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HOMOCLINIC ORBITS OF SECOND-ORDER NONLINEAR
DIFFERENCE EQUATIONS

HAIPING SHI, XIA LIU, YUANBIAO ZHANG

Abstract. We establish existence criteria for homoclinic orbits of second-
order nonlinear difference equations by using the critical point theory in com-

bination with periodic approximations.

1. Introduction

Homoclinic orbits play an important role in analyzing the chaos of dynamical
systems, and have been the subject of many investigations. If a system has the
transversely intersected homoclinic orbits, then it must be chaotic. If it has the
smoothly connected homoclinic orbits, then it cannot stand the perturbation, its
perturbed system probably produce chaotic phenomenon. So homoclinic orbits
have been extensively investigated since the time of Poincaré, see [12, 13, 14, 15,
16, 17, 26, 28] and the references therein.

Difference equations [1, 9] are closely related to differential equations in the
sense that a differential equation model is often derived from a difference equation,
and numerical solutions of a differential equation are obtained by discretizing the
differential equation. Therefore, the study of homoclinic orbits [4, 5, 6, 7, 8, 10, 11,
20, 21, 22, 23, 30] of difference equation is meaningful.

Here N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. For any a, b ∈ Z, define Z(a) = {a, a+1, . . . }, Z(a, b) = {a, a+1, . . . , b}
when a ≤ b. The symbol l2 denotes the space of real functions whose second powers
are summable on Z. Also, * denotes the transpose of a vector.

This article considers the existence for homoclinic orbits of second-order nonlin-
ear difference equation

Lu(t) = f(t, u(t+ T ), u(t), u(t− T )), t ∈ Z (1.1)

containing both advance and retardation. Here the operator L is the Jacobi oper-
ator

Lu(t) = a(t)u(t+ 1) + a(t− 1)u(t− 1) + b(t)u(t),
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where a(t) and b(t) are real valued for each t ∈ Z, T is a given nonnegative integer,
f ∈ C(Z × R3,R), a(t), b(t) and f(t, v1, v2, v3) are M -periodic in t for a given
positive integer M . Jacobi operators appear in a variety of applications [29].

We may think of (1.1) as being a discrete analogue of the second-order nonlinear
differential equation

Su(s) = f(s, u(s+ T ), u(s), u(s− T )), s ∈ R, (1.2)

where S is the Sturm-Liouville differential expression, f ∈ C(R4,R). Equations
similar in structure to (1.2) arise in the study of homoclinic orbits [13, 15, 16, 17]
of functional differential equations.

For the case T = 1, Chen and Fang [3] obtained the existence of periodic and
subharmonic solutions of the second-order p-Laplacian difference equation

∆(ϕp(∆u(t− 1))) + f(t, u(t+ 1), u(t), u(t− 1)) = 0, t ∈ Z,

and Chen and Tang [4] obtained the existence of infinitely many homoclinic orbits
of the fourth-order difference equation

∆4u(t− 2) + q(t)u(t) = f(t, u(t+ 1), u(t), u(t− 1)), t ∈ Z

containing both advance and retardation.
It is well known that critical point theory is a powerful tool that deals with the

problems of differential equations [2, 12, 13, 14, 15, 16, 17, 24, 27]. Only since
2003, critical point theory has been employed to establish sufficient conditions on
the existence of periodic solutions for second-order difference equations [18, 19].
Along this direction, Ma and Guo [22] (without periodicity assumption) and [23]
(with periodicity assumption) applied variational methods to prove the existence
of homoclinic orbits for the special form of (1.1) (with T = 0). The Ambrosetti-
Rabinowitz condition plays a crucial role to ensure the boundedness of Palais-Smale
sequences. This is very crucial in applying the critical point theory.

Some special cases of (1.1) have been studied by many researchers via variational
methods, see [18, 19, 22, 23]. However, to our best knowledge, the results on
homoclinic orbits of (1.1) are scarce in the literature. Since (1.1) contains both
advance and retardation, there are very few manuscripts dealing with this subject,
the traditional ways of establishing the functional in [10, 18, 19, 20, 22, 23, 25] are
inapplicable to our case.

The main purpose of this article is to give some sufficient conditions for the
existence of a nontrivial homoclinic orbit for (1.1) without the classical Ambrosetti-
Rabinowitz condition. In particular, our results generalize and improve the existing
results; see Remarks 1.3 and 1.4. The motivation for the present work stems from
the recent papers [3, 7, 17].

Let

λ = min
t∈Z(1,M)

(b(t)− |a(t− 1)| − |a(t)|), λ̄ = max
t∈Z(1,M)

(b(t) + |a(t− 1)|+ |a(t)|).

