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ASYMPTOTIC BEHAVIOR FOR SMALL MASS IN AN
ATTRACTION-REPULSION CHEMOTAXIS SYSTEM

YUHUAN LI, KE LIN, CHUNLAI MU

Abstract. This article is concerned with the model

ut = ∆u−∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,

0 = ∆v + αu− βv, x ∈ Ω, t > 0,

0 = ∆w + γu− δw, x ∈ Ω, t > 0

with homogeneous Neumann boundary conditions in a bounded domain Ω ⊂
Rn (n = 2, 3). Under the critical condition χα − ξγ = 0, we show that the

system possesses a unique global solution that is uniformly bounded in time.

Moreover, when n = 2, by some appropriate smallness conditions on the initial
data, we assert that this solution converges to (ū0, α

β
ū0, γ

δ
ū0) exponentially,

where ū0 := 1
|Ω|

R
Ω u0.

1. Introduction

Chemotaxis is a phenomenon of the directed movement of cells in response to the
concentration gradient of the chemical which is produced by cells. A well-known
chemotaxis model was proposed by Keller and Segel [15] in the 1970s, which de-
scribes the aggregation of cellular slime molds Dictyostelium discoideum. A simple
classical Keller-Segel model reads as follows

ut = ∆u−∇ · (χu∇v), x ∈ Ω, t > 0,
τvt = ∆v + αu− βv, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x), x ∈ Ω,

(1.1)

where u = u(x, t) and v = v(x, t) denote the density of the cells and the concen-
tration of the chemical, respectively. Here α > 0, β > 0, τ = 0, 1 are constants,
and χ > 0 (resp. χ < 0) is a constant referred to as the attractive (resp. repulsive)
chemotaxis.

Mathematical study of (1.1) has been extensively developed in the past four
decades, see [8-10] and the references therein. In the case χ > 0, the outcome
in [26] states that a globally bounded solution of (1.1) with τ = 1 exists when
n = 1. When n = 2, it is shown that there exists a critical constant C such that if
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Ω
u0 < C, then the solutions of (1.1) are bounded [6, 25] and if

∫
Ω
u0 > C, then

blow-up happens [10, 24, 28]. When n ≥ 3, it is insufficient to rule out blow up in
(1.1) even if

∫
Ω
u0 is sufficiently small [3, 31, 32]. On the other hand, the results

of repulsive chemotaxis (i.e., χ < 0 ) were much less. For τ = 0, it is well known
that the solutions of (1.1) are uniformly bounded and converge to some stationary
solutions exponentially as time tends to infinity [22, 23]. In [4] the system (1.1)
with τ = 1 has been studied based on a Lyapunov function. It is asserted that (1.1)
possesses a unique classical bounded solution in two dimensions and a global weak
solution exists if n = 3, 4.

Taking into account attraction and repulsion together, we can get the following
attraction-repulsion system

ut = ∆u−∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,
τvt = ∆v + αu− βv, x ∈ Ω, t > 0,
τwt = ∆w + γu− δw, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x), τw(x, 0) = τw0(x), x ∈ Ω

(1.2)

for cell density u, concentration of an attractive signal v, and concentration of a
repulsive signal w, respectively, where χ, ξ, α, β, γ and δ are positive and τ = 0, 1.

Model (1.2) with τ = 1 was proposed in [27] to describe the quorum effect
in the chemotaxis process, and in [21] to describe the aggregation of microglia
in Alzheimer’s disease. In the one-dimensional framework, the resulting variant of
(1.2) with τ = 1 was proved to have global solutions in [18], and large time behavior
was obtained in [14] for all α > 0 and β > 0. Moreover, the time-periodic solution
of (1.2) was studied in [19] for various ranges of parameter values. Since chemical
diffuses faster than cells, it is valuable to consider (1.2) with τ = 0. Especially in
[29], by using the following transformation

s := χv − ξw, (1.3)

