. In (1.6), η is the outward normal on
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Γ. In (1.1)-(1.2), ∇× v indicates the curl of the vectorial function v and ε and µ
are positive constants characteristics of the medium considered called, respectively,
the permittivity and the magnetic permeability. σ = σ(x) is a real valued L∞(Ω)-
function representing the electric conductivity (see [7]), related with the Ohm’s law
and satisfies the hypothesis

σ0 ≤ σ(x) ≤ σ1, (1.7)

where σ0 and σ1 are positive constants. Moreover, γ and λ are coupling constants
which, for simplicity, we will assume positive.

The mathematical model (1.1)-(1.4) is motivated by considering the classical
Maxwell’s equations that are coupled to a heat equation, modeling an expect-
edly interaction of the electromagnetic field with the temperature variation in the
bounded domain Ω with perfectly conducting boundary Γ = ∂Ω. In fact, if E(x, t)
and H(x, t) denote the electric and magnetic fields in Ω, respectively, and D(x, t)
and B(x, t) are the electric displacement and magnetic induction in Ω, respectively,
then hold (see [7]) the Faraday’s law

∇×E = −Bt, (1.8)

the Ampere’s law
∇×H = J + Dt, (1.9)

where J represents the current density, and the Gauss’s law for magnetism

div B = 0. (1.10)

In our case, we assume the constitutive relations

D = εE, B = µH (1.11)

and Omh’s law
J = σE (1.12)

and take, for simplicity, ε and µ positive constants. The boundary condition (1.6)
is consistent with the fact that the boundary Γ is perfectly conducting, such that
the tangential component of the electric field must vanish.

The model for the propagation of heat turns into well-known equations for the
temperature θ (difference to a fixed constant reference temperature) and the heat
flux vector q,

θt + ρ div q = 0 (1.13)

and
q + κ∇θ = 0, (1.14)

where ρ and κ are positive constants. Equation (1.13) represents the assumed
Fourier law of heat conduction. Replacing (1.14) into (1.13) we obtain the parabolic
heat equation

θt − ρκ∆θ = 0. (1.15)

The system we consider is composed by the Maxwell’s equations (1.8)-(1.11) that
are coupled to a heat equation (1.15) modeling an expectedly interaction effect
through heat conduction. Indeed, we consider the problem (1.1)-(1.6). We point
out that the results obtained for this linear problem can serve as a first attempt
to study, for example, the stabilization of solutions of the nonlinear problems of
inductive heating or microwave heating (see [14, 15]).
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It is worth note that inductive and microwave heating processes are gaining
increasing acceptance in industry (metal hardening and preheating for forging op-
erations, for example) and in some fields of science, such as biomedical engineering
(see [6, 8, 9]). Some of these processes are modeled mathematically by nonlinear
systems of Maxwell’s equations coupled with the heat equation (see [8, 9, 15]). Such
systems have been studied by some authors not only with respect to the existence
of solution, like [14, 15], but also with respect to the regularity of the solution and
blow up properties. To the best of the authors knowledge, little is known about
the asymptotic behavior of the energy associated with such nonlinear models. The
cases analyzed, in general, are limited to those in one dimension (see [5, 10]). Hence
the importance of studying the behavior of the solution of a mathematical model,
even in the linear case, involving Maxwell’s equations under thermal effects, which
is presented in this paper.

Concerning the system (1.1)-(1.6), the Total Energy is given by

E(t) =
1
2

∫
Ω

(λε|E|2 + λµ|H|2 + γ|θ|2) dx,

where |E|2 =
∑3

j=1E
2
j and |H|2 =

∑3
j=1H

2
j . Formally, an easy calculation gives

us that the derivative of E(t) is given by

dE(t)
dt

= −λ
∫

Ω

σ(x)|E|2 dx− γ
∫

Ω

|∇θ|2 dx ≤ 0.

Therefore one may ask, “Does E(t)→ 0 as t→ +∞?”, and if this is the case, “Does
E(t) → 0 decay at a uniform rate as t → +∞?” This is not difficult to answer in
the case of Maxwell’s equations with the dissipation given by the conductivity σ
with hypothesis (1.7). In fact, this case lead to dissipative wave equations for the
electric field E and the magnetic field H, which have exponential decay. In our case
the uniform stabilization of system (1.1)-(1.6) requires a more detailed discussion,
which we present in this article.