In this article we use the following hypotheses:
(H1) b(t)− |a(t− 1)| − |a(t)| > 0, for all t ∈ Z;
(H2) there exists a functional F (t, v1, v2) ∈ C1(Z×R2,R) with F (t+M, v1, v2) =

F (t, v1, v2) and it satisfies

∂F (t− T, v2, v3)
∂v2

+
∂F (t, v1, v2)

∂v2
= f(t, v1, v2, v3);
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(H3) there exist positive constants δ1 and a1 < λ/4 such that

|F (t, v1, v2)| ≤ a1

(
v2

1 + v2
2

)
for all t ∈ Z and

√
v2

1 + v2
2 ≤ δ1;

(H4) there exist constants ρ1, c1 > λ̄/4 and b1 such that

F (t, v1, v2) ≥ c1
(
v2

1 + v2
2

)
+ b1

for all t ∈ Z and
√
v2

1 + v2
2 ≥ ρ1;

(H5)
∂F (t, v1, v2)

∂v1
v1 +

∂F (t, v1, v2)
∂v2

v2 − 2F (t, v1, v2) > 0,

for all (t, v1, v2) ∈ Z× R2 \ {(0, 0)};
(H6)

∂F (t, v1, v2)
∂v1

v1 +
∂F (t, v1, v2)

∂v2
v2 − 2F (t, v1, v2)→ +∞

as
√
v2

1 + v2
2 → +∞.

Our main results are the following theorem.

Theorem 1.1. Suppose that (H1)–(H6) are satisfied. Then (1.1) has a nontrivial
homoclinic orbit.

Remark 1.2. By (H4), it is easy to see that there exists a constant ζ1 > 0 such
that

(H4’) F (t, v1, v2) ≥ c1
(
v2

1 + v2
2

)
+ b1 − ζ1, for all (t, v1, v2) ∈ Z× R2.

As a matter of fact, letting

ζ1 = max
{
|F (n, v1, v2)− c1

(
v2

1 + v2
2

)
− b1| : n ∈ Z,

√
v2

1 + v2
2 ≤ ρ1

}
,

we can easily get the desired result.

Remark 1.3. As a special case of Theorem 1.1 with T = 0 and a(t) < 0, we obtain
[23, Theorem 1.1].

Remark 1.4. In many studies (see e.g. [18, 19, 22, 23]) of second-order difference
equations, the following classical Ambrosetti-Rabinowitz condition is assumed.

(AR) There exists a constant β > 2 such that 0 < βF (t, u) ≤ uf(t, u) for all
t ∈ Z and u ∈ R \ {0}.

Note that (H4)–(H6) are much weaker than (AR). Thus our result improves that
the existing results.

For the next theorem, we use the hypotheses:
(H7) there exist positive constants δ2 and a2 >

λ̄
4 such that

|F (t, v1, v2)| ≥ a2

(
v2

1 + v2
2

)
for all t ∈ Z and

√
v2

1 + v2
2 ≤ δ2;

(H8) there exists a constant 1 < µ < 2 such that

0 <
∂F (t, v1, v2)

∂v1
v1 +

∂F (t, v1, v2)
∂v2

v2 ≤ µF (t, v1, v2),

for all (t, v1, v2) ∈ Z× R2 \ {(0, 0)}.
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Theorem 1.5. Suppose that (H1), (H2), (H7), (H8) are satisfied. Then (1.1) has
a nontrivial homoclinic orbit.

Remark 1.6. By (H8), there exist constants a3 > 0 and b2 such that

F (t, v1, v2) ≤ a3

(
v2

1 + v2
2

)µ/2
+ b2 for all t ∈ Z,

which implies that there exist constants ρ2 > 0 and c2 <
λ
4 such that

(H9) F (t, v1, v2) ≤ c2
(
v2

1 + v2
2

)
+ b2 for all t ∈ Z and

√
v2

1 + v2
2 ≥ ρ2.

By (H9), it is easy to see that there exists a constant ζ2 > 0 such that
(H9’) F (t, v1, v2) ≤ c2

(
v2

1 + v2
2

)
+ b2 + ζ2, for all (t, v1, v2) ∈ Z× R2.

The remainder of this paper is organized as follows. In Section 2, we shall
establish the variational framework associated with (1.1) and transfer the problem
of the existence of homoclinic orbits of (1.1) into that of the existence of critical
points of the corresponding functional. Some related fundamental results will also
be recalled. In Section 3, we shall complete the proof of the results by using the
critical point method. Finally, in Section 4, we shall give two examples to illustrate
the results.

2. Preliminaries

To apply the critical point theory, we shall establish the corresponding variational
framework for (1.1) and give some lemmas which will be of fundamental importance
in proving our results. We start by giving the basic notation.

