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EXISTENCE, UNIQUENESS AND STABILITY OF TRAVELING
WAVEFRONTS FOR NONLOCAL DISPERSAL EQUATIONS
WITH CONVOLUTION TYPE BISTABLE NONLINEARITY

GUO-BAO ZHANG, RUYUN MA

Abstract. This article concerns the bistable traveling wavefronts of a nonlo-
cal dispersal equation with convolution type bistable nonlinearity. Applying a

homotopy method, we establish the existence of traveling wavefronts. If the

wave speed does not vanish, i.e. c 6= 0, then the uniqueness (up to translation)
and the globally asymptotical stability of traveling wavefronts are proved by

the comparison principle and squeezing technique.

1. Introduction

In this article, we consider the traveling wave solutions of the delayed nonlocal
dispersal equation

∂u

∂t
= J ∗ u− u− du+

∫
R
K(y)b(u(x− y, t− τ))dy, (1.1)

in which x ∈ R, t > 0. Equation (1.1) represents the dynamical population model
of a single-species with age-structure in ecology [14, 35, 36]. Here u(x, t) is the
density of population at location x and at time t, d > 0 is the death rate, and b(·)
is the birth function. The parameter τ > 0 is the maturation time, we call it the
time-delay. J ∗ u− u is a nonlocal dispersal operator, which can be interpreted as
the net rate of increase due to dispersal, where, J(x) is a non-negative, unit and
symmetric kernel, and J ∗ u is a spatial convolution defined by

(J ∗ u)(x, t) =
∫

R
J(x− y)u(y, t)dy.

As stated in [3, 12, 15], if J(x− y) is considered to be the probability distribution
of jumping from location y to location x, then (J ∗u)(x, t) =

∫
R J(x−y)u(y, t)dy is

the rate at which individuals are arriving to location x from all other places, while,
the term −u(x, t) = −

∫
R J(x − y)u(x, t)dy is the rate at which they are leaving

location x to travel to all other places.
Throughout this article, we assume that the kernel functions J ∈ C1(R) and

K ∈ C2(R), and the birth function b ∈ C1(R+,R+) satisfy:
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(H1) J(x) = J(−x) ≥ 0, K(x) = K(−x) ≥ 0 for x ∈ R.
(H2)

∫
R J(x)dx = 1,

∫
R K(x)dx = 1.

(H3)
∫

R{|x|J(x) + |J ′(x)|}dx < +∞,
∫

R{|x|K(x) + |K ′(x)|+ |K ′′(x)|}dx < +∞.
(H4) b(0) = dα− b(α) = d− b(1) = 0 for some 0 < α < 1.
(H5) b′(u) > 0 for u ∈ (0, 1), d > max{b′(0), b′(1)}.
(H6) b′(α) > d.
A specific function b(u) = pu2e−βu with p > 0 and β > 0, which has been

widely used in the mathematical biology literature, satisfies the above conditions
for a wide range of parameters p and β. From (H4)–(H6), we can see that 0, α
and 1 are constant equilibria of (1.1), and the equilibria 0 and 1 are stable and α
is unstable for the spatially homogeneous equation associated with (1.1). We are
interested in bistable waves of nonlocal dispersal equation (1.1), i.e., traveling wave
solutions connecting the two stable equilibria 0 and 1. A traveling wave solution
of (1.1) always refers to a pair (U, c), where U = U(ξ) is a function on R and c is
a constant, such that u(x, t) := U(ξ), ξ = x+ ct is a solution of (1.1) and satisfies
the following asymptotic boundary conditions

U(−∞) = e1, U(+∞) = e2,

where e1 and e2 are two equilibria of (1.1). Since we are interested in traveling waves
connecting 0 and 1, in this paper, e1 = 0 and e2 = 1. We call c the traveling wave
speed and U the profile of the wave solution. If c = 0, we say U is a standing wave.
Moreover, If U(ξ) is monotone in ξ ∈ R, then it is called a traveling wavefront.

For some special cases of the equation (1.1), many well-known results have been
obtained. Some of them can be summarized as follows:

(i) If K(x) = δ(x), τ = 0 and −du+ b(u) =: f(u), then (1.1) reduces to
∂u

∂t
= J ∗ u− u+ f(u). (1.2)

Equation (1.2) has been extensively studied recently due to its wide applications
in material science [1], population dynamics [3, 7, 8], epidemiology [24] and neural
network [41]. Many excellent results about traveling wave solutions of (1.2) are
obtained, see Bates et al. [1], Chen [4] and Yajisita [34] for the bistable equations;
Coville et al. [7, 8], Carr and Chmaj [2], Pan et al. [27, 28] for monostable equations;
Zhang et al. [37, 38] for degenerate monostable equations and references cited
therein.

(ii) If K(x) = δ(x), then (1.1) becomes
∂u

∂t
= J ∗ u− u− du+ b(u(x, t− τ)). (1.3)

Pan et al. [28] considered the equation (1.3) with monostable nonlinearity. They
established the existence and asymptotic behavior of traveling wavefronts by con-
structing proper upper and lower solutions, and proved the asymptotic stability
and uniqueness of traveling wavefronts by applying the idea of squeezing technique.
In particular, when b(u) = αe−γτu(x, t − τ) and du is replaced by βu2, Li and
Lin [17] gave the existence of traveling wavefronts in view of a pair of admissible
upper-lower solutions. Recently, Zhang and Li [39] further proved that the traveling
wavefronts with large speed are globally exponentially stable by using the weighted
energy method together with the comparison principle.

Note that the birth rate function b(·) in (1.3) is considered to be local. In ecolog-
ical context, there is no real justification for assuming that the birth of individuals
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of the population is a local behavior (see [13, 21, 25, 26, 32, 42]). The species’
activities always involve the whole space and they move and marry in all region
but not isolated in one spot. For that reason, many people begin to generalize the
equation (1.3) by incorporating nonlocal effects in birth rate function. Inspired by
the nonlocal reaction-diffusion model [31, 16], by introducing the nonlocal dispersal
into an age-structured population model

∂u

∂t
+
∂u

∂a
= D(a)

∂2u

∂x2
− d(a)u,

and integrating along characteristics, Zhang [36] and Yu and Yuan [35] indepen-
dently derived the model (1.1), which has a nonlocal nonlinearity term. Although
the nonlocal dispersal operator J ∗u−u lacks compactness and regularity, it main-
tains a maximum principle, which consequently enables a comparison principle, see
[12]. Zhang [36] combined Schauder’s fixed point theorem with upper-lower solu-
tions to investigate the existence of traveling wave solutions when the nonlinearity
function is monostable and crossing-monostable. Very recently, Zhang and Ma [40]
further proved that the minimal wave speed of traveling waves is also the spreading
speed for the solutions of (1.1) with initial functions having compact supports. In
[14], Huang et al. proved that the planar traveling waves of (1.1) with monostable
nonlinearity are globally asymptotically stable. We should point out that the above
authors only considered (1.1) with monostable nonlinearity. When the nonlinearity
is of bistable type, the existence, uniqueness and stability of traveling wavefronts of
(1.1) remain an open problem. As we know, such a problem is also very significant,
see [20] for the corresponding local diffusion case. Hence, the aim of this paper is
to solve this problem.

In view of the existence of traveling wavefronts for both the nonlocal monos-
table equation (1.1) and the bistable non-local delayed diffusion equation [20], it is
then expected that the nonlocal bistable equation (1.1) supports the existence of
traveling wavefronts. Typically for bistable dynamics, the existence of a traveling
wave solution is proven by a homotopy method or vanishing viscosity techniques
[1, 6, 9, 18], or a recursive method for abstract monotone dynamical systems [34],
or by taking the asymptotical limit, as t → +∞, of a solution to (1.1) with an
appropriate initial data [4]. In this paper, we shall take the first method to prove
the existence of traveling wavefronts of (1.1). Although our method is based on the
work of [1, 6, 18], the technical details are quite different, due to the combination of
nonlocal dispersal and nonlocal nonlinearity. In order to study the uniqueness and
asymptotic stability of traveling wavefronts with nonzero speed, we shall construct
various pairs of super- and subsolutions and utilize the comparison principle and
the squeezing technique, which is introduced in [4, 10], and applied in many other
papers [19, 20, 30, 33].

Now, we state the main result as follows.

Theorem 1.1 (Existence). Assume that (H1)–(H6) hold. Then there exists a non-
decreasing traveling wavefront (U, c) to (1.1) connecting two equilibria 0 and 1.

Theorem 1.2 (Uniqueness). Assume that (H1)–(H6) hold. Let (U, c) be a traveling
wavefront with c 6= 0 as given in Theorem 1.1. Then the traveling wavefronts of
(1.1) are unique up to a translation in the sense that for any traveling wavefront
Ũ(x+ c̃t) with 0 ≤ Ũ(ξ) ≤ 1, ξ ∈ R, we have c̃ = c and Ũ(·) = U(·+ ξ0) for some
ξ0 ∈ R.
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Theorem 1.3 (Stability). Assume that (H1)–(H6) hold. Let (U, c) be a traveling
wavefront with c 6= 0 as given in Theorem 1.1. Then U(x + ct) is globally asymp-
totically stable with phase shift in the sense that there exists k > 0 such that for
any ϕ ∈ [0, 1]C with

lim sup
x→−∞

max
s∈[−τ,0]

ϕ(x, s) < α < lim inf
x→+∞

min
s∈[−τ,0]

ϕ(x, s),

the solution u(x, t;ϕ) of (1.1) with initial data ϕ satisfies

|u(x, t;ϕ)− U(x+ ct+ ξ0)| ≤Me−kt, x ∈ R, t ≥ 0,

for some M = M(ϕ) > 0 and ξ0 = ξ0(ϕ) ∈ R.