This article is organized as follow. In section 2 we present some functional
spaces and basic results. In section 3 we obtain the strong global solution of system
(1.1)-(1.6). To obtain the exponential decay of the energy, in section 4 we obtain
a special decomposition of the electromagnetic field in suitable Sobolev spaces.
Finally, section 5 is devoted to study the exponential decay of the total energy
associated to system (1.1)-(1.6).

2. Basic definitions and preliminary results

In this section we introduce some standard functional spaces as defined in [1, 2, 3].
Hereafter the bracket (·, ·) and ‖ · ‖ will denote, respectively, the standard inner
product and norm of L2(Ω)3 or L2(Ω). Let

H(curl,Ω) = {v ∈ L2(Ω)3;∇× v ∈ L2(Ω)3},
H(div,Ω) = {v ∈ L2(Ω)3; div v ∈ L2(Ω)},

Hilbert spaces with their respective inner products

(u,v)H(curl,Ω) = (∇× u,∇× v) + (u,v) ,

(u,v)H(div,Ω) = (div u, div v) + (u,v) .
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Let H0(curl,Ω) be the closure of

{v ∈ H(curl,Ω) ∩ C1(Ω); v × η = 0 on Γ}

in H(curl,Ω) and let H0(div,Ω) be the closure of

{v ∈ H(div,Ω) ∩ C1(Ω); v · η = 0 on Γ}

in H(div,Ω).
To obtain the result of existence of solution we still need to define the following

spaces

H(div 0,Ω) = {v ∈ L2(Ω)3; div v = 0}

and the closed subspace of the Hilbert space L2(Ω)3

H0(div 0,Ω) = {v ∈ H(div 0,Ω); v · η = 0 on Γ} = H0(div,Ω) ∩H(div 0,Ω).

Lemma 2.1. Let P0 : L2(Ω)3 → H0(div 0,Ω) be the projection operator defined by

u→ P0u = u1,

where u = u1 + u2, with u1 ∈ H0(div 0,Ω) and u2 ∈ H0(div 0,Ω)⊥. We have the
following statements:

(i) P0(H(curl,Ω)) ⊂ H(curl,Ω) ∩H0(div 0,Ω);
(ii) H(curl,Ω) ∩H0(div 0,Ω) is dense in H0(div 0,Ω).

Proof. To prove (i) it is sufficient to show that P0(H(curl,Ω)) ⊂ H(curl,Ω). To
this we use a similar idea as in [11]. Let u ∈ H(curl,Ω). Setting Ψ ∈ D(Ω)3, we
have

〈∇ × (P0u),Ψ〉 = 〈P0u,∇×Ψ〉

=
∫

Ω

P0u · ∇ ×Ψ dx =
∫

Ω

u · ∇ ×Ψ dx

= 〈u,∇×Ψ〉 = 〈∇ × u,Ψ〉,

for all Ψ ∈ D(Ω)3, where we have used that ∇×Ψ ∈ H0(div 0,Ω).
The previous identity give us ∇× (P0u) = ∇× u ∈ L2(Ω)3. This proves (i).
(ii) By (i) we have

P0(D(Ω)3) ⊂ H(curl,Ω) ∩H0(div 0,Ω) ⊂ H0(div 0,Ω),

so to prove (ii) it is sufficient to prove that P0(D(Ω)3) is dense in H0(div 0,Ω).
Let v ∈ H0(div 0,Ω). So v ∈ L2(Ω)3, and there exist a sequence (Ψn) in D(Ω)3

such that

Ψn → v in L2(Ω)3.

By continuity of P0,

P0(Ψn)→ P0(v) = v in H0(div 0,Ω),

with P0(Ψn) ∈ P0(D(Ω)3). This concludes the proof of (ii) and Lemma 2.1. �
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3. Well-posedness of the problem

We rewrite system (1.1)-(1.3) in the form

dΦ(t)
dt

= AΦ(t), (3.1)

where Φ = (E,H, θ) and A is the linear operator

A(E,H, θ) =
(
−σε−1E + ε−1∇×H− γε−1∇θ,−µ−1∇×E,div(−λE +∇θ)

)
.