Let S be the set of sequences

u = {u(t)}t∈Z = (. . . , u(−t), . . . , u(−1), u(0), u(1), . . . , u(t), . . . );

that is,
S = {{u(t)} : u(t) ∈ R, t ∈ Z}.

For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {au(t) + bv(t)}+∞t=−∞.
Then S is a vector space.

For any given positive integers M and m, we define

Em = {u ∈ S|u(t+ 2mM) = u(t), ∀t ∈ Z}.
Clearly, Em is isomorphic to R2mM . Em can be equipped with the inner product

(u, v) =
mM−1∑
t=−mM

u(t) · v(t), ∀u, v ∈ Em, (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =
( mM−1∑
t=−mM

u2(t)
)1/2

, ∀u ∈ Em. (2.2)

It is obvious that Em with the inner product (2.1) is a finite dimensional Hilbert
space and linearly homeomorphic to R2mM .

In what follows, we define a norm in Em by

‖u‖∞ = max
t∈Z(−mM,mM−1)

|u(t)|, ∀u ∈ Em.
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For u ∈ Em, we define the functional Jm by

Jm(u) =
1
2

mM−1∑
t=−mM

Lu(t) · u(t)−
mM−1∑
t=−mM

F (t, u(t+ T ), u(t)). (2.3)

Clearly, Jm ∈ C1(Em,R) and for any u = {u(t)}t∈Z ∈ Em, by the periodicity of
{u(t)}t∈Z, we can compute the partial derivative as

∂Jm(u)
∂u(t)

= Lu(t)− f(t, u(t+ T ), u(t), u(t− T )), ∀t ∈ Z(−mM,mM − 1). (2.4)

Thus, u is a critical point of Jm on Em if and only if

Lu(t) = f(t, u(t+ T ), u(t), u(t− T )), ∀t ∈ Z(−mM,mM − 1).

Due to the periodicity of u = {u(t)}t∈Z ∈ Em and f(t, v1, v2, v3) in the first variable
t, we reduce the existence of periodic solutions of (1.1) to the existence of critical
points of Jm on Em. That is, the functional Jm is just the variational framework
of (1.1).

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(PS condition for short) if any sequence {u(t)} ⊂ E for which {J (u(t))} is bounded
and J ′ (u(t))→ 0 (t→∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its
boundary.

Lemma 2.1 (Mountain Pass Lemma [27]). Let E be a real Banach space and
J ∈ C1(E,R) satisfy the PS condition. If J(0) = 0 and

(J1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (2.5)

where
Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (2.6)

Lemma 2.2. Assume that (H1) holds. Then there exist constants λ and λ̄ inde-
pendent of m, such that

λ‖u‖2 ≤
mM−1∑
t=−mM

Lu(t) · u(t) ≤ λ̄‖u‖2. (2.7)

Proof. Let
mM−1∑
t=−mM

Lu(t) · u(t) = (Pmu, u),

where u = (u(−mM), . . . , u(−1), u(0), u(1), . . . , u(mM − 1))∗ and

Pm =

 b(−mM) a(−mM) 0 ... 0 a(−mM−1)
a(−mM) b(−mM+1) a(−mM+1) ... 0 0

... ... ... ... ... ...
0 0 0 ... b(mM−2) a(mM−2)

a(mM−1) 0 0 ... a(mM−2) b(mM−1)


which is a 2mM × 2mM matrix. By (H1), Pm is positive definite.
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Let λ−mM , λ−mM+1, . . . , λ−1, λ0, λ1, . . . , λmM−2, λmM−1 be the eigenvalues of
Pm. Applying matrix theory, we see that λ ≤ λi ≤ λ, i ∈ Z(−mM,mM −1). From
the definition of the norm ‖ · ‖, (2.7) is obviously true. �

3. Proof of main results

In this section, we shall prove the results stated in Section 1 by using the critical
point theory.

3.1. Proof of Theorem 1.1.

Lemma 3.1. Suppose that (H1), (H2)–(H6) are satisfied. Then Jm satisfies the
PS condition.

Proof. Assume that {uj}j∈N in Em is a sequence such that {Jm(uj)}j∈N is bounded.
Then there exists a constant K1 > 0 such that −K1 ≤ Jm(uj). By (2.7) and (H4’),
it is easy to see that

−K1 ≤ Jm(uj) ≤
λ̄

2
‖uj‖2 −

mM−1∑
t=−mM

{c1[u2
j (t+ T ) + u2

j (t)] + b1 − ζ1}

=
λ̄

2
‖uj‖2 − 2c1‖uj‖2 + 2mM (ζ1 − b1) , ∀j ∈ N.