We remark that by the continuity of b and the assumption (H5), we can obtain
that du > b(u) for u ∈ (0, α) and du < b(u) for u ∈ (α, 1). Moreover, we can make
an extension by choosing a positive constant δ0 > 0 such that du < b(u) < 0 for
u ∈ [−δ0, 0] and du > b(u) > 0 for u ∈ (1, 1+δ0]. We can also assume that b′(u) ≥ 0
for u ∈ [−δ0, 1+δ0]. By the first part of (H5), this can be achieved by modifying (if
necessary) the definition of b outside the closed interval [0, 1] to a new C1-smooth
function and applying our results to the new function b.

The rest of this paper is organized as follows. In Section 2, we establish the
existence of traveling wavefronts of (1.1). In Section 3, we give some results on the
corresponding initial value problem of (1.1). In Sections 4 and 5, the uniqueness
(up to translation) and stability of traveling wavefronts are proved by applying the
elementary super- and subsolution comparison method and squeezing technique.

2. Existence of traveling wavefronts

Substituting U(x+ct) into (1.1) and denoting x+ct as ξ, we obtain the following
wave profile equation

cU ′ = J ∗ U − U − dU +
∫

R
K(y)b(U(ξ − y − cτ))dy (2.1)

with the boundary conditions

U(−∞) = 0, U(+∞) = 1. (2.2)

In this section, we shall use a homotopy method, i.e., continuation method to
prove the existence of traveling wavefronts of (1.1). The main ideas of this method
can be described in the following three steps:
Step 1. We embed (2.1) into a family of equations continuously parameterized by
θ ∈ [0, 1] as follows:

θ(J ∗ U − U) + (1− θ)U ′′ − cU ′ − dU +
∫

R
K(y)b(U(ξ − y − cτ))dy = 0. (2.3)

When θ = 0, the equation (2.3) is already known to admit a unique (up to trans-
lation) traveling wavefronts (see [20]), and when θ = 1, the equation (2.3) becomes
(2.1).
Step 2. Applying a continuation argument given by the Implicit Function Theo-
rem, we pass in increments from 0 to 1 in θ, obtaining existence for all values in
the process.
Step 3. We extract a converging sequence when θ goes to 1.
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Lemma 2.1. For θ = 0, (2.3) has a unique non-decreasing solution U satisfying
0 < U ′(ξ) ≤ b(1)

2
√
d

for all ξ ∈ R.

The proof can be found in [20, Theorem 4.3, Lemma 2.5] and so is omitted.

Lemma 2.2. Let θ ∈ (0, 1) and U satisfy (2.3) and (2.2). Then U(ξ) ∈ (0, 1) for
all ξ ∈ R.

Proof. Firstly, it is clear that any L∞ solution of (2.3) is of class C3 . If U reaches
its global maximum at ξ0 with U(ξ0) ≥ 1, then U ′(ξ0) = 0, U ′′(ξ0) ≤ 0 and
U(ξ) ≤ U(ξ0) for all ξ ∈ R, which together with

∫
R J(x)dx = 1 and

∫
R K(x)dx = 1

imply that

(J ∗ U − U)(ξ0) ≤ 0, (2.4)∫
R
K(y)b(U(ξ0 − y − cτ))dy ≤

∫
R
K(y)b(U(ξ0))dy = b(U(ξ0)) ≤ dU(ξ0), (2.5)

and by (2.3), one has

θ(J ∗ U − U)(ξ0)− dU(ξ0) +
∫

R
K(y)b(U(ξ0 − y − cτ))dy ≥ 0. (2.6)

Taking into account (2.5), we further get from (2.6) that

θ(J ∗ U − U)(ξ0) ≥ 0. (2.7)

Combining (2.4) and (2.7), we obtain that (J ∗ U − U)(ξ0) = 0. That is,

(J ∗ U − U)(ξ0) =
∫

R
J(y − ξ0)(U(y)− U(ξ0))dy = 0,

which implies that U(y) = U(ξ0) for all y ∈ ξ0 + supp(J). By an iteration of this
process, one can show that U(y) ≡ U(ξ0) for all y ∈ R, which contradicts to the
fact that U is not a constant. Hence, we obtain that U(ξ) < 1 for all ξ ∈ R. A
similar argument shows that U(ξ) > 0 for all ξ ∈ R. The proof is complete. �

Now assume that (U0, c0) is a solution of (2.3) and (2.2) for some θ0 ∈ [0, 1) and
that U ′0(ξ) > 0 for all ξ ∈ R. We shall apply the Implicit Function Theorem to
obtain a solution for θ > θ0.

We take perturbations in the space:

X0 = {uniformly continuous functions on R which vanish at ±∞} .

Let L = L(U0, c0; θ0) be the linear operator defined in X0 by

Lv = θ0(J ∗ v − v) + (1− θ0)v′′ − c0v′ − dv

+
∫

R
K(y)b′(U0(· − y − c0τ))v(· − y − c0τ)dy,

where

dom(L) = X1 ≡ {v ∈ X0 : v′′ ∈ X0}.

Lemma 2.3. L has 0 as a simple eigenvalue.

Proof. It is easy to see that LU ′0 = 0, which means that 0 is an eigenvalue of L with
eigenfunction U ′0. Thus, we need only to prove the simplicity of the eigenvalue 0.
Suppose that φ is another eigenfunction with eigenvalue 0 and assume also that φ
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is positive at some points. We shall show that U ′0 and φ are linearly dependent by
considering the family of eigenfunctions

φβ = U ′0 + βφ, β ∈ R.
Let

β̄ = sup{β < 0 : φβ(ξ) < 0 for some ξ ∈ R}.

Then β̄ is well defined since φ is positive at some points and U ′0 > 0 on R. For β < β̄,
let ξβ be a point where φβ achieves its negative minimum. Thus, (J ∗φβ−φβ)(ξβ) ≥
0 and φ′′β(ξβ) ≥ 0 and φ′β(ξβ) = 0. In fact, (J ∗ φβ − φβ)(ξβ) > 0, since otherwise
φβ becomes a constant. It then follows that

θ0(J ∗ φβ − φβ)(ξβ) + (1− θ0)φ′′β(ξβ)− dφβ(ξβ)

+
∫

R
K(y)b′(U0(ξβ − y − c0τ))φβ(ξβ − y − c0τ)dy = 0.

Hence,

0 ≥ dφβ(ξβ) ≥
∫

R
K(y)b′(U0(ξβ − y − c0τ))φβ(ξβ − y − c0τ)dy

≥ φβ(ξβ)
∫

R
K(y)b′(U0(ξβ − y − c0τ))dy,

which implies ∫
R
K(y)b′(U0(ξβ − y − c0τ))dy ≥ d. (2.8)

It is easy to verify that {ξβ}β<β̄ is bounded. Indeed, suppose that there exists a
sequence {βn} with βn < β̄ such that |ξβn

| → +∞ as n → ∞. Then without loss
of generality, we assume that ξβn → +∞. By Lebesgue’s dominated convergence
theorem, we obtain from (2.8) that b′(1) ≥ d, which contradicts to the assumption
(H5).

Thus, we choose {βn}n∈N, a sequence which converges to β̄. Let {ξβn
}n∈N be the

corresponding sequence of negative minimum. Since {ξβn
}n∈N is bounded sequence

in R, we can therefore extract a converging sub-sequence {ξβnk
}k∈N such that ξβnk

converges to some ξ̄. Observe that φβ̄(ξ̄) = 0 ≤ φβ̄(ξ) for all ξ ∈ R and φ′
β̄
(ξ̄) = 0.

Thus, we obtain at ξ̄ that

(J ∗ φβ̄ − φβ̄)(ξ̄) ≥ 0, φ′′β̄(ξ̄) ≥ 0,

and ∫
R
K(y)b′(U0(ξ̄ − y − c0τ))φβ̄(ξ̄ − y − c0τ)dy

≥ φβ̄(ξ̄)
∫

R
K(y)b′(U0(ξ̄ − y − c0τ))dy = 0.

We also have

θ0(J ∗ φβ̄ − φβ̄)(ξ̄) + (1− θ0)φ′′β̄(ξ̄)

+
∫

R
K(y)b′(U0(ξ̄ − y − c0τ))φβ̄(ξ̄ − y − c0τ)dy = 0.

It then follows that

(J ∗ φβ̄ − φβ̄)(ξ̄) = 0.



EJDE-2015/144 TRAVELING WAVEFRONTS FOR A DISPERSAL EQUATION 7

By a similar argument as in the proof of Lemma 2.2, we obtain that φβ̄ ≡ 0. Hence,
U ′0 and φ are linearly dependent. The proof is complete. �

The formal adjoint of L is given by

L∗v = θ0(J ∗ v − v) + (1− θ0)v′′ + c0v
′ − dv

+
∫

R
K(y)b′(U0(· − y − c0τ))v(· − y − c0τ)dy.

It is easy to show that 0 is also a simple eigenvalue of L∗, and U ′0(−ξ) is an
eigenfunction corresponding to 0. Moreover, 0 is an isolated eigenvalue, since the
same holds for the operator M:

Mv = v′′ + c0v
′ − dv +

∫
R
K(y)b′(U0(· − y − c0τ))v(· − y − c0τ)dy

and the added term θ0(J ∗ v− v) leaves the essential spectrum unchanged (see [1]).
By the Fredholm Alternative, for f ∈ X0, Lu = f has a solution in X1 if and only
if
∫

R fφ
∗dx = 0 where φ∗ is the eigenfunction associated to the eigenvalue 0 of L∗.

We now state the continuation result.