Equation (1.2) can be changed into the general classical Keller-Segel model (1.1) for
the special case β = δ. Thus under some additional assumptions on the parameters,
the global existence, blow-up, stationary solutions and large-time behavior of (1.2)
with τ = 0, 1 were considered in [29] by using a number of mathematical techniques.
But for the case of β 6= δ in higher dimensions, it becomes more challenging because
there does not exist a Lyapunov functional for (1.2). The first result of this case
has been also found in [29], where global existence was asserted in any bounded
domain Ω ⊂ Rn(n ≥ 2) if χα − ξγ < 0 and τ = 0. When τ = 1, global existence
of weak solutions to (1.2) was obtained in three dimensions [13]. Recently, some
further information on the existence of bounded solutions or on the occurrence of
blow-up has been explored in [4, 20, 16, 17] in a bounded domain Ω ⊂ R2.

In this article we focus on (1.2) with τ = 0 for the cases χα = ξγ and β 6≡ δ. As
for the initial data u0, we may assume that

u0 ∈ C0(Ω̄), u0 > 0 in Ω̄. (1.4)
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To study (1.2) directly, we turn (1.2) into the initial-boundary value problem

ut = ∆u−∇ · (u∇s), x ∈ Ω, t > 0,

0 = ∆s− δs+ (χα− ξγ)u+ χ(δ − β)v, x ∈ Ω, t > 0,
0 = ∆v + αu− βv, x ∈ Ω, ; t > 0,
∂u

∂ν
=
∂s

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω ,

(1.5)

by using the same transformation (1.3) given in [29]. Firstly, our result involving
global existence is stated as follows.

Theorem 1.1. Let Ω ⊂ Rn(n = 2, 3) be a bounded domain with smooth boundary
∂Ω and τ = 0. Assume that

χα− ξγ = 0. (1.6)
Then for all u0 satisfying (1.4), (1.2) possesses a unique classical solution (u, v, w)
which is global in time and uniformly bounded in Ω× (0,∞).

Secondly, for all positive β and δ, inspired by [33], under some suitable smallness
on u0, we have the following result.

Theorem 1.2. Let n = 2, and let τ = 0. Suppose that (1.6) holds. Given some u0

fulfilling (1.4), one can find some ε0 > 0 such that if

m :=
∫

Ω

u0 ≤ ε (1.7)

holds for all 0 < ε < ε0, then the unique global solution of (1.2) satisfies

‖u(·, t)− ū0‖L∞(Ω) → 0,

‖v(·, t)− α

β
ū0‖L∞(Ω) → 0,

‖w(·, t)− γ

δ
ū0‖L∞(Ω) → 0,

(1.8)

as t→∞, where ū0 := 1
|Ω|
∫

Ω
u0.

Remark 1.3. Theorem 1.2 shows that the asymptotic behavior of solutions to
(1.2) are very similar to the special case β = δ in [29]. Unfortunately, the question
of global dynamics for arbitrarily large m has to be left as an open problem here.

2. Preliminaries

Before proving the main results in this article, we state some basic and useful
properties in this section. We start with the local-in-time existence of a classical
solution to (1.2) with τ = 0 which has been proved in [29].

Lemma 2.1. For any nonnegative function u0 ∈ C0(Ω̄), there exist Tmax ∈ (0,∞]
and a unique triple (u, v, w) ∈ C0(Ω̄× [0, Tmax))∩C2,1(Ω̄× (0, Tmax)) solving (1.2)
with τ = 0 classically. Moreover, if Tmax <∞, then

‖u(·, t)‖L∞(Ω) →∞ as t→ Tmax. (2.1)

The following properties immediately result from an integration of each equation
in (1.2) with respect to x ∈ Ω̄, and from the maximum principle.
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Lemma 2.2. Suppose u0 satisfies (1.4). Then the solution (u, v, w) of (1.2) with
τ = 0 satisfies

‖u(·, t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax),

‖v(·, t)‖L1(Ω) =
α

β
‖u0‖L1(Ω) for all t ∈ (0, Tmax),

‖w(·, t)‖L1(Ω) =
γ

δ
‖u0‖L1(Ω) for all t ∈ (0, Tmax).