Therefore, (
2c1 −

λ̄

2
)
‖uj‖2 ≤ 2mM(ζ1 − b1) +K1. (3.1)

Since c1 > λ̄/4, (3.1) implies that {uj}j∈N is bounded in Em. Thus, {uj}j∈N
possesses a convergence subsequence in Em. The desired result follows. �

Lemma 3.2. Suppose that (H1)–(H6) are satisfied. Then for any given positive
integer m, (1.1) possesses a 2mM -periodic solution um ∈ Em.

Proof. In our case, it is clear that Jm(0) = 0. By Lemma 3.1, Jm satisfies the PS
condition. By (H3), we have

Jm(u) ≥ λ

2
‖u‖2 − a1

mM−1∑
t=−mM

[u2(t) + u2(t+ T )]

≥ λ

2
‖u‖2 − 2a1‖u‖2

=
(λ

2
− 2a1

)
‖u‖2.

Taking α1 = (λ2 − 2a1)δ2
1 > 0, we obtain

Jm(u)|∂Bδ1 ≥ α1 > 0,

which implies that Jm satisfies the condition (J1) of the Mountain Pass Lemma.
Next, we shall verify the condition (J2) of the Mountain Pass Lemma.. There

exists a sufficiently large number ρ > max{ρ1, δ1} such that(
2c1 −

λ̄

2
)
ρ2 ≥ |b1|. (3.2)



EJDE-2015/150 HOMOCLINIC ORBITS 7

Let e(1)
m ∈ Em and

e(1)
m (t) =

{
ρ, if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0},

e(1)
m (t+ T ) =

{
ρ, if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0}.

Then

F
(
t, e(1)

m (t+ T ), e(1)
m (t)

)
=

{
F (0, ρ, ρ), if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0}.

With (3.2) and (H4), we have

Jm
(
e(1)
m

)
=

1
2

mM−1∑
t=−mM

L
(
e(1)
m (t)

)
·
(
e(1)
m (t)

)
−

mM−1∑
t=−mM

F
(
t,
(
e(1)
m (t+ T )

)
,
(
e(1)
m (t)

))
≤ λ̄

2
‖e(1)
m ‖2 − 2c1ρ2 − b1

= −
(
2c1 −

λ̄

2
)
ρ2 − b1 ≤ 0.

(3.3)

All the assumptions of the Mountain Pass Lemma have been verified. Consequently,
Jm possesses a critical value cm given by (2.5) and (2.6) with E = Em and Γ = Γm,
where

Γm =
{
gm ∈ C([0, 1], Em)|gm(0) = 0, gm(1) = e(1)

m , e(1)
m ∈ Em\Bρ

}
.

Let um denote the corresponding critical point of Jm on Em. Note that ‖um‖ 6= 0
since cm > 0. �

Lemma 3.3. Suppose that (H1)–(H6) are satisfied. Then there exist positive con-
stants δ1 and η1 independent of m such that

δ1 ≤ ‖um‖∞ ≤ η1. (3.4)

Proof. The continuity of F (0, v1, v2) with respect to the second and third vari-
ables implies that there exists a constant τ1 > 0 such that |F (0, v1, v2)| ≤ τ1 for√
v2

1 + v2
2 ≤ δ1. It is clear that

Jm(um) ≤ max
0≤s≤1

{∣∣1
2

mM−1∑
t=−mM

L
(
se(1)
m (t)

)
·
(
se(1)
m (t)

)∣∣
−

mM−1∑
t=−mM

F
(
t, se(1)

m (t+ T ), se(1)
m (t)

)}
≤ λ̄

2
‖e(1)
m ‖2 + τ1

=
λ̄

2
ρ2 + τ1.



8 H. SHI, X. LIU, Y. ZHANG EJDE-2015/150

Let ξ1 = λ̄
2 ρ

2 + τ1. Then Jm(um) ≤ ξ1, which is a bound independent of m. From
(2.3) and (2.4), we have

Jm(um) =
1
2

mM−1∑
t=−mM

[∂F (t− T, um(t), um(t− T ))
∂v2

um(t)

+
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
−

mM−1∑
t=−mM

F (t, um(t+ T ), um(t))

=
1
2

mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v1

um(t+ T )

+
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
−

mM−1∑
t=−mM

F (t, um(t+ T ), um(t))

≤ ξ1.

By (H5) and (H6), there exists a constant η1 > 0 such that

1
2

(∂F (t, v1, v2)
∂v1

v1 +
∂F (t, v1, v2)

∂v2
v2

)
− F (t, v1, v2) > ξ1,

for all t ∈ Z and
√
v2

1 + v2
2 ≥ η1, which implies that |um(t)| ≤ η1 for all t ∈ Z; that

is, ‖um‖∞ ≤ η1.
From the definition of Jm, we have

0 = (J ′m(um), um)

≥ λ‖um‖2 −
mM−1∑
t=−mM

[∂F (t− T, um(t), um(t− T ))
∂v2

um(t)

+
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
.