Lemma 2.4. Let (U0, c0) be a solution of (2.3) and (2.2) such that U ′0 > 0. Then
there exists η > 0 such that for θ ∈ [θ0, θ0 + η), the problem (2.3) and (2.2) has a
solution (U, c).

Proof. We shall use the Implicit Function Theorem. Without loss of generality, we
may assume U0(0) = α. For (v, c) ∈ X1 × R and θ ∈ R, we define

G(v, c, θ) =
(
θ(J ∗ (U0 + v)− (U0 + v)) + (1− θ)(U0 + v)′′ − (c0 + c)(U0 + v)′

− d(U0 + v) +
∫

R
K(y)b((U0 + v)(· − y − (c0 + c)τ))dy, (U0 + v)(0)

)
.

Clearly, G : X1×R×R→ X0×R is of class C1. Also, we have G(0, 0, θ0) = (0, U0)
and

DG : =
∂G

∂(v, c)
(0, 0, θ0)

=
(
L −U ′0 − τ

∫
R K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy

δ 0

)
,

where δv = v(0).
If we can show that DG : X1×R→ X0×R is invertible, then the lemma would

follow from the Implicit Function Theorem. To this end, let (g, b) ∈ X0 × R. We
want to show the existence of a unique (v, c) ∈ X1 × R solving

DG(v, c) = (g, b).

That is,

Lv − cU ′0 − cτ
∫

R
K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy = g, (2.9)

v(0) = b. (2.10)

As we observed above, (2.9) is solvable if and only if

− c
∫

R

(
U ′0 + τ

∫
R
K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy

)
φ∗ =

∫
R
gφ∗. (2.11)
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We shall prove that the integral on the left of (2.11) is not zero. Suppose for the
contrary that this is not true, then there exists v0 ∈ X1 such that

Lv0 = U ′0 + τ

∫
R
K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy. (2.12)

Multiplying (2.12) by U ′0(−ξ) and integrating over R yield

0 =
∫

R
U ′0Lv0 =

∫
R
U ′0

{
U ′0 + τ

∫
R
K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy

}
> 0,

which leads to a contradiction. Hence, (2.11) holds.
Furthermore, (2.11) determines

c = −
∫

R gφ
∗∫

R
(
U ′0 + τ

∫
R K(y)b′(U0(· − y − c0τ))U ′0(· − y − c0τ)dy

)
φ∗
.

With this value of c, the solution of (2.9) is determined up to an additive term σU ′0,
where σ ∈ R. That means, any solution of Lṽ = g + cU ′0 + cτ

∫
R K(y)b′(U0(· − y −

c0τ))U ′0(· − y − c0τ)dy can be written as ṽ = v + σU ′0, where v is the solution of
(2.9). Now (2.10) is satisfied by a unique choice of σ since U ′0(0) > 0. Thus, DG is
invertible. This completes the proof. �

Remark 2.5. We need to point out that the solution Uθ obtained by the Implicit
Function Theorem also satisfies the boundary condition (2.2).

To prove Lemma 2.4, we needed the condition U ′0 > 0. Thus, if we want to apply
this lemma we must to show that for all θ ∈ [θ0, θ0 + η], any smooth solution Uθ of
(2.3) previously constructed satisfies U ′θ > 0.

Lemma 2.6. Let θ ∈ [θ0, θ0 + η) and (Uθ, cθ) be the solution given above. Then
U ′θ(ξ) > 0 for all ξ ∈ R.

Proof. We first prove that U ′θ(ξ) ≥ 0 for all ξ ∈ R. By contradiction, we assume
that there exists θ ∈ [θ0, θ0 + η) such that there exists ξ ∈ R with U ′θ(ξ) < 0. Let

θ̄ = inf{θ > θ0; U ′θ(ξ) < 0 for some ξ ∈ R}.
It is well defined, since θ0 ≤ θ̄ < θ0 + η. It also implies that Uθ̄ exists. From the
definition of θ̄, there exists a decreasing sequence θn → θ̄ on which U ′θn

(ξ) has a
negative minimum at some point ξθn

. At this minimum, U ′θn
satisfies

θn(J ∗ U ′θn
− U ′θn

)(ξθn
) + (1− θn)U ′′′θn

(ξθn
)

+
∫

R
K(y)b′(Uθn

(ξθn
− y − cθn

τ))U ′θn
(ξθn
− y − cθn

τ)dy = 0.
(2.13)

From Lemma 2.4, we obtain that Uθn
→ Uθ̄ uniformly, and the sequence {ξθn

}
is bounded. Hence, we can extract a subsequence which converges to ξ̄. It is easy
to see that U ′

θ̄
(ξ̄) = 0 ≤ U ′

θ̄
(ξ) for all ξ ∈ R. Hence, U ′′

θ̄
(ξ̄) = 0 and U ′′′

θ̄
(ξ̄) ≥ 0. By

taking n→∞ in (2.13), we have

0 = θ̄(J ∗ U ′θ̄ − U
′
θ̄)(ξ̄) + (1− θ̄)U ′′′θ̄ (ξ̄)

+
∫

R
K(y)b′(Uθ̄(ξ̄ − y − cθ̄τ))U ′θ̄(ξ̄ − y − cθ̄τ)dy.

(2.14)

Since Uθ̄(ξ) ∈ (0, 1) for all ξ ∈ R, we have b′(Uθ̄(ξ)) > 0. Hence,∫
R
K(y)b′(Uθ̄(ξ̄ − y − cθ̄τ))U ′θ̄(ξ̄ − y − cθ̄τ)dy ≥ 0.
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It then follows from (2.14) that (J ∗ U ′
θ̄
− U ′

θ̄
)(ξ̄) = 0. This implies that U ′

θ̄
(ξ) ≡ 0.

That means that Uθ̄ is a constant. This is impossible. The proof is complete. �

To continue the solution branch to θ ∈ [0, 1), we need some a priori estimates on
the solution Uθ of (2.3) for θ ∈ [0, 1).

Lemma 2.7. Suppose that for θ ∈ [0, θ̄), there exists a solution (Uθ, cθ) of (2.3)
and (2.2). Then {cθ : θ ∈ [0, θ̄)} is bounded.

Proof. We show this by contradiction. Suppose that this set is unbounded. Then
there would exist a sequence {θn} with cn ≡ cθn

→ ±∞ as n→∞. For the sake of
convenience, we write Un ≡ Uθn . Since U ′n(ξ) → 0 as |ξ| → +∞, |U ′n(ξ)| achieves
its maximum value at some point ξn of R. At ξn, we have U ′′(ξn) = 0 and

‖cnU ′n‖L∞(R) = |cnU ′n(ξn)|

=
∣∣θn(J ∗ Un − Un)(ξn)− dUn(ξn) +

∫
R
K(y)b(Un(ξn − y − cnτ))dy

∣∣
≤ 2 + d+ b(1).

(2.15)

It then follows that

‖U ′n‖L∞(R) → 0 as n→∞.

We now assert that for any ε > 0 and any closed interval I ⊂ (0, 1) of positive
length there exists ξn such that Un(ξn) ∈ I and |U ′′n (ξn)| < ε. If this were not the
case, there would exist such an interval I0 and a number ε0 > 0 such that |U ′′n | ≥ ε0
on the interval [an, bn], where Un([an, bn]) = I0. Then

2‖U ′n‖L∞(R) ≥ |U ′n(bn)− U ′n(an)| = |U ′′n (bn − an)| ≥ ε(bn − an), (2.16)

and by the Mean Value Theorem, the length of I0 is

|I0| = Un(b̄n)− Un(ān) ≤ ‖U ′n‖L∞(R)(b̄n − ān) ≤ ‖U ′n‖L∞(R)(bn − an), (2.17)

where ān, b̄n ∈ [an, bn] with

Un(ān) = min
ξ∈[an,bn]

Un(ξ) and Un(b̄n) = max
ξ∈[an,bn]

Un(ξ).

Combining (2.16) and (2.17), we obtain that 2‖U ′n‖2L∞(R) ≥ ε0|I0|, which contradicts
to the fact that ‖U ′n‖L∞(R) → 0 as n→∞. Thus, the assertion is established.

Now take r > 0 small and let I be such that

du− b(u) ≤ −r for all u ∈ I
in the case that cn → −∞, and such that

du− b(u) ≥ r for all u ∈ I
in the case that cn → +∞. Take ε = r/2 and {ξn} to be the sequence given by the
assertion above. Without loss of generality, we assume that cn → +∞, then (2.3)
with θ = θn, c = cn and U = Un evaluated at ξn gives

−r ≥ −cnU ′n − dUn(ξn) + b(Un(ξn))

≥ −cnU ′n − dUn(ξn) + b(Un(ξn − cnτ))

≥ −(J ∗ Un − Un)(ξn)− (1− θn)U ′′n (ξn)

−
∫

R
[b(Un(ξn − y − cnτ))− b(Un(ξn − cnτ))]K(y)dy



10 G.-B. ZHANG, R. MA EJDE-2015/144

≥ −|(J ∗ Un − Un)(ξn)| − |U ′′n (ξn)| − b′max‖U ′n‖L∞(R)

∫
R
|y|K(y)dy

≥ −‖U ′n‖L∞(R)

∫
R
|y|J(y)dy − ε− b′max‖U ′n‖L∞(R)

∫
R
|y|K(y)dy.

Since ‖U ′n‖L∞(R) → 0 as n→∞ and
∫

R |y|J(y)dy < +∞, and
∫

R |y|K(y)dy < +∞,
taking n→∞, we have r ≤ ε = r/2, a contradiction. The proof is complete. �

Lemma 2.8. Suppose that for θ ∈ [0, θ̄), there exists a solution (Uθ, cθ) of (2.3)
and (2.2). Then {Uθ : θ ∈ [0, θ̄)} is bounded in C3(R).