Let us consider the Hilbert space W = L2(Ω)3 × H0(div 0,Ω) × L2(Ω) with the
inner product given by

〈u, v〉W = ελ(u1,v1) + µλ(u2,v2) + γ(u3, v3),

and induced norm

‖u‖2W = ελ‖u1‖2 + µλ‖u2‖2 + γ‖u3‖2,
for any u = (u1,u2, u3) and v = (v1,v2, v3) ∈W .

The domain D(A) of A is the set D(A) = {(E,H, θ) ∈ H0(curl,Ω)×(H(curl,Ω)∩
H0(div 0,Ω)) × H1

0 (Ω);−λE + ∇θ ∈ H(div,Ω)}, where H1
0 (Ω) denotes the usual

Sobolev space.

Remark 3.1. It is easy to see that

D(Ω)3 × P0(D(Ω)3)×D(Ω) ⊂ D(A) ⊂ L2(Ω)3 ×H0(div 0,Ω)×L2(Ω) = W, (3.2)

where P0 is the orthogonal projection defined in Lemma 2.1.

Now we prove that A is the infinitesimal generator of a C0-semigroup of contrac-
tions on W . The density of D(A) in W follows by (3.2) and item (ii) of Lemma
2.1.

Lemma 3.2. A is a dissipative operator on W .

Proof. Let U = (E,H, θ) ∈ D(A). So by Gauss and Green’s identities it follows
that

〈AU,U〉W = λ(−σ(x)E +∇×H− γ∇θ,E) + λ(−∇×E,H)

+ γ(div(∇θ − λE), θ)

= −λ
∫

Ω

σ(x)|E|2 dx− γ
∫

Ω

|∇θ|2 dx ≤ 0.

(3.3)

�

Lemma 3.3. The range R(I −A) of the operator I −A is W .

Proof. Let w = (f ,g, h) ∈W and we have to prove that there exists U = (E,H, θ)
in D(A) such that (I −A)U = w; that is,

E + σ(x)ε−1E− ε−1∇×H + γε−1∇θ = f

H + µ−1∇×E = g

θ − div(−λE +∇θ) = h.

(3.4)

Replacing the second line in the first line of system (3.4) we obtain the equivalent
system

(1 + σ(x)ε−1)E + ε−1µ−1∇× (∇×E) + γε−1∇θ = f + ε−1∇× g

θ − div(−λE +∇θ) = h.
(3.5)
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To solve (3.5) we consider the bilinear form a : [H0(curl,Ω)×H1
0 (Ω)]2 → R defined

by

a((E, θ), (Φ, ψ)) = λ(E,Φ) + λε−1(σ(x)E,Φ) + λε−1µ−1(∇×E,∇× Φ)

+ λγε−1(∇θ,Φ) + γε−1(θ, ψ)− γε−1(λE−∇θ,∇ψ)

and the linear form F : H0(curl,Ω)×H1
0 (Ω)→ R defined by

F (Φ, ψ) = λ(f ,Φ) + λε−1(g,∇× Φ) + γε−1(h, ψ).

The bilinear form a is coercive, because

a((E, θ), (E, θ))

= λ‖E‖2 + λε−1‖σ1/2(x)E‖2 + λε−1µ−1‖∇ ×E‖2 + γε−1‖θ‖2H1
0 (Ω)

≥ C‖(E, θ)‖2H0(curl,Ω)×H1
0 (Ω).

The bilinear form a is also continuous. Indeed, Cauchy-Schwarz’s inequality implies

|a((E, θ), (Φ, ψ))|
≤ λ(1 + σ1ε

−1)‖E‖‖Φ‖+ λε−1µ−1‖∇ ×E‖‖∇ × Φ‖+ λγε−1‖∇θ‖‖Φ‖
+ γε−1‖θ‖‖ψ‖+ γλε−1‖E‖‖∇ψ‖+ γε−1‖∇θ‖‖∇ψ‖
≤ λ(1 + σ1ε

−1 + ε−1µ−1)(‖E‖H0(curl,Ω)‖Φ‖H0(curl,Ω))

+ γλε−1‖θ‖H1
0 (Ω)‖Φ‖H0(curl,Ω) + γε−1‖θ‖H1

0 (Ω)‖ψ‖H1
0 (Ω)

+ γλε−1‖E‖H0(curl,Ω)‖ψ‖H1
0 (Ω) + γε−1‖θ‖H1

0 (Ω)‖ψ‖H1
0 (Ω)

≤ C
(
‖E‖2H0(curl,Ω) + ‖θ‖2H1

0 (Ω)

)1/2(
‖Φ‖2H0(curl,Ω) + ‖ψ‖2H1

0 (Ω)

)1/2

= C‖(E, θ)‖H0(curl,Ω)×H1
0 (Ω)‖(Φ, ψ)‖H0(curl,Ω)×H1

0 (Ω).