This inequality and (H3) yield

λ‖um‖2 ≤
mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v1

um(t+ T )

+
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
≤
{ mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v1

]2}1/2

‖um‖

+
{ mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v2

]2}1/2

‖um‖.

That is,

λ‖um‖ ≤
{ mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v1

]2}1/2
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+
{ mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v2

]2}1/2

.

Thus,

λ2‖um‖2 ≤ 2
mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v1

]2
+ 2

mM−1∑
t=−mM

[∂F (t, um(t+ T ), um(t))
∂v2

]2
.

(3.5)

From this inequality and (H3), we obtain

λ2‖um‖2 ≤ 2
mM−1∑
t=−mM

[2a1um(t+ T )]2 + 2
mM−1∑
t=−mM

[2a1um(t)]2 = 16a2
1‖um‖2.

Thus, we have um = 0. This contradicts ‖um‖ 6= 0, which shows that

‖um‖∞ ≥ δ1,

and the proof is complete. �

Proof of Theorem 1.1. Now we shall give the existence of a nontrivial homoclinic
orbit. Consider the sequence {um(t)}t∈Z of 2mM -periodic solutions found in Sec-
tion 3.1. First, by (3.4), for any m ∈ N, there exists a constant tm ∈ Z independent
of m such that

|um(tm)| ≥ δ1. (3.6)

Since a(t), b(t) and f(t, v1, v2, v3) are M -periodic in t, {um(t + jM)} is also
2mM -periodic solution of (1.1) (for all j ∈ N). Hence, making such shifts, we can
assume that tm ∈ Z(0,M − 1) in (3.6). Moreover, passing to a subsequence of ms,
we can even assume that tm = t0 is independent of m.

Next, we extract a subsequence, still denote by um, such that

um(t)→ u(t), as m→∞, ∀t ∈ Z.

Inequality (3.6) implies that |u(t0)| ≥ ξ and, hence, u = {u(t)} is a nonzero se-
quence. Moreover,

Lu(t)− f(t, u(t+ T ), u(t), u(t− T ))

= lim
m→∞

[Lum(t)− f(t, um(t+ T ), um(t), um(t− T ))] = 0.

So u = {u(t)} is a solution of (1.1).
Finally, we show that u ∈ l2. For um ∈ Em, let

Pm =
{
t ∈ Z : |um(t)| <

√
2

2
δ1,−mM ≤ t ≤ mM − 1

}
,

Qm =
{
t ∈ Z : |um(t)| ≥

√
2

2
δ1,−mM ≤ t ≤ mM − 1

}
.

Since F (t, v1, v2) ∈ C1(Z× R2,R), there exist constants ξ̄ > 0, ξ > 0 such that

max
{[∂F (t, v1, v2)

∂v1

]2
+
[∂F (t, v1, v2)

∂v2

]2
: δ1 ≤

√
v2

1 + v2
2 ≤ η1, t ∈ Z

}
≤ ξ̄,
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min
{1

2

[∂F (t, v1, v2)
∂v1

v1 +
∂F (t, v1, v2)

∂v2
v2

]
− F (t, v1, v2) :

δ1 ≤
√
v2

1 + v2
2 ≤ η1, t ∈ Z

}
≥ ξ.

For t ∈ Qm,[∂F (t, um(t+ T ), um(t))
∂v1

]2
+
[∂F (t, um(t+ T ), um(t))

∂v2

]2
≤ ξ̄

ξ

{1
2

[∂F (t, um(t+ T ), um(t))
∂v1

um(t+ T ) +
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
− F (t, um(t+ T ), um(t))

}
.

By (3.5), we have

λ2‖um‖2

≤ 2
∑
t∈Pm

[∂F (t, um(t+ T ), um(t))
∂v1

]2
+ 2

∑
t∈Pm

[∂F (t, um(t+ T ), um(t))
∂v2

]2
+ 2

∑
t∈Qm

[∂F (t, um(t+ T ), um(t))
∂v1

]2
+ 2

∑
t∈Qm

[∂F (t, um(t+ T ), um(t))
∂v2

]2
≤ 2

∑
t∈Pm

[2a1um(t+ T )]2 + 2
∑
t∈Pm

[2a1um(t)]2

+
ξ̄

ξ

∑
t∈Qm

{1
2

[∂F (t, um(t+ T ), um(t))
∂v1

um(t+ T )

+
∂F (t, um(t+ T ), um(t))

∂v2
um(t)

]
− F (t, um(t+ T ), um(t))

}
≤ 16a2

1‖um‖2 +
ξ̄ξ1
ξ
.