Proof. It follows from (2.3) that vθ ≡ U ′θ satisfies

θ(J ∗ vθ − vθ) + (1− θ)v′′θ − cθv′θ − dvθ

+
∫

R
K(y)b′(Uθ(ξ − y − cτ))vθ(ξ − y − cτ)dy = 0.

(2.18)

Notice that∫
R
K(y)b′(Uθ(ξ − y − cθτ))U ′θ(ξ − y − cθτ)dy

= −b(Uθ(ξ − y − cθτ))K(y)|+∞−∞ +
∫

R
b(Uθ(ξ − y − cθτ))K ′(y)dy

=
∫

R
b(Uθ(ξ − y − cθτ))K ′(y)dy.

Then equation (2.18) becomes

θ(J ∗ vθ − vθ) + (1− θ)v′′θ − cθv′θ − dvθ

+
∫

R
b(Uθ(ξ − y − cθτ))K ′(y)dy = 0.

(2.19)

Since U ′θ(ξ) → 0 as |ξ| → ∞, vθ ≡ U ′θ achieves its positive maximum at some
point ξθ ∈ R, which implies that v′θ(ξθ) = 0 and v′′θ (ξθ) < 0. Thus, we obtain from
(2.19) that

0 < dvθ(ξθ) ≤
∫

R
b(Uθ(ξθ − y − cθτ))K ′(y)dy ≤ b(1)

∫
R
|K ′(y)|dy.

Hence,

‖vθ‖L∞(R) = vθ(ξθ) ≤
b(1)
d

∫
R
|K ′(y)|dy.

Differentiating (2.19), one has

θ(J ∗ v′θ − v′θ) + (1− θ)v′′′θ − cθv′′θ − dv′θ

+
∫

R
K ′(y)b′(Uθ(ξ − y − cθτ))U ′θ(ξ − y − cθτ)dy = 0.

(2.20)

Since ∫
R
K ′(y)b′(Uθ(ξ − y − cθτ))U ′θ(ξ − y − cθτ)dy

= −b(Uθ(ξ − y − cθτ))K ′(y)|+∞−∞ +
∫

R
b(Uθ(ξ − y − cθτ))K ′′(y)dy

=
∫

R
b(Uθ(ξ − y − cθτ))K ′′(y)dy,
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equation (2.20) reduces to

θ(J ∗ v′θ − v′θ) + (1− θ)v′′′θ − cθv′′θ − dv′θ

+
∫

R
b(Uθ(ξ − y − cθτ))K ′′(y)dy = 0.

(2.21)

It is easy to see that v′θ(ξ) → 0 as |ξ| → ∞. Thus, |v′θ| achieves its maximum
at some point χθ ∈ R. Without loss of generality, we assume v′θ(χ) ≥ 0. Then
v′′θ (χθ) = 0 and v′′′θ (χθ) ≤ 0. Thus, we have from (2.21) that

dv′θ(χθ) ≤
∫

R
b(Uθ(ξθ − y − cθτ))K ′′(y)dy ≤ b(1)

∫
R
|K ′′(y)|dy,

which shows that

‖v′θ‖L∞(R) = v′θ(χθ) ≤
b(1)
d

∫
R
|K ′′(y)|dy.

Furthermore, differentiating (2.21), we get

θ(J ∗ v′′θ − v′′θ ) + (1− θ)v(4)
θ − cθv

′′′
θ − dv′′θ

+
∫

R
b′(Uθ(ξ − y − cθτ))vθ(ξ − y − cθτ)K ′′(y)dy = 0.

By a similar argument, we obtain

‖v′′θ ‖L∞(R) ≤
1
d
b′max‖vθ‖L∞(R)

∫
R
|K ′′(y)|dy.

The proof is complete. �

Proof of Theorem 1.1. Since for θ = 0 there exists a positive increasing solution
U0, we may apply Lemma 2.4 to get the existence of a solution Uθ of (2.3) and
(2.2) for each θ ∈ (0, υ) for some υ > 0. By Lemma 2.6, we further obtain that
U ′θ(ξ) > 0 for ξ ∈ R. Define

θ̄ = sup{θ > 0 : there exists a positive increasing solution Uθ of (2.3)}.

Clearly, θ̄ ≥ υ. We shall show that θ̄ ≥ 1. We argue by contradiction, assume that
θ̄ < 1. Choose a sequence (θn)n∈N such that θn → θ̄, and for each n, (2.3) has a
positive increasing solution denoted by (Un, cn). Recall that (Un, cn) satisfies

θn(J ∗ Un − Un) + (1− θn)U ′′n − cnU ′n − dUn

+
∫

R
K(y)b(Un(ξ − y − cnτ))dy = 0,

Un(−∞) = 0, Un(+∞) = 1.

(2.22)

Without loss of generality we may also normalize Un by Un(0) = α. By Lemmas
2.7 and 2.8, there exists a positive constant C independent of n such that for each
n we have ‖Un‖C3(R) ≤ C and |cn| ≤ C. Since {cn}n∈N is bounded, we can extract
a converging subsequence {cnj}j∈N, such that cnj converges to some real number
c̄. Let {Unj} be the corresponding wave profile of wave speed cnj . Note that {Unj}
consists of positive uniformly bounded increasing functions. By Helly’s theorem
and C3 estimates, it then follows that there exists a subsequence, still denoted
by {Unj

}, which converges pointwise and C2
loc to a positive smooth function Ū as
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j → +∞. Hence, (Unj
, cnj

) → (Ū , c̄) as j → +∞. Therefore, by letting j → +∞
in (2.22) with n = nj , we get

θ̄(J ∗ Ū − Ū) + (1− θ̄)Ū ′′ − c̄Ū ′ − dŪ +
∫

R
K(y)b(Ū(ξ − y − c̄τ))dy = 0. (2.23)

Clearly, this solution satisfies Ū ′ ≥ 0. Therefore, if θ̄ < 1 and Ū satisfies (2.2),
then by Lemma 2.2, Ū(ξ) ∈ (0, 1), and hence the proof of Lemma 2.6 again shows
that Ū ′ > 0. Since we have assume that θ̄ < 1, then it can be shown that there
exists a positive increasing solution of (2.3) for θ ∈ [0, θ̄+ η) for some positive η by
applying Lemma 2.4 again with Ū instead of U0. It leads to a contradiction with
the definition of θ̄. Thus, θ̄ ≥ 1 and the equation (2.3) has a solution for every
θ ∈ [0, 1).

We can get a solution for θ = 1 in the same way above. Let (θn)n∈N such that
θn → 1 and (Un, cn)n∈N be the corresponding normalized sequence of solution.
From Lemmas 2.7 and 2.8, we have ‖Un‖C2(R) ≤ C and |cn| ≤ C for some positive
constant C. Thus, by Helly’s theorem and a priori estimate, there exists a non-
decreasing function Û and a constant ĉ such that Uθn

→ Û pointwise and cn → ĉ.
From the C2 estimates, up to extraction, we have Uθn → Û in C1

loc. Therefore, Û
satisfies (2.1), i.e.,

J ∗ Û − Ū − ĉÛ ′ − dÛ +
∫

R
K(y)b(Û(ξ − y − ĉτ))dy = 0. (2.24)

It remains to prove that Û satisfies the boundary condition (2.2). This will be
done with the proof of the assumption below (2.23), i.e., Ū satisfies (2.2). Since
Ū is positive bounded non-decreasing function, it admits limits as ξ → ±∞. By
Lebesgue’s dominated convergence theorem, we see from (2.24) that these limits
are zeros of the function du− b(u), u ∈ [0, 1].

Suppose that c̄ ≥ 0. Notice that α is the intermediate zero of du − b(u). Take
ᾱ ∈ (0, α) and translate Uθ so that Uθ(0) = ᾱ for each θ. We still may take a
sequence of θ → θ̄, a subsequence of the original one, so that Uθ converges pointwise
to some Ū . Since c is independent of translations, we still have cθ → c̄. Then
limξ→−∞ Ū(ξ) = 0 and limξ→+∞ Ū(ξ) ∈ {α, 1}. If limξ→+∞ Ū(ξ) = 1, then we are
done. Hence, we now assume that limξ→+∞ Ū(ξ) = α. Due to the monotonicity of
Ū , it implies that dŪ(ξ)− b(Ū(ξ)) > 0 for ξ ∈ R.

If θ̄ < 1, from the above discussion, we can see that Ū is of class C2 and satisfies
(2.3). Hence,

0 <
∫ M

−M
(dŪ(ξ)− b(Ū(ξ))) dξ ≤

∫ M

−M
(dŪ(ξ)− b(Ū(ξ − c̄τ))) dξ

=
∫ M

−M

[
θ̄(J ∗ Ū − Ū)(ξ) + (1− θ̄)Ū ′′(ξ)− c̄Ū ′(ξ)

+
∫

R
[b(U(ξ − y − c̄τ))− b(U(ξ − c̄τ))]K(y)dy

]
dξ.

(2.25)

It is easy to show that∫ M

−M
(J ∗ Ū − Ū)(ξ) dξ =

∫ M

−M

∫
R
J(y)[Ū(ξ − y)− Ū(ξ)]dy dξ
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= −
∫ M

−M

∫
R
J(y)

∫ 1

0

yŪ ′(ξ − ty) dt dy dξ

= −
∫

R
yJ(y)

∫ 1

0

(∫ M

−M
U ′(ξ − ty) dξ

)
dt dy

= −
∫

R
yJ(y)

∫ 1

0

(Ū(M − ty)− Ū(−M − ty)) dt dy

and ∫ M

−M

∫
R
[b(U(ξ − y − c̄τ))− b(U(ξ − c̄τ))]K(y)dy dξ

= −
∫ M

−M

∫
R
K(y)

∫ 1

0

yb′(Ū(ξ − ty − c̄τ))Ū ′(ξ − ty − c̄τ) dt dy dξ

= −
∫

R
yK(y)

∫ 1

0

[b(Ū(M − ty − c̄τ))− b(Ū(−M − ty − c̄τ))] dt dy.