To prove that F is continuous, we observe that

|F (Φ, ψ)| ≤ λ‖f‖‖Φ‖+ λε−1‖g‖‖∇ × Φ‖+ γε−1‖h‖‖ψ‖
≤ λ(1 + ε−1)(‖f‖+ ‖g‖)‖Φ‖H0(curl,Ω) + γε−1‖h‖‖ψ‖H1

0 (Ω)

≤
[
λ(1 + ε−1)(‖f‖+ ‖g‖) + γε−1‖h‖

][
‖Φ‖2H0(curl,Ω) + ‖ψ‖2H1

0 (Ω)

]1/2

≤ C‖(Φ, ψ)‖H0(curl,Ω)×H1
0 (Ω).

By Lax-Milgram’s Lemma, there exists a unique (E, θ) ∈ H0(curl,Ω) × H1
0 (Ω)

such that

a((E, θ), (Φ, ψ)) = F (Φ, ψ), ∀(Φ, ψ) ∈ H0(curl,Ω)×H1
0 (Ω). (3.6)

Let
H = g − µ−1∇×E. (3.7)

So H ∈ H0(div 0,Ω), because g ∈ H0(div 0,Ω) and ∇ × E ∈ H0(div 0,Ω) (see [3,
page 35]).

First we consider Φ ∈ D(Ω)3 and ψ = 0 in (3.6). We get

(1 + σ(x)ε−1)E + ε−1µ−1∇× (∇×E) + γε−1∇θ = f + ε−1∇× g in D′(Ω)3;

that is,
(1 + σε−1)E− ε−1∇×H + γε−1∇θ = f in D′(Ω)3. (3.8)
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This proves H ∈ H(curl,Ω) and, hence, H ∈ H(curl,Ω)∩H0(div 0,Ω). Now, taking
Φ = 0 and ψ ∈ D(Ω) in (3.6) we obtain

θ + div(λE−∇θ) = h in D′(Ω) (3.9)

and this proves that (λE − ∇θ) ∈ H(div,Ω). By (3.7)-(3.9) we have (E,H, θ) ∈
D(A) and solves (3.4). �

Using the results before we have the following theorem (see [12]).

Theorem 3.4. Let (E0,H0, θ0) ∈ D(A). Then problem (1.1)-(1.6) admits a unique
solution (E,H, θ) such that

E ∈ C([0,+∞), H0(curl,Ω)) ∩ C1([0,+∞), L2(Ω)3),

H ∈ C([0,+∞), H(curl,Ω) ∩H0(div 0,Ω)) ∩ C1([0,+∞), H0(div 0,Ω)),

θ ∈ C([0,+∞), H1
0 (Ω)) ∩ C1([0,+∞), L2(Ω)),

λE−∇θ ∈ C([0,+∞), H(div,Ω)).

To obtain the stability of solution of system (1.1)-(1.6) we need to a more regular
solution. To this, we consider the spaces

H1(Ω) = H(curl 0,Ω) ∩H0(div 0,Ω),

where H(curl 0,Ω) = {u ∈ L2(Ω)3 : ∇× u = 0}, and

VH = L2(Ω)3 ×H1(Ω)⊥ × L2(Ω),

where H1(Ω)⊥ is the orthogonal complement of the space H1(Ω) in L2(Ω)3.
We have the following existence result on strong solutions of system (1.1)-(1.6).

Theorem 3.5. Let (E0,H0, θ0) ∈ D(A) ∩ VH . Then the solution (E,H, θ) of
(1.1)-(1.6) obtained in Theorem 3.4 satisfies (E,H, θ) ∈ D(A) ∩ VH for all t > 0.