(2.2)

Moreover,
u > 0, v > 0, w > 0 in Ω̄× (0, Tmax). (2.3)

3. Proof of Theorem 1.1

A crucial step towards our boundedness proof will be provided by the following
lemma.

Lemma 3.1. Assume that (1.6) holds, and that Ω is a bounded domain in Rn
(n = 2, 3). For any r > 10/3, there exists some constant C > 0 such that∫

Ω

ur(x, t)dx ≤ C for all t ∈ (0, Tmax). (3.1)

Proof. Multiplying ur−1 to the first equation in (1.5) and integrating by parts, we
have

1
r

d

dt

∫
Ω

ur = −4(r − 1)
r2

∫
Ω

|∇ur/2|2 +
r − 1
r

∫
Ω

∇ur · ∇s (3.2)

for all t ∈ (0, Tmax). On the other hand, multiplying the second equation in (1.5)
by ur, we get that∫

Ω

∇ur · ∇s = −δ
∫

Ω

urs+ χ(δ − β)
∫

Ω

urv.

= −δ
∫

Ω

ur(χv − ξw) + χ(δ − β)
∫

Ω

urv

= ξδ

∫
Ω

urw − χβ
∫

Ω

urv for all t ∈ (0, Tmax).

(3.3)

Noting that u(x, t) > 0 and v(x, t) > 0 for all x ∈ Ω̄ and t ∈ (0, Tmax), then
combining (3.2) and (3.3) yields

d

dt

∫
Ω

ur +
4(r − 1)

r

∫
Ω

|∇ur/2|2 ≤ ξδ(r − 1)
∫

Ω

urw for all t ∈ (0, Tmax). (3.4)

By the Gagliardo-Nirenberg inequality, there exist some constants C1 > 0 and
C2 > 0 satisfying∫

Ω

u
rn+2

n = ‖ur/2‖
2rn+4

rn

L
2rn+4

rn (Ω)

≤ C1‖∇ur/2‖
2rn+4

rn a1

L2(Ω) ‖u
r/2‖

2rn+4
rn ·(1−a1)

L
2
r (Ω)

+ C1‖ur/2‖
2rn+4

rn

L
2
r (Ω)

≤ C2‖∇ur/2‖2L2(Ω) + C2 for all t ∈ (0, Tmax),

(3.5)

where
a1 =

rn

rn+ 2
∈ (0, 1).
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On the other hand, applying Young’s inequality to (3.4), we infer that

d

dt

∫
Ω

ur +
4(r − 1)

r

∫
Ω

|∇ur/2|2 ≤ r − 1
rC2

∫
Ω

u
rn+2

n + C3

∫
Ω

w
rn+2

2 (3.6)

for all t ∈ (0, Tmax), where

C3 = ξδ(r − 1)
( 1
ξδrC2

· rn+ 2
rn

)−rn/2(rn+ 2
2

)−1

.

To estimate the second term on the right-hand side of (3.6), noting that w satisfies

0 = ∆w + γu− δw, x ∈ Ω, t ∈ (0, Tmax),
∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

(3.7)

then testing (3.7) by w
rn
2 and applying Young’s inequality again, we immediately

obtain
8rn

(rn+ 2)2

∫
Ω

|∇w
rn+2

4 |2 + δ

∫
Ω

w
rn+2

2

= γ

∫
Ω

uw
rn
2

≤ δ(r − 1)
rC2C3

∫
Ω

u
rn+2

n + C4

∫
Ω

w
rn(rn+2)

2(rn−n+2) ,

(3.8)

where

C4 = γ
(δ(r − 1)
γrC2C3

rn+ 2
n

)− n
rn−n+2

( rn+ 2
rn− n+ 2

)−1

.