Hence, from (2.25) it follows that

0 <
∫ M

−M
[dŪ(ξ)− b(Ū(ξ))] dξ

≤− θ̄
∫

R
yJ(y)

∫ 1

0

(Ū(M − ty)− Ū(−M − ty)) dt dy

+ (1− θ̄)(Ū ′(M)− Ū ′(−M))

−
∫

R
yK(y)

∫ 1

0

[b(Ū(M − ty − c̄τ))− b(Ū(−M − ty − c̄τ))] dt dy.

TakingM → +∞ in the above inequality and using Fubini’s Theorem, Lebesgue’s
Theorem and the evenness of J and K, we obtain

0 <
∫

R
[dŪ(ξ)− b(Ū(ξ))] dξ

≤ −θ̄(1− α)
∫

R
yJ(y)dy − (b(1)− b(α))

∫
R
yK(y)dy = 0,

which leads to a contradiction.
If θ̄ = 1, then Ū satisfies (2.1). Similarly, by using Lebesgue’s Theorem and the

evenness of J and K, we can see from (2.25) that

0 <
∫

R
[dŪ(ξ)− b(Ū(ξ))] dξ

≤ −(1− α)
∫

R
yJ(y)dy − (b(1)− b(α))

∫
R
yK(y)dy = 0.

It is a contradiction.
For the case c̄ < 0, we can use a similar argument by taking ᾱ ∈ (α, 1). The

proof is complete. �
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3. Initial value problem

Consider the initial value problem

∂u

∂t
= J ∗ u− u− du+

∫
R
K(y)b(u(x− y, t− τ))dy, x ∈ R, t > 0,

u(x, s) = ϕ(x, s), x ∈ R, s ∈ [−τ, 0].
(3.1)

It can be seen from [14] that for the initial value problem (3.1), we have the
following result on the existence of solutions.

Lemma 3.1. Assume ϕ(x, s) ∈ C([−τ, 0];C(R)) with 0 ≤ ϕ(x, s) ≤ 1 for (x, s) ∈
R × [−τ, 0]. Then the solution to (3.1) uniquely and globally exists, and satisfies
that u(x, t) ∈ C1([0,+∞);C(R)), and 0 ≤ u(x, t) ≤ 1 for (x, t) ∈ R× [0,+∞).

Let X be the Banach space defined by

X = {ϕ(x)|ϕ(x) : R→ R is uniformly continuous and bounded}

with the usual supremum norm | · |X . Let

X+ = {ϕ(x) ∈ X : ϕ(x) ≥ 0, x ∈ R}.

It is easily seen that X+ is a closed cone of X and X is a Banach lattice under the
partial ordering induced by X+.∫

R J(x− y)[u(y)− u(x)]dy : X → X is bounded linear operator with respect to
the norm | · |X . Then

∂u(x, t)
∂t

=
∫

R
J(x− y)[u(y, t)− u(x, t)]dy,

u(x, 0) = ϕ(x) ∈ X
(3.2)

generates a strongly continuous analytic semigroup T (t) on X and T (t)X+ ⊂ X+,
that is T (t)u(x)� 0 if u(x) ≥ 0 has a nonempty support and t > 0. Moreover, the
mild solution of (3.2) can be given by u(x, t) = T (t)ϕ(x). For more details, we can
refer to Pan et al. [28]. The theory of the operator semigroup can be seen in Pazy
[29].

For any ϕ ∈ [0, 1]C = {ϕ ∈ C : ϕ(x, s) ∈ [0, 1], x ∈ R, s ∈ [−τ, 0]}, define

F (ϕ)(x) = −dϕ(x, 0) +
∫

R
K(x− y)b(ϕ(y,−τ))dy, x ∈ R.

Since b ∈ C1(R+,R+), we can verify that F (ϕ) ∈ X and F : [0, 1]C → X is globally
Lipschitz continuous.

From (H5), it can be seen that for φ ≤ ψ,

F (ψ)(x)− F (φ)(x)

= −d(ψ(x, 0)− φ(x, 0)) +
∫

R
K(x− y)[b(ψ(y,−τ))− b(φ(y,−τ))]dy

≥ −d(ψ(x, 0)− φ(x, 0)).

(3.3)

Definition 3.2. A continuous function v : [−τ, l] → X, l > 0 is called a superso-
lution (subsolution) of (1.1) on [0, l) if

v(t) ≥ (≤)T (t− s)v(s) +
∫ t

s

T (t− r)F (vr)dr (3.4)
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for all 0 ≤ s < t < l. If v is both a supersolution and a subsolution on [0, l), then
it is said to be a mild solution of (3.1).

Remark 3.3. Assume that v : [−τ, l)×R→ R with l > 0 and v is C in x ∈ R, C1

in t ∈ [0, l), and satisfies the following inequality
∂v

∂t
≥ (≤)J ∗ v − v − dv +

∫
R
K(y)b(v(x− y, t− τ))dy, x ∈ R, t > 0,

Then by the positivity of T (t) : X+ → X+ implies that (3.4) holds. Hence, v is a
supersolution (subsolution) of (1.1) on [0, l).

Lemma 3.4. For any supersolution u+(x, t) and subsolution u−(x, t) of (1.1) on
R× [0+∞) with 0 ≤ u+(x, t), u−(x, t) ≤ 1 for x ∈ R, t ∈ [−τ,+∞), and u+(x, s) ≥
u−(x, s) for all x ∈ R and s ∈ [−τ, 0], there holds u+(x, t) ≥ u−(x, t) for x ∈ R, t ≥
0, and there exists a positive continuous function Θ(x, t) defined on [0,+∞) ×
[0,+∞) such that

u+(x, t)− u−(x, t) ≥ Θ(|x|, t)
∫ 1

0

[u+(y, 0)− u−(y, 0)]dy

for x ∈ R, t > 0 and z ∈ R.

The proof of the comparison principle in Lemma 3.4 strongly depends on the
analyticity and positivity of semigroup T (t). For more details, we can refer the
readers to [22, 23]. Hence, we omit the proof here. It can also be seen in [14] for
another type of proof. Due to (3.3), the proof of the last inequality in Lemma 3.4
is only a minor modification of the proof of Lemma 2.3 in [37], so we omit it.

4. Uniqueness of traveling wavefronts

It is well known that standing waves (that is, traveling waves with speed c = 0)
are not necessarily unique, see [4, 5]. Hence, we consider the uniqueness of traveling
wavefronts only when c 6= 0.

Lemma 4.1. Let U(x+ ct) be a non-decreasing traveling wavefront of (1.1). Then
for c 6= 0,

0 < U ′(ξ) ≤ 1
|c|

(1 + b(1)) for all ξ ∈ R, (4.1)

lim
ξ→±∞

U ′(ξ) = 0. (4.2)

Proof. By Lemma 3.4, we have that for ξ = x+ ct and every h > 0,

U(ξ + h)− U(ξ) ≥ Θ(|x|, t)
∫ 1

0

[U(y + h)− U(y)]dy > 0.

Then,

U ′(ξ) ≥ Θ(|x|, t)(U(1)− U(0)) > 0.

It is easy to see that for c 6= 0,

U(ξ) =
1
c

∫ ξ

−∞
e−

d+1
c (ξ−s)H(U)(s)ds,

where
H(U)(ξ) = J ∗ U(ξ) +

∫
R
K(y)b(U(ξ − y, t− τ))dy.
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Hence,

U ′(ξ) =
1
c
H(U)(ξ) +

1
c

∫ ξ

−∞

(
− d+ 1

c

)
e−

d+1
c (ξ−s)H(U)(s)ds, (4.3)

When c > 0, we obtain

U ′(ξ) ≤ 1
c
H(U)(ξ) ≤ 1

c
(1 + b(1)).

When c < 0, one has

U ′(ξ) ≤ 1
c

∫ ξ

−∞

(
− d+ 1

c

)
e−

d+1
c (ξ−s)H(U)(s)ds ≤ −1

c
(1 + b(1)).

Thus, (4.1) is obtained. Finally, (4.2) follows from (2.2) and (4.3). The proof is
complete. �

Lemma 4.2. Let U(x + ct) be a non-decreasing traveling wavefront of (1.1) with
c 6= 0. Then there exist three positive numbers β0 (which is independent of U), σ0

and δ̄ such that for any δ ∈ (0, δ̄] and every ξ0 ∈ R, the function w+ and w− defined
by

w±(x, t) := U(x+ ct+ ξ0 ± σ0δ(eβ0τ − e−β0t))± δe−β0t

are a supersolution and a subsolution of (1.1) on [0,+∞), respectively.

Proof. By (H5), we can choose β0 > 0 and ε∗ > 0 such that

d > β0 + eβ0τ (max{b′(0), b′(1)}+ ε∗).

Since b′(u) ≥ 0 for u ∈ [0, 1], there exists a sufficiently small number δ∗ > 0 such
that

0 ≤ b′(η) ≤ b′(0) + ε∗ for all η ∈ [−δ∗, δ∗],
0 ≤ b′(η) ≤ b′(1) + ε∗ for all η ∈ [1− δ∗, 1 + δ∗].