Thus,

‖um‖2 ≤
ξ̄ξ1

ξ
(
λ2 − 16a2

1

) .
For any fixed D ∈ Z and m large enough, we have

D∑
t=−D

u2
m(t) ≤ ‖um‖2 ≤

ξ̄ξ1

ξ
(
λ2 − 16a2

1

) .
Since ξ̄, ξ, ξ1, λ and a1 are constants independent of m, passing to the limit, we have

D∑
t=−D

u2(t) ≤ ξ̄ξ1

ξ
(
λ2 − 16a2

1

) .
By the arbitrariness of D, u ∈ l2. Therefore, u satisfies u(t) → 0 as |t| → ∞. The
existence of a nontrivial homoclinic orbit is obtained. �
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3.2. Proof Theorem 1.5. Let

J∗m(u) = −1
2

mM−1∑
t=−mM

Lu(t) · u(t) +
mM−1∑
t=−mM

F (t, u(t+ T ), u(t)). (3.7)

Then
∂J∗m(u)
∂u(t)

= −Lu(t) + f(t, u(t+ T ), u(t), u(t− T )), (3.8)

for all t ∈ Z(−mM,mM − 1).

Lemma 3.4. Suppose that (H1), (H2), (H7), (H8) are satisfied. Then J∗m satisfies
the PS condition.

.

Proof. Assume that {uj}j∈N in Em is a sequence such that {J∗m(uj)}j∈N is bounded.
Then there exists a constant K2 > 0 such that −K2 ≤ J∗m(uj). By (2.7) and (H9’),
it is easy to see that

−K2 ≤ J∗m(uj) ≤ −
λ

2
‖uj‖2 + 2c2‖uj‖2 + 2mM (ζ2 + b2) , ∀j ∈ N.

Therefore,

−
(
2c2 −

λ

2
)
‖uj‖2 ≤ 2mM (ζ2 + b2) +K2. (3.9)

Since c2 < λ/4, (3.9) implies that {uj}j∈N is bounded in Em. Thus, {uj}j∈N
possesses a convergence subsequence in Em. The desired result follows. �

Lemma 3.5. Suppose that (H1), (H2), (H7), (H8) are satisfied. Then for any given
positive integer m, (1.1) possesses a 2mM -periodic solution u∗m ∈ Em.

Proof. In our case, it is clear that J∗m(0) = 0. By Lemma 3.4, J∗m satisfies the PS
condition. By (H7), we have

J∗m(u) ≥ − λ̄
2
‖u‖2 + a2

mM−1∑
t=−mM

[u2(t) + u2(t+ T )]

≥ − λ̄
2
‖u‖2 + 2a2‖u‖2

= −
( λ̄

2
− 2a2

)
‖u‖2.

Taking α2 = −( λ̄2 − 2a2)δ2
2 > 0, we obtain

J∗m(u)|∂Bδ2 ≥ α2 > 0,

which implies that J∗m satisfies the condition (J1) of the Mountain Pass Lemma.
Next, we shall verify the condition (J2) of the Mountain Pass Lemma. There

exists a sufficiently large number η > max{ρ2, δ2} such that(
2c2 −

λ̄

2
)
η2 ≥ |b2|. (3.10)

Let e(2)
m ∈ Em and

e(2)
m (t) =

{
η, if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0},
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e(2)
m (t+ T ) =

{
η, if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0}.

Then

F
(
t, e(2)

m (t+ T ), e(2)
m (t)

)
=

{
F (0, η, η), if t = 0,
0, if t ∈ {j ∈ Z : −mM ≤ j ≤ mM − 1 and j 6= 0},

With (3.10) and (H9), we have

J∗m
(
e(2)
m

)
= −1

2

mM−1∑
t=−mM

L
(
e(2)
m (t)

)
·
(
e(2)
m (t)

)
+

mM−1∑
t=−mM

F
(
t, e(2)

m (t+ T ), e(2)
m (t)

)
≤ −λ

2
‖e(2)
m ‖2 + 2c2η2 + b2

= −
(λ

2
− 2c2

)
η2 + b2 ≤ 0.

(3.11)

All the assumptions of the Mountain Pass Lemma have been verified. Conse-
quently, J∗m possesses a critical value c∗m given by (2.5) and (2.6) with E = Em and
Γ = Γm, where

Γm =
{
gm ∈ C([0, 1], Em)|gm(0) = 0, gm(1) = e(2)

m , e(2)
m ∈ Em\Bη

}
.