We use the Gagliardo-Nirenberg inequality to estimate∫
Ω

w
rn(rn+2)

2(rn−n+2) = ‖w
rn+2

4 ‖
2rn

rn−n+2

L
2rn

rn−n+2 (Ω)

≤ C5‖∇w
rn+2

4 ‖
2rn

rn−n+2a2

L2(Ω) ‖w
rn+2

4 ‖
2rn

rn−n+2 (1−a2)

L
4

rn+2 (Ω)

+ C5‖w
rn+2

4 ‖
2rn

rn−n+2

L
4

rn+2 (Ω)
for all t ∈ (0, Tmax)

(3.9)

with some constant C5 > 0 and a2 determined by
rn− n+ 2

2rn
=
(1

2
− 1
n

)
a2 +

rn+ 2
4

(1− a2).

Thus a2 satisfies

a2 =
r2n2 + 2n− 4

(rn2 + 4)r
∈ (0, 1),

2rn
rn− n+ 2

a2 =
2rn

rn− n+ 2
r2n2 + 2n− 4

(rn2 + 4)r
< 2

because r > 10
3 and n = 2, 3. By Young’s inequality, (3.9) becomes∫

Ω

w
rn(rn+2)

2(rn−n+2) ≤ C6

(∫
Ω

|∇w
rn+2

4 |2
) rn

rn−n+2 ·
r2n2+2n−4
(rn2+4)r + C6

≤ ε
∫

Ω

|∇w
rn+2

4 |2 + C7(ε) for all t ∈ (0, Tmax)
(3.10)
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with constants C6 > 0 and C7(ε) > 0, where we take ε = 4rn
(rn+2)2C4

. Inserting
(3.10) into (3.8), we find some constant C8 > 0 satisfying∫

Ω

w
rn+2

2 ≤ r − 1
rC2C3

∫
Ω

u
rn+2

n + C8 for all t ∈ (0, Tmax). (3.11)

As a consequence of (3.11) and (3.5), (3.6) can be turned into the inequality

d

dt

∫
Ω

ur +
4(r − 1)

r

∫
Ω

|∇ur/2|2 ≤ 2(r − 1)
rC2

∫
Ω

u
rn+2

n + C9

≤ 2(r − 1)
rC2

(
C2

∫
Ω

|∇ur/2|2 + C2

)
+ C9

for all t ∈ (0, Tmax) with C9 > 0. Therefore, we can pick C10 > 0 to obtain

d

dt

∫
Ω

ur +
∫

Ω

ur ≤ −2(r − 1)
r

∫
Ω

|∇ur/2|2 +
∫

Ω

ur + C10 (3.12)

for all t ∈ (0, Tmax). It follows from the Gagliardo-Nirenberg inequality that∫
Ω

ur = ‖ur/2‖2L2(Ω)

≤ C11‖∇ur/2‖2a3
L2(Ω)‖u

r/2‖2(1−a3)

L
2
r (Ω)

+ C11‖ur/2‖2
L

2
r (Ω)

≤ C12‖∇ur/2‖2a3
L2(Ω) + C12 for all t ∈ (0, Tmax)

(3.13)

for some constants C11 > 0 and C12 > 0, where

a3 =
rn− n

rn− n+ 2
∈ (0, 1).

Inserting (3.13) in (3.12) and by Young’s inequality, there exists some constant
C13 > 0 such that

d

dt

∫
Ω

ur +
∫

Ω

ur ≤ C13 for all t ∈ (0, Tmax),

which leads to
‖u(·, t)‖Lr(Ω) ≤ C14 for all t ∈ (0, Tmax)

with some constant C14 > 0. The proof is complete. �

Proof of Theorem 1.1. Since v satisfies

0 = ∆v − βv + αu, x ∈ Ω, t ∈ (0, Tmax),
∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

then applying the Agmon-Douglis-Nirenberg Lr estimates [1, 2] on linear elliptic
equations with homogeneous Neumann boundary condition, there provides some
constant C1 > 0 satisfying

‖v(·, t)‖W 2,r(Ω) ≤ C1‖u(·, t)‖Lr(Ω) for all t ∈ (0, Tmax).