(4.4)

Let c0 = |c|τ + (eβ0τ − 1). By the boundary condition (2.2), there exists M0 =
M0(U, β0, δ

∗, ε∗) > 0 such that

U(ξ) ≤ δ∗ for all ξ ≤ −M0/2 + c0,

U(ξ) ≥ 1− δ∗ for all ξ ≥M0/2− c0
(4.5)

and

d > β0 + eβ0τ (max{b′(0), b′(1)}+ ε∗) + eβ0τ b′max

[ ∫ +∞

M0
2

+
∫ −M0

2

−∞
K(y)dy

]
. (4.6)

Set
m0 := m0(U, β0, δ

∗, ε∗) = min{U ′(ξ) : |ξ| ≤M0} > 0, (4.7)
and define

σ0 :=
1

m0β0

{
(eβ0τ b′max − d) + β0

}
> 0, (4.8)

δ̄ = min
{ 1
σ0
, δ∗e−β0τ

}
. (4.9)

We only prove that w+(x, t) is a supersolution of (1.1), since the similar argument
can be used for w−(x, t). By a translation, we can assume that ξ0 = 0. For any
given δ ∈ (0, δ̄], let ξ(x, t) = x+ ct+σ0δ(eβ0τ −e−β0t). Then for any t ≥ 0, we have

S(w+)(x, t)
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: =
∂w+

∂t
− J ∗ w+ + w+ + dw+ −

∫
R
K(y)b(w+(x− y, t− τ))dy

= U ′(ξ(x, t))
(
c+ σ0δβ0e

−β0t
)
− β0δe

−β0t −
∫

R
J(y)U(ξ(x, t)− y)dy

+ U(ξ(x, t)) + dU(ξ(x, t)) + dδe−β0t

−
∫

R
K(y)b

(
U
[
ξ(x, t)− y − cτ + σ0δ

(
eβ0τ − e−β0(t−τ)

)
− σ0δ

(
eβ0τ − e−β0t

)]
+ δe−β0(t−τ)

)
dy

=
{
cU ′(ξ(x, t))−

∫
R
J(y)U(ξ(x, t)− y)dy + U(ξ(x, t)) + dU(ξ(x, t))

}
+ σ0δβ0e

−β0tU ′(ξ(x, t))− β0δe
−β0t + dδe−β0t

−
∫

R
K(y)b

(
U
[
ξ(x, t)− y − cτ + σ0δ

(
eβ0τ − e−β0(t−τ)

)
− σ0δ

(
eβ0τ − e−β0t

) ]
+ δe−β0(t−τ)

)
dy

= σ0δβ0e
−β0tU ′(ξ(x, t))− β0δe

−β0t + dδe−β0t

∫
R
K(y)b[U(ξ(x, t)− y − cτ)]dy

−
∫

R
K(y)b

(
U
[
ξ(x, t)− y − cτ + σ0δ

(
1− e−β0τ

)
e−β0t

]
+ δe−β0(t−τ)

)
dy

= [σ0δβ0U
′(ξ(x, t))− β0δ + dδ]e−β0t

−
∫

R
K(y)b′(η̃)

{
U [ξ(x, t)− y − cτ + σ0δ(1− eβ0τ )e−β0t] + δe−β0(t−τ)

− U(ξ(x, t)− y − cτ)
}
dy

= δe−β0t
[
σ0β0U

′(ξ(x, t))− β0 + d+
∫

R
K(y)b′(η̃)[U ′(ξ̃)σ0(eβ0τ − 1)− eβ0τ ]dy

]
,

where

η̃ = θU [ξ(x, t)− y − cτ + σ0δ(1− eβ0τ )e−β0t] + θδe−β0(t−τ)

+ (1− θ)U [ξ(x, t)− y − cτ ]

and
ξ̃ = ξ(x, t)− y − cτ + θσ0(1− eβ0τ )e−β0t.

It is easy to see that 0 ≤ η̃ ≤ 1 + δe−βτ ≤ 1 + δ∗. Thus, b′(η̃) ≥ 0, and

S(w+)(x, t) ≥ δe−β0t
{
σ0β0U

′(ξ(x, t))− β0 + d− eβ0τ

∫
R
K(y)b′(η̃)dy

}
. (4.10)

We need to consider three cases.
Case (i): |ξ(x, t)| ≤M0. In this case, by (4.7), (4.8) and (4.10), one has

S(w+)(x, t) ≥ δe−β0t{σ0β0m0 − β0 + d− eβ0τ b′max} = 0.

Case (ii): ξ(x, t) ≥M0. For y ∈ [− 1
2ξ(x, t),

1
2ξ(x, t)], we have

1
2
M0 ≤

1
2
ξ(x, t) ≤ ξ(x, t)− y ≤ 3

2
ξ(x, t).
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By the choice of δ̄, for any δ ∈ (0, δ̄], one has σ0δ ≤ 1, and hence,

ξ(x, t)− y − cτ + σ0δ(1− eβ0τ )e−β0t

≥ 1
2
M0 − cτ + σ0δ(1− eβ0τ ) ≥ 1

2
M0 − c0,

and
ξ(x, t)− y − cτ ≥ 1

2
M0 − cτ ≥

1
2
M0 − c0.

Then by (4.5) and (4.9), we have

1 + δ∗ ≥ 1 + δeβ0τ ≥ η̃ ≥ 1− δ∗.
Furthermore, by (4.4), we get b′(η̃) ≤ b′(1) + ε∗. Hence, by (4.6) and (4.10), we
have

S(w+)(x, t) ≥ δe−β0t
{
σ0β0U

′(ξ(x, t))− β0 + d− eβ0τ

∫
R
K(y)b′(η̃)dy

}
≥ δe−β0t

{
− β0 + d− eβ0τ

∫ 1
2 ξ(x,t)

− 1
2 ξ(x,t)

K(y)b′(η̃)dy

− eβ0τ

∫ − 1
2 ξ(x,t)

−∞
K(y)b′(η̃)dy − eβ0τ

∫ +∞

1
2 ξ(x,t)

K(y)b′(η̃)dy
}

≥ δe−β0t
{
− β0 + d− eβ0τ (b′(1) + ε∗)

− eβ0τ b′max

[ ∫ +∞

1
2M0

+
∫ − 1

2M0

−∞
K(y)dy

]}
≥ 0.

Case (iii): ξ(x, t) ≤ −M0. The proof is similar to that for the Case (ii) and is
omitted. The proof is complete. �

Proof of Theorem 1.2. Since Ũ(ξ) and U(ξ) have the same limits as ξ → ±∞, there
exist ξ̃ ∈ R and a sufficiently large number p > 0 such that for every s ∈ [−τ, 0]
and x ∈ R,

U(x+ cs+ ξ̃)− δ̄ < Ũ(x+ s̃) < U(x+ cs+ ξ̃ + p) + δ̄,

and hence,

U(x+ cs+ ξ̃ − σ0δ̄(eβ0τ − e−β0s))− δ̄e−β0s

< Ũ(x+ c̃s) < U(x+ cs+ ξ̃ + p+ σ0δ̄(eβ0τ − e−β0s)) + δ̄e−β0s,

where β0, σ0 and δ̄ are given in Lemma 4.2. By the comparison principle, we obtain
that for all x ∈ R and t ≥ 0,

U(x+ ct+ ξ̃ − σ0δ̄(eβ0τ − e−β0t))− δ̄e−β0t

< Ũ(x+ c̃t) < U(x+ ct+ ξ̃ + p+ σ0δ̄(eβ0τ − e−β0t)) + δ̄e−β0t.

Keeping ξ = x+ct fixed and letting t→∞, we then obtain from the first inequality
that c ≤ c̃ and from the second inequality that c ≥ c̃. Thus, c̃ = c. In addition,

U(ξ + ξ̃ − σ0δ̄e
β0τ )− δ̄e−β0t < Ũ(ξ) < U(ξ + ξ̃ + p+ σ0δ̄e

β0τ ) for ξ ∈ R. (4.11)

Define

ξ∗ := inf{ξ : Ũ(·) ≤ U(·+ ξ)} and ξ∗ := sup{ξ : Ũ(·) ≥ U(·+ ξ)}.
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From (4.11), we can see that both ξ∗ and ξ∗ are well defined. Since U(· + ξ∗) ≤
Ũ(·) ≤ U(·+ ξ∗), we have ξ∗ ≤ ξ∗.

We need only to prove that ξ∗ = ξ∗. By contradiction, we assume that ξ∗ < ξ∗

and Ũ(·) 6≡ U(· + ξ∗). Since limξ→±∞ U ′(ξ) = 0, there exists a large positive
constant B = B(U) > 0 such that

2σ0e
β0τU ′(ξ) ≤ 1 for |ξ| ≥ B.

Note that Ũ(·) ≤ U(· + ξ∗) and Ũ(·) 6≡ U(· + ξ∗), by Lemma 3.4, it follows that
Ũ(·) < U(·+ ξ∗) on R. Consequently, by the continuity of U and Ũ , there exists a
small constant ρ ∈ [0, δ̄] with ρ ≤ 1

2σ0
e−β0τ , such that

Ũ(ξ) < U(ξ + ξ∗ − 2σ0ρe
β0τ ), if ξ ∈ [−B − 1− ξ∗, B + 1− ξ∗]. (4.12)

When |ξ + ξ∗| ≥ B + 1, one has

U(ξ + ξ∗ − 2σ0ρe
β0τ )− Ũ(ξ) > U(ξ + ξ∗ − 2σ0ρe

β0τ )− Ũ(ξ + ξ∗)

= −2σ0ρe
β0τU ′(ξ + ξ∗ − 2θσ0ρe

β0τ ) ≥ −ρ.
(4.13)

Combining (4.12) and (4.13), we obtain that for any x ∈ R and s ∈ [−τ, 0],

Ũ(x+ cs) ≤ U(x+ cs+ ξ∗ − 2σ0ρe
β0τ + σ0ρ(eβ0τ − e−β0s)) + ρe−β0s.