Proof. It is sufficient to prove that H ∈ H1(Ω)⊥. To this, we consider h ∈ H1(Ω).
From (1.2) we obtain ∫

Ω

µHt · h dx+
∫

Ω

∇×E · h dx = 0. (3.10)

Green’s formula gives us∫
Ω

∇×E · h dx =
∫

Ω

E · (∇× h) dx+
∫

Γ

(η × E) · h dΓ = 0.

The above identity and (3.10) give us (µH,h) = (µH0,h) = 0. So H ∈ H1(Ω)⊥. �

4. Orthogonal decomposition

Using the standard “Hodge” orthogonal decomposition of L2(Ω)3 (see [1, 3, 13])
we can write

µH = ∇q + h1 +∇×Ψ, (4.1)

where q ∈ H1(Ω), h1 ∈ H1(Ω), Ψ ∈ H1(Ω)3 ∩H0(curl,Ω) ∩H(div 0,Ω) and
∫

Γ
Ψ ·

η dΓ = 0.
Since H ∈ H1(Ω)⊥ ∩H0(div 0,Ω), we have h1 = 0 and ∇q = 0 (see [1]), so

µH = ∇×Ψ. (4.2)
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Remark 4.1. It is well know (see [1, 3]) that for all v ∈ H(div 0,Ω) ∩H0(curl,Ω)
is valid the inequality

‖v‖ ≤ C‖∇ × v‖,
where C is a real positive constant. In our case, we obtain

‖Ψ‖ ≤ C‖∇ ×Ψ‖ = C‖µH‖. (4.3)

Now, we will study the L2(Ω)3 decomposition of the electric field E. In fact, we
have (see [1])

E = −∇p+ B, (4.4)

where p ∈ H1
0 (Ω) and B ∈ H(div 0,Ω).

From equation (1.2) and decomposition (4.2) of H we obtain

0 = µHt +∇×E = ∇×Ψt +∇×E = ∇× (Ψt +∇p+ E). (4.5)

Also,
div(Ψt +∇p+ E) = div(Ψt) + div(B) = 0, (4.6)

because Ψ,B ∈ H(div 0,Ω).
The last two equalities give us

Ψt +∇p+ E ∈ H(curl 0,Ω) ∩H(div 0,Ω).

Now, we observe that Ψt ∈ H0(curl,Ω), E ∈ H0(curl,Ω) and, since p ∈ H1
0 (Ω),

∇p ∈ H0(curl 0,Ω) := H(curl 0,Ω) ∩H0(curl,Ω) (see [3]). So

Ψt +∇p+ E ∈ H2(Ω), (4.7)

where H2(Ω) = H0(curl 0,Ω) ∩H(div 0,Ω). From (4.7) we can write

E = −∇p−Ψt + h2, (4.8)

where h2 ∈ H2(Ω).
Finally, we can see that

‖E‖2 = ‖∇p‖2 + ‖Ψt‖2 + ‖h2‖2, (4.9)

because ∇p, Ψt and h2 are two by two orthogonal vectors in L2(Ω)3 (see [13]).

5. Exponential decay

In this section we obtain the exponential decay of the solution of system (1.1)-
(1.6) obtained in section 3. To this, we use a suitable Lyapunov functional and
suppose that σ satisfies hypothesis (1.7). First we present some technical lemmas
and at the end of the section we prove the main result of this paper.

Lemma 5.1. Suppose (E0,H0, θ0) ∈ D(A)∩VH and let (E,H, θ) solution of system
(1.1)-(1.6) obtained in Theorem 3.5. Let

E(t) ≡ 1
2

∫
Ω

(λε|E|2 + λµ|H|2 + γ|θ|2) dx.

Then
dE(t)
dt

= −λ
∫

Ω

σ(x)|E|2 dx− γ
∫

Ω

|∇θ|2 dx ≤ 0.

The proof of the above lemma follows directly from the system (1.1)-(1.6) using
straightforward calculation.
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Lemma 5.2. Let G(t) = E(t)− δF (t), where E(t) is defined in Lemma 5.1,

F (t) = ε

∫
Ω

E ·Ψ dx,

where µH = ∇×Ψ, and δ is a positive parameter to be specified later. We have
(i)

dF (t)
dt

= µ

∫
Ω

|H|2 dx− ε
∫

Ω

|Ψt|2 dx−
∫

Ω

σ(x)E ·Ψ dx;

(ii) 1
2E(t) ≤ G(t) ≤ 2E(t).