Now from Lemma 3.1 and using the Sobolev embedding: W 2,r(Ω) ↪→ C1
B(Ω) :=

{u ∈ C1(Ω)|Du ∈ L∞(Ω)} if r > n [7], we find

‖∇v(·, t)‖L∞(Ω) ≤ C2 for all t ∈ (0, Tmax) (3.14)

with some constant C2 > 0. Similarly, we can pick some constant C3 > 0 such that

‖∇w(·, t)‖L∞(Ω) ≤ C3 for all t ∈ (0, Tmax).
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In view of the variation-of-constants formula to the first equation in (1.2), we can
see that

u(·, t) = et∆u0 − χ
∫ t

0

e(t−σ)∆∇ · (u(·, σ)∇v(·, σ))dσ

+ ξ

∫ t

0

e(t−σ)∆∇ · (u(·, σ)∇w(·, σ))dσ

=: I1(·, t) + I2(·, t) + I3(·, t) for all t ∈ (0, Tmax).

As an easy consequence of the smoothing estimates for the Neumann heat semi-
group, we immediately obtain

‖I1(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for all t ∈ (0, Tmax).

Applying the known smoothing estimates from [32] (see also [3]), for some C4 > 0
we have

‖I2(·, t)‖L∞(Ω) ≤ χ
∫ t

0

‖e(t−σ)∆∇ · (u(·, σ)∇v(·, σ))‖L∞(Ω)dσ

≤ C4

∫ t

0

(
1 + (t− σ)−

1
2−

n
2r

)
e−λ1(t−σ)‖u(·, σ)∇v(·, σ)‖Lr(Ω)dσ

for all t ∈ (0, Tmax), where λ1 > 0 denotes the first eigenvalue of −∆ in Ω un-
der Neumann boundary conditions. For any r > n, according to (3.14) and the
boundedness of u(·, t) in Lr(Ω) asserted by Lemma 3.1, this yields C5 > 0 such
that

‖I2(·, t)‖L∞(Ω)

≤ C4

∫ t

0

(
1 + (t− σ)−

1
2−

n
2r

)
e−λ1(t−σ)‖u(·, σ)‖Lr(Ω)‖∇v(·, σ)‖L∞(Ω)dσ

≤ C5

∫ t

0

(
1 + υ−

1
2−

n
2r

)
e−λ1υdυ

≤ C6 for all t ∈ (0, Tmax).

It is similar to deal with I3, that means

‖I3(·, t)‖L∞(Ω) ≤ C7 for all t ∈ (0, Tmax)

holds with some constant C7 > 0. Therefore, the maximal existence time Tmax

of solutions to (1.2) must be infinite by means of Lemma 2.1 and we finish our
proof. �

4. Proof of Theorem 1.2

4.1. A bound for u. To avoid confusion, through this section, we should state
that the constants ci and Ci (i = 1, 2, . . .) are independent of the total mass

∫
Ω
u0.

Lemma 4.1. Suppose Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω.
Then for all α > 0 and β > 0, the solution v of

0 = ∆v − βv + αu, x ∈ Ω,
∂v

∂ν
= 0, x ∈ ∂Ω

(4.1)
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satisfies

‖v‖Lp(Ω) ≤ αCp‖u‖L1(Ω) for all p ∈ (1,∞), (4.2)

‖∇v‖Lq(Ω) ≤ αCq‖u‖L2(Ω) for all q ∈ (1,∞), (4.3)

where Cp (resp. Cq) is a positive constant depending on p (resp. q).