Hence, by the comparison principle, for any x ∈ R and t ≥ 0,

Ũ(x+ ct) ≤ U(x+ ct+ ξ∗ − 2σ0ρe
β0τ + σ0ρ(eβ0τ − e−β0t)) + ρe−β0t. (4.14)

Keep ξ = x + ct fixed and let t → ∞ in (4.14). Then we have Ũ(ξ) ≤ U(ξ + ξ∗ −
σ0ρe

β0r) for all ξ ∈ R. This contradicts the definition of ξ∗. Hence, ξ∗ = ξ∗. The
proof is complete. �
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5. Stability of traveling wavefronts

Let ζ ∈ C∞(R) be a fixed function with the following properties:

ζ(s) = 0, if s ≤ −2; ζ(s) = 1, if s ≥ 2;

0 < ζ ′(s) < 1, if s ∈ (−2, 2).

Lemma 5.1. For any δ ∈ (0, δ0], δ0 ≤ α/2, there exist two positive numbers
ε = ε(δ) and C = C(δ) such that for every ξ± ∈ R, the functions v±(x, t) defined
by

v+(x, t) := 1 + δ − [1− (α− 2δ)e−εt]ζ(−ε(x− ξ+ + Ct)),

v−(x, t) := −δ + [1− (1− α− 2δ)e−εt]ζ(ε(x− ξ− − Ct))
are a supersolution and a subsolution of (1.1) on [0,+∞), respectively.

Proof. Since du− b(u) > 0 for u ∈ (0, α) ∪ (1, 1 + δ), we obtain

M1 = M1(δ) = min{du− bu : u ∈ [δ, α− δ/2]} > 0.

By (H5), we choose µ ∈ [1/2, 1) and γ > 0 satisfying

dµ > b′(1) + γ (5.1)

and

0 ≤ b′(η) < b′(1) + γ for η ∈ [1, 1 + δ].
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Let ε∗ = ε∗(δ) > 0 be such that ε∗ ≤ min{δ/2, 2(1− µ)δ}, and let k = k(δ) ∈ (0, 1)
be such that

0 ≤ ζ(s) < ε∗/2, if s < −2 + k, (5.2)

1 ≥ ζ(s) > 1− ε∗/2, if s > 2− k. (5.3)

Take ν = ν(δ) < 0 small enough such that (1 + ν)(2 − k/2) > 2 − k. Take
ε = ε(δ) > 0 sufficiently small and M0 = M0(δ) > 0 sufficiently large such that
αeετ < 1, εM0 ≤ −ν(2− k),

− εα− 2ε
∫

R
|y|J(y)dy + d(1 + µδ)− δ(b′(1) + γ) > 0 (5.4)

and
−M1 + εα+ 2ε

∫
R
|y|J(y)dy + ετb′maxe

ετ

+ b′maxε
∗ + 2b′max

[ ∫ +∞

M0

+
∫ −M0

−∞
K(y)dy

]
< 0.

(5.5)

Define
σ := min{ζ ′(s) : −2 + k/2 ≤ s ≤ 2− k/2} > 0.

Then take C = C(δ) > 0 large enough so that

Cε(1− α)σ > εα+ 2ε
∫

R
|y|J(y)dy + ετb′maxe

ετ

+ max{|du− b(u)| : u ∈ [δ, 1 + δ]}+ 2b′max.

(5.6)

It is easy to see that for t ≥ −τ and x ∈ R,

δ ≤ v+(x, t) ≤ 1 + δ, −δ ≤ v−(x, t) ≤ 1− δ.
Set ξ = x− ξ+ + Ct. Then

S(v+)(x, t) : =
∂v+

∂t
− J ∗ v+ + v+ + dv+ −

∫
R
K(y)b(v+(x− y, t− τ))dy

= −ε(α− 2δ)e−εtζ(−εξ) + εC[1− (α− 2δ)e−εt]ζ ′(−εξ)

+ [1− (α− 2δ)e−εt]
[∫

R
J(y)ζ(−ε(ξ − y))dy − ζ(−εξ)

]
+ dv+ −

∫
R
K(y)b(v+(x− y, t− τ))dy

≥ −εα+ εC(1− α)ζ ′(−εξ) + [1− (α− 2δ)e−εt]

×
∫

R
J(y)|ζ(−ε(ξ − y))− ζ(−εξ)|dy

+ dv+ −
∫

R
K(y)b(v+(x− y, t− τ))dy

≥ −εα+ εC(1− α)ζ ′(−εξ)− 2ε
∫

R
|y|J(y)dy

+ dv+ −
∫

R
K(y)b(v+(x− y, t− τ))dy.

(5.7)

By a direct computation, it follows that for all t ≥ −τ ,
∂

∂t
v+(x, t) = −ε(α− 2δ)e−εt + εC[1− (α− 2δ)e−εt]ζ ′(−εξ)
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≥ −ε(α− 2δ)e−εt ≥ −εeετ ,

and hence, for all t ≥ 0,

b(v+(x, t− τ))− b(v+(x, t)) = b′(η1)[v+(x, t− τ)− v+(x, t)]

= −τb′(η1)
∂

∂t
v+(x, t∗) ≤ ετb′(η1)eετ ≤ ετb′maxe

ετ ,

where t∗ ∈ [t− τ, t] and η1 = θv+(x, t) + (1− θ)v+(x, t− τ).
On the other hand, for t ≥ 0, one has

|v+(x− y, t− τ)− v+(x, t− τ)|

= (1− (α− 2δ)e−ε(t−τ))|ζ(−ε(ξ − y − Cτ))− ζ(−ε(ξ − Cτ))|
≤ |ζ(−ε(ξ − y − Cτ))− ζ(−ε(ξ − Cτ))|.

It then follows that

S(v+)(x, t) ≥ −εα+ εC(1− α)ζ ′(−εξ)− 2ε
∫

R
|y|J(y)dy

+ dv+(x, t)− b(v+(x, t))− (b(v+(x, t− τ))− b(v+(x, t)))

−
∫

R
K(y)(b(v+(x− y, t− τ))− b(v+(x, t− τ)))dy

≥ −εα+ εC(1− α)ζ ′(−εξ)− 2ε
∫

R
|y|J(y)dy

+ dv+(x, t)− b(v+(x, t))− (b(v+(x, t− τ))− b(v+(x, t)))

−
∫

R
K(y)b′(η2)|v+(x− y, t− τ)− v+(x, t− τ)|dy

≥ −εα+ εC(1− α)ζ ′(−εξ)− 2ε
∫

R
|y|J(y)dy

+ dv+(x, t)− b(v+(x, t))− ετb′maxe
ετ

− b′max

∫
R
K(y)|ζ(−ε(ξ − y − Cτ))− ζ(−ε(ξ − Cτ))|dy,

(5.8)

where η2 = θv+(x, t− τ) + (1− θ)v+(x− y, t− τ) ∈ [δ, 1 + δ].
We distinguish three cases:

Case (i): −εξ ≤ −2+k/2. In this case, −εξ ≤ −2+k. By (5.2), 0 ≤ ζ(−εξ) < ε∗/2.
Recall the ε∗ < 2(1− µ)δ, we then have

1 + δ ≥ v+(x, t) ≥ 1 + δ − [1− (α− 2δ)e−εt]ε∗/2

≥ 1 + δ − ε∗/2 ≥ 1 + δ − (1− µ)δ = 1 + µδ ≥ 1 + δ/2

for all t ≥ 0.
It then follows from (5.7) that

S(v+)(x, t) ≥ −εα− 2ε
∫

R
|y|J(y)dy + dv+(x, t)− d

−
∫

R
K(y)[b(v+(x− y, t− τ))− b(1)]dy

≥ −εα− 2ε
∫

R
|y|J(y)dy + dµδ
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−
∫

R
K(y)b′(η∗)(v+(x− y, t− τ)− 1)dy

≥ −εα− 2ε
∫

R
|y|J(y)dy + dµδ − δ

∫
R
K(y)b′(η∗)dy,

where η∗ = θv+(x− y, t− τ) + (1− θ) ∈ [1, 1 + δ].
Therefore, by (5.1) and (5.4), we get

S(v+)(x, t) ≥ −εα− 2ε
∫

R
|y|J(y)dy + dµδ − δ

∫
R
K(y)b′(η∗)dy

≥ −εα− 2ε
∫

R
|y|J(y)dy + dµδ − δ(b′(1) + γ) > 0.

Case (ii): −εξ ≥ 2−k/2. In this case, −εξ ≥ 2−k. By (5.3), 1−ε∗/2 ≤ ζ(−εξ) ≤ 1.
It then follows that

δ ≤ v+(x, t) ≤ (1 + δ)− [1− (α− 2δ)e−εt](1− ε∗

2
)

≤ (1 + δ)− [1− α+ 2δ](1− ε∗

2
)

≤1 + δ − 1 + α− 2δ + ε∗

≤ α− δ + ε∗ ≤ α− δ

2
.

Thus, we can see that

dv+(x, t)− b(v+(x, t)) ≥ min{du− b(u) : u ∈ [δ, α− δ/2]} = M1.