Let u∗m denote the corresponding critical point of J∗m on Em. Note that ‖u∗m‖ 6= 0
since c∗m > 0. �

Lemma 3.6. Suppose that (H1), (H2), (H7), (H8) are satisfied. Then there exist
positive constants δ2 and η2 independent of m such that

δ2 ≤ ‖u∗m‖∞ ≤ η2. (3.12)

Proof. The continuity of F (0, v1, v2) with respect to the second and third vari-
ables implies that there exists a constant τ2 > 0 such that |F (0, v1, v2)| ≤ τ2 for√
v2

1 + v2
2 ≤ δ2. It is clear that

|J∗m (u∗m) | ≤ max
0≤s≤1

{∣∣− 1
2

mM−1∑
t=−mM

L
(
se(2)
m (t)

)
·
(
se(2)
m (t)

)∣∣
+

mM−1∑
t=−mM

F
(
t, se(2)

m (t+ T ), se(2)
m (t)

)}
≤ λ̄

2
‖e(2)
m ‖2 + τ2

=
λ̄

2
η2 + τ2.

(3.13)

Let ξ2 = λ̄
2 η

2 + τ2, we have that |J∗m (u∗m) | ≤ ξ2, which is a bound independent
of m. Then by (3.7) and (3.8), we have

ξ2 ≥ J∗m(um)
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= −1
2

mM−1∑
t=−mM

[∂F (t− T, u∗m(t), u∗m(t− T ))
∂v2

u∗m(t)

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
+

mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t))

= −1
2

mM−1∑
t=−mM

[∂F (t, u∗m(t+ T ), u∗m(t))
∂v1

u∗m(t+ T )

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
+

mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t))

≥
(2− µ

2
) mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t)) .

Then
mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t)) ≤ 2ξ2
2− µ

. (3.14)

Since

J∗m(u∗m) = −1
2

mM−1∑
t=−mM

[∂F (t− T, u∗m(t), u∗m(t− T ))
∂v2

u∗m(t)

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
+

mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t))

≥ −ξ2.

This inequality combined with (3.14) gives us

1
2
λ‖u∗m‖ ≤

1
2

mM−1∑
t=−mM

[∂F (t− T, u∗m(t), u∗m(t− T ))
∂v2

u∗m(t)

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
≤

mM−1∑
t=−mM

F (t, u∗m(t+ T ), u∗m(t)) + ξ2

≤ (4− µ)ξ2
2− µ

,

(3.15)

‖u∗m‖ ≤
2(4− µ)ξ2
(2− µ)λ

, (3.16)

whose right-hand side is independent of m. Then ‖u∗m‖ ≤ η2, which implies

‖u∗m‖∞ ≤ η2.

From the definition of J∗m, we have

0 =
(
J∗

′

m (u∗m), u∗m
)
≥ −λ̄‖u∗m‖2 +

mM−1∑
t=−mM

f(t, u∗m(t+ T ), u∗m(t), u∗m(t− T ))u∗m(t).
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This inequality combined with (H7) yields

λ̄‖u∗m‖2 ≥
mM−1∑
t=−mM

[∂F (t− T, u∗m(t), u∗m(t− T ))
∂v2

u∗m(t)

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
=

mM−1∑
t=−mM

[∂F (t, u∗m(t+ T ), u∗m(t))
∂v1

u∗m(t+ T )

+
∂F (t, u∗m(t+ T ), u∗m(t))

∂v2
u∗m(t)

]
≥ 2a2

mM−1∑
t=−mM

[
(u∗m(t+ T ))2 + (u∗m(t))2 ]

= 4a2‖u∗m‖2.

Thus, we have u∗m = 0. This contradicts ‖u∗m‖ 6= 0, which shows that ‖u∗m‖∞ ≥ δ2,
and the proof is complete. �

The proof of Theorem 1.5 is done similarly to the proof of Theorem 1.1. We
omit it here for simplicity.

4. Examples

As an application of Theorems 1.1 and 1.5, we give two examples that illustrate
our main results.

Example 4.1. Let

f(t, v1, v2, v3) = γv2

( v2
1 + v2

2

v2
1 + v2

2 + 1
+

v2
2 + v2

3

v2
2 + v2

3 + 1

)
,

F (t, v1, v2) =
γ

2
[v2

1 + v2
2 − ln(v2

1 + v2
2 + 1)],

where γ > λ̄. If (H1) is satisfied, then it is easy to verify that all the assumptions of
Theorem 1.1 are satisfied. Consequently, there exists a nontrivial homoclinic orbit.

Example 4.2. Let

f(t, v1, v2, v3) =


v2[(v2

1 + v2
2)

µ
2−1 + (v2

2 + v2
3)

µ
2−1],

if (v1, v2) 6= (0, 0) and (v2, v3) 6= (0, 0),

0, if (v1, v2) = (0, 0) or (v2, v3) = (0, 0),

and
F (t, v1, v2) =

1
µ

(v2
1 + v2

2)µ/2,

where 1 < µ < 2. If (H1) is satisfied, then it is easy to verify all the assumptions of
Theorem 1.5 are satisfied. Consequently, there exists a nontrivial homoclinic orbit.