Proof. From (4.1), v can be represented as

v(x) = α

∫
Ω

G(x, y)u(y)dy, a.e. x ∈ Ω,

where G(x, y) is the Green function of −∆ + β in Ω subject to homogeneous Neu-
mann boundary conditions (see [24, 12, 30]). Noting that G(x, y) satisfies

|G(x, y)| ≤ C
(

1 + ln
1

|x− y|

)
, |∇xG(x, y)| ≤ C

|x− y|
for all x, y ∈ Ω with x 6= y

with some constant C > 0, by means of Young’s inequality for convolutions we
easily arrive at (4.2)-(4.3). �

Lemma 4.2. Assume that the assumptions in Theorem 1.2 are satisfied. Then for
all r > 1 there exists some constant C > 0 satisfying

lim sup
t→∞

‖u(·, t)‖Lr(Ω) ≤ Cm
(
1 +m

2
r +2
)
, (4.4)

where m :=
∫

Ω
u0.

Proof. In light of the third equation in (1.5) and the inequality (4.2), for all p ∈
(1,∞) we obtain that

‖v(·, t)‖Lp(Ω) ≤ C1m for all t > 0 (4.5)

with some constant C1 > 0. Observing that s solves

0 = ∆s− δs+ χ(δ − β)v, x ∈ Ω, t > 0,
∂s

∂ν
= 0, x ∈ ∂Ω, t > 0,

for all q ∈ (1,∞) we use (4.3) and (4.5) to find some C2 > 0 and C3 > 0 such that

‖∇s(·, t)‖Lq(Ω) ≤ χ|δ − β|C2 · ‖v(·, t)‖L2(Ω)

≤ C3m for all t > 0.
(4.6)

Testing the first equation of (1.5) by ur−1 and integrating by parts, we see that

d

dt

∫
Ω

ur +
∫

Ω

ur +
2(r − 1)

r

∫
Ω

|∇ur/2|2 ≤ r(r − 1)
2

∫
Ω

ur|∇s|2 +
∫

Ω

ur (4.7)

for all t > 0. To deal with the right-hand side of (4.7), since

‖u‖r+1
Lr+1(Ω) = ‖ur/2‖

2(r+1)
r

L
2(r+1)

r (Ω)

≤ C4‖∇ur/2‖2L2(Ω)‖u
r/2‖

2
r

L
2
r (Ω)

+ C4‖ur/2‖
2(r+1)

r

L
2
r (Ω)

= C4m‖∇ur/2‖2L2(Ω) + C4m
r+1

holds for some constant C4 > 0, and

‖u‖rLr(Ω) = ‖ur/2‖2L2(Ω) ≤ C5‖∇ur/2‖
2(r−1)

r

L2(Ω) ‖u
r/2‖

2
r

L
2
r (Ω)

+ C5‖ur/2‖2
L

2
r (Ω)
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= C5m‖∇ur/2‖
2(r−1)

r

L2(Ω) + C5m
r

holds for C5 > 0 by means of the Gagliardo-Nirenberg inequality. Then Young’s
inequality implies

r(r − 1)
2

∫
Ω

ur|∇s|2 ≤ r(r − 1)
2

(
ε1

∫
Ω

ur+1 + ε−r1

rr

(r + 1)r+1

∫
Ω

|∇s|2(r+1)
)

≤ ε1
r(r − 1)

2
C4m‖∇ur/2‖2L2(Ω) + ε1

r(r − 1)
2

C4m
r+1

+ ε−r1

(r − 1)
2

( r

r + 1
)r+1

∫
Ω

|∇s|2(r+1) for all t > 0

and∫
Ω

ur = ‖u‖rLr(Ω)

≤ C5m‖∇ur/2‖
2(r−1)

r

L2(Ω) + C5m
r

≤ ε2C5‖∇ur/2‖2L2(Ω) +
(
ε
−(r−1)
2 · (r − 1)(r−1)

rr
+ 1
)
C5m

r for all t > 0.