By the choice of ε and ν < 0, we have

νξ ≥ −ν 2− k/2
ε

≥ −ν(2− k)
ε

≥M0,

and for any y ∈ [−νξ, νξ],
−ε(ξ − y − Cτ) ≥ −εξ(1 + ν) + εCτ ≥ (1 + ν)(2− k/2) > 2− k,

−ε(ξ − Cτ) ≥ 2− k/2 + εCτ > 2− k.
Then, we obtain∫ νξ

−νξ
|ζ(−ε(ξ − y − Cτ))− ζ(−ε(ξ − Cτ))|K(y)dy ≤ ε∗/2

∫ νξ

−νξ
K(y)dy ≤ ε∗.

Therefore, by (5.8) and (5.5), we get

S(v+)(x, t) ≥ −εα− 2ε
∫

R
|y|J(y)dy − ετb′maxe

ετ +M1

− b′max

∫ νξ

−νξ
|ζ(−ε(ξ − y − Cτ))− ζ(−ε(ξ − Cτ))|K(y)dy

− 2b′max

[ ∫ −νξ
−∞

+
∫ +∞

νξ

K(y)dy
]

≥ −εα− 2ε
∫

R
|y|J(y)dy − ετb′maxe

ετ +M1 − b′maxε
∗

− 2b′max

[ ∫ −νξ
−∞

+
∫ +∞

νξ

K(y)dy
]
> 0.
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Case (iii): −2 + k/2 ≤ −εξ ≤ 2− k/2. In this case, by (5.6), one has

S(v+)(x, t) ≥ Cε(1− α)σ − εα− 2ε
∫

R
|y|J(y)dy − ετb′maxe

ετ

−max{|du− b(u)| : u ∈ [δ, 1 + δ]} − 2b′max > 0.

Combining Cases (i)-(iii), we obtain

∂v+

∂t
≥ J ∗ v+ − v+ − dv+ +

∫
R
K(y)b(v+(x− y, t− τ))dy, x ∈ R, t ≥ 0.

Thus, v+(x, t) is a supersolution of (1.1) on [0,+∞). Similarly, we can prove that
v−(x, t) is a subsolution of (1.1) on [0,+∞). The proof is complete. �

Remark 5.2. Clearly, the functions v+ and v− have the following properties:

v+(x, s) = 1 + δ, if s ∈ [−τ, 0], x ≥ ξ+ − Cs+ 2ε−1,

v+(x, s) ≥ α− δ, for all s ∈ [−τ, 0] and x ∈ R,

v+(x, t) = δ + (α− 2δ)e−εt, for all t ≥ −τ and x ≤ ξ+ − Ct− 2ε−1,

v−(x, s) = −δ, if s ∈ [−τ, 0], x ≤ ξ+ + Cs− 2ε−1,

v−(x, s) ≤ α+ δ, for all s ∈ [−τ, 0] and x ∈ R,

v−(x, t) = 1− δ − (1− α− 2δ)e−εt, for all t ≥ −τ and x ≥ ξ− + Ct+ 2ε−1.

Let U(x + ct) be a non-decreasing traveling wavefronts of (1.1). We define the
following two functions:

w±(x, t, η, δ) := U(x+ ct+ η ± σ0δ(eβ0τ − e−β0t))± δe−β0t,

where σ0 and β0 are as in Lemma 4.2.

Lemma 5.3. Let U(x+ ct) be a non-decreasing traveling wavefront of (1.1). Then
there exists a positive number ε∗ such that if u(x, t) is a solution of (1.1) on [0,+∞)
with initial data 0 ≤ u(x, s) ≤ 1 for all x ∈ R and s ∈ [−τ, 0], and for some ξ ∈ R,
h > 0, δ > 0 and T ≥ 0, there holds

w−0 (x,−cT + ξ, δ)(s) ≤ uT (x)(s) ≤ w+
0 (x,−cT + ξ + h, δ)(s)

for all x ∈ R and s ∈ [−τ, 0], then for any t ≥ T + τ + 1, there exist ξ̂(t), δ̂(t) and
ĥ(t) satisfying

ξ − σ0(2δ + ε∗min{1, h})eβ0τ ≤ ξ̂(t) ≤ ξ + h+ σ0(2δ + ε∗min{1, h})eβ0τ ,

δ̂(t) = (ε∗min{1, h}+ δ)e−β0[t−(T+1+τ)],

ĥ(t) = h− 2σ0ε
∗min{1, h}+ σ0(3δ + ε∗min{1, h})eβ0τ > 0,

such that

w−0 (x,−ct+ ξ̂(t), δ̂(t))(s) ≤ ut(x)(s) ≤ w+
0 (x,−ct+ ξ̂(t) + ĥ(t), δ̂(t))(s)

for all x ∈ R and s ∈ [−τ, 0].

Proof. By Lemma 4.2, w+(x, t, cT + ξ + h, δ) and w−(x, t, cT + ξ, δ) are a super-
solution and a subsolution of (1.1), respectively. It is easy to see that v(x, t) :=
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u(x, T + t), t ≥ 0, is also a solution to (1.1) with v0(x)(s) = uT (x)(s). Then it
follows from the comparison principle that

w−(x, t, cT + ξ, δ) ≤ u(x, t+ T ) ≤ w+(x, t, cT + ξ + h, δ)

for x ∈ R, t ≥ 0. That is,

U(x+ c(t+ T ) + ξ − σ0δ(eβ0τ − e−β0t))− δe−β0t ≤ u(x, t+ T )

≤ U(x+ c(t+ T ) + ξ + h+ σ0δ(eβ0τ − e−β0t)) + δe−β0t

for x ∈ R, t ≥ 0.
In view of Lemma 3.4, for x ∈ R, t > 0, we have

u(x, T + t)− w−(x, t, cT + ξ, δ)

≥ Θ(|x|, t)
∫ 1

0

[u(y, T )− w−(y, 0, cT + ξ, δ)]dy

≥ Θ(|x|, t)
∫ 1

0

[u(y, T )− U(y + cT + ξ − σ0δ(eβ0τ − 1)) + δ]dy

≥ Θ(|x|, t)
∫ 1

0

[u(y, T )− U(y + cT + ξ) + δ]dy.

(5.9)

By Lemma 4.1, lim|r|→+∞ U ′(r) = 0. Then we can fix a positive number M > 0
such that

U ′(r) ≤ 1
2σ0

for all |r| ≥M .

Let

ε1 =
1
2

min{U ′(η) : |η| ≤ 2} > 0 and h = min{1, h}.

By the mean value theorem, we obtain∫ 1

0

[U(y + cT + ξ + h)− U(y + cT + ξ)]dy ≥ 2ε1h.

Then at least one of the following two statements is true:

(i)
∫ 1

0
[u(y, T )− U(y + cT + ξ)]dy ≥ ε1h.

(ii)
∫ 1

0
[U(y + cT + ξ + h)− u(y, T )]dy ≥ ε1h.

Subsequently, we consider only the case (i). The case (ii) is similar and thus omitted.
Let J1 = M3 + |c|(1+τ)+2, z0 = −cT −ξ and J2 = J1 +c+3. For |x−z0| ≤ J1,

further letting t = 1 + τ + s in (5.9), and Θ := Θ(J1, 1 + τ + s), then we get

u(x, T + 1 + τ + s)

≥ U(x+ c∗(T + 1 + τ + s) + ξ − σ0δ(eβ0τ − e−β0(1+τ+s)))

− δe−β0(1+τ+s) + Θ(|x|, 1 + τ + s))
∫ 1

0

[u(y, T )− U(y + cT + ξ)]dy

≥ U(x− z0 + c(1 + τ + s)− σ0δ(eβ0τ − e−β0(1+τ+s)))

− δe−β0(1+τ+s) + Θε1h.

(5.10)
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In addition, we have

U(x− z0 + c(1 + τ + s) + 2σ0ε
∗h− σ0δ(eβ0τ − e−β0(1+τ+s)))

− U(x− z0 + c(1 + τ + s)− σ0δ(eβ0τ − e−β0(1+τ+s)))

= U ′(η1)2σ0ε
∗h ≤ Θε1h,

(5.11)

where

ε∗ = min
{ 1

3σ0
, min
|η|≤J2

Θε1
2σ0φ′(η)

}
,

η1 = x− z0 + c(1 + τ + s)− σ0δ(1− e−β0) + θ · 2σ0ε
∗h, θ ∈ (0, 1).

It follows that

|η1| = |x− z0|+ c(1 + τ) + σ0δ + 2σ0ε
∗ ≤ J1 + c+ σ0δ + 2σ0ε

∗ ≤ J2.

Hence, by the monotonicity of U(·), (5.10) and (5.11), we have

u(x, T + 1 + τ + s)

≥ U(x+ c(T + 1 + τ + s) + ξ + 2σ0ε
∗h̄− σ0δ(eβ0τ − e−β0(1+τ+s)))

− δe−β0(1+τ+s).

The remainder of proof is similar to that of [30, Lemma 3.1], so is omitted. The
proof is complete. �

By Lemmas 4.2, 5.1, 5.3, we can obtain the following Lemma 5.4 and Theorem
1.3. Their proofs are similar to the proofs of [37], so we omit them here.

Lemma 5.4. Let U(x + ct) be a non-decreasing traveling wavefront of (1.1), and
ϕ ∈ [0, 1]C be such that

lim sup
x→−∞

max
s∈[−τ,0]

ϕ(x, s) < α < lim inf
x→+∞

min
s∈[−τ,0]

ϕ(x, s).

Then, for any δ > 0, there exist T = T (ϕ, δ) > 0, ξ = ξ(ϕ, δ) ∈ R, and h =
h(ϕ, δ) > 0 such that

w−0 (x,−cT + ξ, δ)(s) ≤ uT (x, ϕ)(s) ≤ w+
0 (x, cT + ξ + h, δ)(s)

for all x ∈ R and s ∈ [−τ, 0].
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