Acknowledgments. This project is supported by the National Natural Science
Foundation of China (No. 11401121), by the Natural Science Foundation of Guang-
dong Province (No. S2013010014460), and by the Hunan Provincial Natural Science
Foundation of China (No. 2015JJ2075).



EJDE-2015/150 HOMOCLINIC ORBITS 15

References

[1] R. P. Agarwal; Difference Equations and Inequalities: Theory, Methods and Applications,
Marcel Dekker: New York, 2000.

[2] P. Candito, G. Molica Bisci; Existence of solutions for nonlinear algebraic systems with a

parameter, Appl. Math. Comput., 218(23) (2012), pp. 11700-11707.
[3] P. Chen, H. Fang; Existence of periodic and subharmonic solutions for second-order p-

Laplacian difference equations, Adv. Difference Equ., 2007 (2007), pp. 1-9.

[4] P. Chen, X. H. Tang; Existence of infinitely many homoclinic orbits for fourth-order differ-
ence systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011),

pp. 4408-4415.
[5] P. Chen, X. H. Tang; Existence and multiplicity of homoclinic orbits for 2nth-order nonlinear

difference equations containing both many advances and retardations, J. Math. Anal. Appl.,

381(2) (2011), pp. 485-505.
[6] P. Chen, X. H. Tang; Infinitely many homoclinic solutions for the second-order discrete

p-Laplacian systems, Bull. Belg. Math. Soc., 20(2) (2013), pp. 193-212.

[7] P. Chen, X. H. Tang; Existence of homoclinic solutions for some second-order discrete Hamil-
tonian systems, J. Difference Equ. Appl., 19(4) (2013), pp. 633-648.

[8] P. Chen, Z. M. Wang; Infinitely many homoclinic solutions for a class of nonlinear difference

equations, Electron. J. Qual. Theory Differ. Equ., (47) (2012), pp. 1-18.
[9] P. Cull, M. Flahive, R. Robson; Difference Equations: From Rabbits to Chaos, Springer:

New York, 2005.

[10] X.Q. Deng, G. Cheng; Homoclinic orbits for second order discrete Hamiltonian systems with
potential changing sign, Acta Appl. Math., 103(3) (2008), pp. 301-314.

[11] H. Fang, D. P. Zhao; Existence of nontrivial homoclinic orbits for fourth-order difference
equations, Appl. Math. Comput., 214(1) (2009), pp. 163-170.

[12] C. J. Guo, R. P. Agarwal, C. J. Wang, D. O’Regan; The existence of homoclinic orbits for a

class of first order superquadratic Hamiltonian systems, Mem. Differential Equations Math.
Phys., 61 (2014), pp. 83-102.

[13] C. J. Guo, D. O’Regan, R. P. Agarwal; Existence of homoclinic solutions for a class of

the second-order neutral differential equations with multiple deviating arguments, Adv. Dyn.
Syst. Appl., 5(1) (2010), pp. 75-85.

[14] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Existence of subharmonic solutions and

homoclinic orbits for a class of high-order differential equations, Appl. Anal., 90(7) (2011),
pp. 1169-1183.

[15] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Homoclinic orbits for a singular second-

order neutral differential equation, J. Math. Anal. Appl., 366(2) (2010), pp. 550-560.
[16] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Existence and multiplicity of homoclinic

orbits of a second-order differential difference equation via variational methods, Appl. Math.

Inform. Mech., 4(1) (2012), pp. 1-15.
[17] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Existence of homoclinic orbits of a class

of second order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B
Appl. Algorithms, 20(6) (2013), pp. 675-690.

[18] Z. M. Guo, J. S. Yu; Existence of periodic and subharmonic solutions for second-order su-
perlinear difference equations, Sci. China Math., 46(4) (2003), pp. 506-515.

[19] Z. M. Guo, J. S. Yu; The existence of periodic and subharmonic solutions of subquadratic

second order difference equations, J. London Math. Soc., 68(2) (2003), pp. 419-430.

[20] Y. H. Long; Homoclinic solutions of some second-order non-periodic discrete systems, Adv.
Difference Equ., 2011 (2011), pp. 1-12.

[21] Y. H. Long; Homoclinic orbits for a class of noncoercive discrete Hamiltonian systems, J.
Appl. Math., 2012 (2012), pp. 1-21.

[22] M.J. Ma, Z.M. Guo; Homoclinic orbits for second order self-adjoint difference equations, J.

Math. Anal. Appl., 323(1) (2006), pp. 513-521.

[23] M.J. Ma, Z.M. Guo; Homoclinic orbits and subharmonics for nonlinear second order differ-
ence equations, Nonlinear Anal., 67(6) (2007), pp. 1737-1745.

[24] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer: New
York, 1989.



16 H. SHI, X. LIU, Y. ZHANG EJDE-2015/150
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