Taking ε1 = 2r−2C−1
4 m−1 and ε2 = r−1

r C−1
5 , inequality (4.7) becomes

d

dt

∫
Ω

ur +
∫

Ω

ur ≤ C6m
r
(

1 +
∫

Ω

|∇s|2(r+1)
)

for all t > 0. (4.8)

Recalling (4.6), integrating (4.8) over (0, t), we find that

∫
Ω

ur ≤ e−t‖u0‖rLr(Ω) + C6m
r
(

1 +m2(r+1)
)

for all t > 0,

which yields (4.4). �

Proof of Theorem 1.2. With Lemma 4.2 at hand, the most important step towards
global behavior of the case χα− ξγ = 0 is to drive a bound for U := u− u0 in this
section (Lemma 4.3). The later will enforce ‖U(·, t)‖L∞(Ω) → 0 as t → ∞ under
a smallness condition on the initial data u0 by using a fixed-point type argument
(see also [33]). Let us introduce

U(x, t) := u(x, t)− ū0,

S(x, t) := s(x, t)− χα
( 1
β
− 1
δ

)
ū0,

V (x, t) := v(x, t)− α

β
ū0
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for all x ∈ Ω̄ and t > 0. Then if (1.6) holds, (U, S, V ) solves the initial-value
problem

Ut = ∆U −∇ · (u∇S), x ∈ Ω, t > 0,

0 = ∆S − δS + χ(δ − β)V, x ∈ Ω, t > 0,
0 = ∆V − βV + αU, x ∈ Ω, t > 0,
∂U

∂ν
=
∂S

∂ν
=
∂V

∂ν
= 0, x ∈ ∂Ω, t > 0,

U(x, 0) = u0(x)− ū0, V (x, 0) = v0(x)− α

β
ū0,

S(x, 0) = χ
(
v0(x)− α

β
ū0

)
− ξ
(
w0(x)− γ

δ
ū0

)
, x ∈ Ω.

(4.9)

By a straightforward adaptation of the ideas in [17], we proceed to derive an esti-
mate for U with respect to the norm in L∞(Ω). �

Lemma 4.3. Let n = 2. For some r > 1, the solution (U, S, V ) of (4.9) satisfies

lim sup
t→∞

‖U(·, t)‖L∞(Ω) ≤ Cm2
(
1 +m

2
r +2
)
. (4.10)

Proof. Since∇S = ∇s, we first apply (4.6) and Lemma 4.2 to pick t1 = t1(u, v, w) >
0 such that

‖∇S(·, t)‖Lq(Ω) ≤ C1m for all t ≥ t1, q ∈ (1,∞), (4.11)

‖u(·, t)‖Lr(Ω) ≤ C2m
(
1 +m

2
r +2
)

for all t ≥ t1, r ∈ (1,∞), (4.12)

where C1 and C2 are positive constant. By means of the variation-of-constants
formula to the first equation in (4.9), we have

U(·, t) = e(t−t1)∆U(·, t1)−
∫ t

t1

e(t−σ)∆∇ · (u(·, σ)∇S(·, σ)) dσ for all t > t1.

This in conjunction with some arguments on the asymptotic behavior of the heat
semigroup [17, 31] yields (4.10) by using (4.11)–(4.12). �

Now, invoking the upper estimate for U in Lemma 4.3, we can pick t2 =
t2(u, v, w) > 0 such that

‖U(·, t)‖L∞(Ω) ≤ c1m2(1 +m
2
r +2) for all t ≥ t2 (4.13)

with some constant c1 > 0. With ε0 > 0 to be specified below, we fix the total mass
m :=

∫
Ω
u0 small enough such that 0 < m ≤ ε for 0 < ε < ε0.

Suppose that ε0 satisfies

2c1ε0(1 + ε
2
r +2
0 ) ≤ 1. (4.14)

Then (4.13) implies

‖U(·, t)‖L∞(Ω) ≤
1
2
ε for all t ≥ t2.

Now let λ1 > 0 denote the first eigenvalue of −∆ in Ω under Neumann boundary
conditions, and let some κ satisfy

κ ∈
(
0,
λ1

2
)
. (4.15)
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Then since ‖U(·, t)‖L∞(Ω) ≤ ε/2 holds for all t ≥ t2, the set

S∗ :=
{
T ∗ ≥ t2 | ‖U(·, t)‖L∞(Ω) ≤ εe−κ(t−t2) for all t ∈ [t2, T ∗]

}
is well-defined.