Proof. To prove (i), from (1.1) and (4.8), we observe that

dF (t)
dt

= ε

∫
Ω

E ·Ψt dx+ ε

∫
Ω

Et ·Ψ dx

= ε

∫
Ω

(−∇p−Ψt + h2) ·Ψt dx+
∫

Ω

(∇×H− σ(x)E− γ∇θ) ·Ψ dx

= −ε
∫

Ω

|Ψt|2 dx+
∫

Ω

∇×H ·Ψ dx−
∫

Ω

σ(x)E ·Ψ dx− γ
∫

Ω

∇θ ·Ψ dx

= −ε
∫

Ω

|Ψt|2 dx+
∫

Ω

H · ∇ ×Ψ dx−
∫

Ω

σ(x)E ·Ψ dx+ γ

∫
Ω

θ divΨ dx

= −ε
∫

Ω

|Ψt|2 dx+ µ

∫
Ω

|H|2 dx−
∫

Ω

σ(x)E ·Ψ dx,

because Ψ ∈ H0(curl,Ω) ∩H(div 0,Ω), p ∈ H1
0 (Ω) and h2 ∈ H2(Ω).

To prove (ii), we use the Cauchy-Schwarz’s inequality and (4.3):

|G(t)− E(t)| = δ|F (t)| ≤ δε‖E‖‖Ψ‖

≤ δε

2
(
‖E‖2 + ‖Ψ‖2

)
≤ δε

2
(
‖E‖2 + C2‖µH‖2

)
=

δ

2λ

(∫
Ω

λε|E|2 dx+ C2µε

∫
Ω

λµ|H|2 dx
)

≤ δC1E(t),

where

C1 = max
{ 1
λ
,
C2µε

λ

}
.

The conclusion follows by choosing δ sufficiently small such that

δC1 ≤
1
2
. (5.1)

�

Now, we prove the main result of this paper.

Theorem 5.3. Suppose (E0,H0, θ0) ∈ D(A) ∩ VH and σ satisfies (1.7). Then the
total energy E(t) of problem (1.1)-(1.6), defined in Lemma 5.1, satisfies

E(t) ≤ βE(0) exp(−αt),

where β and α are positive constants.
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Proof. From Lemmas 5.1 and 5.2 we have

dG(t)
dt

= −λ
∫

Ω

σ(x)|E|2 dx− γ
∫

Ω

|∇θ|2 dx

− δ
∫

Ω

µ|H|2 dx+ δ

∫
Ω

σ(x)E ·Ψ dx+ δε

∫
Ω

|Ψt|2 dx

and from (1.7), (4.3), (4.9) and Poincaré Inequality,

dG(t)
dt

≤ −σ0

ε

∫
Ω

λε|E|2 dx− C0

∫
Ω

γ|θ|2 dx− δ

λ

∫
Ω

λµ|H|2 dx (5.2)

+
δ

2

(
σ2

1

κ
‖E‖2 + C2κ‖µH‖2

)
+ δε

∫
Ω

|E|2 dx (5.3)

= −
[σ0

ε
−
( σ2

1

2κελ
+

1
λ

)
δ
] ∫

Ω

λε|E|2 dx− C0

∫
Ω

γ|θ|2 dx (5.4)

− δ
( 1
λ
− 1

2λ
C2µκ

)∫
Ω

λµ|H|2 dx. (5.5)

We choose κ > 0 such that

C2 ≡
1
λ
− 1

2λ
C2µκ > 0

and δ > 0 small satisfying (5.1) and

C3 ≡
σ0

ε
−
( σ2

1

2κελ
+

1
λ

)
δ > 0.

Thus
dG(t)
dt

≤ −C3

∫
Ω

λε|E|2 dx− δC2

∫
Ω

λµ|H|2 dx− C0

∫
Ω

γ|θ|2 dx ≤ −C4E(t), (5.6)

where C4 = min{2C3, 2δC2, 2C0}. From Lemma 5.2 and the above inequality we
obtain

dG(t)
dt

≤ −C4

2
G(t) and G(t) ≤ G(0) exp(−C4

2
t).

Finally, we conclude that

E(t) ≤ 2G(t) ≤ 4E(0) exp(−C4

2
t).

�
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