The following lemma provides T = ∞, where T := supS∗ ∈ (t2,∞]. Therefore
we obtain our goal that the component u of (1.2) actually converges to u0, at an
exponential rate.

Lemma 4.4. Suppose that κ satisfies (4.15) and that n = 2. Then one can find
some constant C > 0 such that

‖U(·, t)‖L∞(Ω) ≤ Ce−κ(t−t2) for all t > t2. (4.16)

Proof. Given any p ∈ (1,∞), since V solves the third equation in (4.9), from (4.2)
we can find some positive C1 and C2 such that

‖V (·, t)‖Lp(Ω) ≤ αC1 · ‖U(·, t)‖L1(Ω)

≤ α|Ω|C1 · ‖U(·, t)‖L∞(Ω)

≤ C2εe
−κ(t−t2) for all t ∈ (t2, T ).

(4.17)

Moreover, given any q ∈ (1,∞), employing the inequality (4.3), we can pick some
constants C3 > 0 and C4 > 0 satisfying

‖∇S(·, t)‖Lq(Ω) ≤ χ|δ − β|C3 · ‖V (·, t)‖L2(Ω) ≤ C4εe
−κ(t−t2), ∀t ∈ (t2, T ). (4.18)

Observing that U = u− u0, u can be easily controlled as

‖u(·, t)‖L∞(Ω) ≤ ε
(
e−κ(t−t2) +

1
|Ω|

)
for all t ∈ (t2, T ).

In view of (4.18) and Lemma 4.3, applying some Lp−Lq estimates for the Neumann
heat semigroup (see [31, Lemma 1.3] or [17, Lemma 5.4]) to the representation of
U(·, t), for some k > n we have

‖U(·, t)‖L∞(Ω)

≤ ‖e(t−t2)∆U(·, t2)‖L∞(Ω) +
∫ t

t2

‖e(t−σ)∆∇ · (u(·, σ)∇S(·, σ))‖L∞(Ω)dσ

≤ C5e
−λ1(t−t2)‖U(·, t2)‖L∞(Ω)

+ C5

∫ t

t2

(
1 + (t− σ)−

1
2−

n
2k

)
e−λ1(t−σ)‖u(·, σ)∇S(·, σ)‖Lk(Ω)dσ

≤ C6ε
2
(

1 + ε
2
r +2
)
e−λ1(t−t2)

+ C6ε
2

∫ t

t2

(
1 + (t− σ)−

1
2−

n
2k

)
e−λ1(t−σ)

(
e−κ(σ−t2) + e−2κ(σ−t2)

)
dσ

for all t ∈ (t2, T ). For any 0 < κ < λ1
2 and given some r > 1, we may use [31,

Lemma 1.2] to find some constant C7 > 0 such that

‖U(·, t)‖L∞(Ω) ≤ C7ε
2
(
1 + ε

2
r +2
)
e−κ(t−t2) for all t ∈ (t2, T ).

Thus fixing ε0 > 0 small enough such that

C7ε0

(
1 + ε

2
r +2
0

)
< 1
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and (4.14), and in view of the continuity of U , we find that T = ∞. This implies
(4.16) and hence completes the proof. �

Proof of Theorem 1.2. Applying the maximum principle to the second equation in
(1.2) we have

α

β
min
x∈Ω̄

u(x, t) ≤ v(x, t) ≤ α

β
max
x∈Ω̄

u(x, t) for all t > 0.

In light of Lemma 4.4, there exists C > 0 satisfying

‖v(·, t)− α

β
u0‖L∞(Ω) ≤

α

β
‖u(·, t)− u0‖L∞(Ω) ≤ Ce−κt for all t > 0.

The convergence of w can be similarly proved. �
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