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INVERSE COEFFICIENT PROBLEM FOR THE SEMI-LINEAR
FRACTIONAL TELEGRAPH EQUATION

HALYNA LOPUSHANSKA, VITALIA RAPITA

Abstract. We establish the unique solvability for an inverse problem for semi-

linear fractional telegraph equation

Dαt u+ r(t)Dβt u−∆u = F0(x, t, u,Dβt u), (x, t) ∈ Ω0 × (0, T ]

with regularized fractional derivatives Dαt u,D
β
t u of orders α ∈ (1, 2), β ∈ (0, 1)

with respect to time on bounded cylindrical domain. This problem consists

in the determination of a pair of functions: a classical solution u of the first
boundary-value problem for such equation, and an unknown continuous coef-

ficient r(t) under the over-determination conditionZ
Ω0

u(x, t)ϕ(x)dx = F (t), t ∈ [0, T ]

with given functions ϕ and F .

1. Introduction

The existence and uniqueness theorems for fractional Cauchy problems were
proved in [2, 4, 5, 7, 11, 12, 13, 14, 15, 16, 24] and other works. The conditions of
classical solvability of the first boundary-value problem for equation

Dβ
t u(x, t)−A(x,D)u(x, t) = F0(x, t)

with regularized fractional derivative (see, for example, [4]) and some elliptic dif-
ferential second order operator A(x,D) were obtained in [18] and [19].

Equations with fractional derivatives are applied in studying of anomalous diffu-
sion and various processes in physics, mechanics, chemistry and engineering. The
telegraph fractional equations in theory of thermal stresses is considered, for exam-
ple, in [21]. Inverse problems to such equations arise in many branches of science
and engineering. Some inverse boundary-value problems to diffusion-wave equation
with different unknown functions or parameters were investigated, for example, in
[1, 3, 6, 9, 17, 20, 22, 25]. In particular, the article [1] was devoted to determina-
tion of a source term for a time fractional diffusion equation with an integral type
over-determination condition.
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In this note we prove the existence and uniqueness of a classical solution (u, r)
of the inverse boundary-value problem

Dα
t u+ r(t)Dβ

t u−∆u = F0(x, t, u,Dβ
t u), (x, t) ∈ Ω0 × (0, T ], (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω0 × [0, T ], (1.2)

u(x, 0) = F1(x), x ∈ Ω̄0, (1.3)

ut(x, 0) = F2(x), x ∈ Ω̄0, (1.4)∫
Ω0

u(x, t)ϕ0(x)dx = F (t), t ∈ [0, T ] (1.5)

for regularized telegraph equation, where α ∈ (1, 2), β ∈ (0, 1), Ω0 is a bounded
domain in RN , N ≥ 3, with a boundary ∂Ω0 of class C1+s, s ∈ (0, 1), F0, F1, F2,
F , ϕ0 – given functions. We shall use Green’s functions to prove the solvability of
this problem.

2. Definitions and auxiliary results

We shall use the notation: Ω1 = ∂Ω0, Qi = Ωi × (0, T ], i = 0, 1, Q2 = Ω0,
D(Rm) is a space of indefinitely differentiable functions with compact supports in
Rm, m = 1, 2, . . . , D(Q0) = {v ∈ C∞(Q0) : ( ∂∂t )

kv|t=T = 0, k = 0, 1, . . . },
D′(Rm) and D′(Q0) are spaces of linear continuous functionals (generalized func-

tions [23, p. 13-15]) over D(Rm) and D(Q0), respectively, (f, ϕ) stands for the value
of f ∈ D′(Rm) on the test function ϕ ∈ D(Rm) and also the value of f ∈ D′(Q0)
on ϕ ∈ D(Q0).

We denote by f ∗ g the convolution of generalized functions f and g, use the
function

fλ(t) =

{
θ(t)tλ−1

Γ(λ) for λ > 0

f ′1+λ(t) for λ ≤ 0,
where Γ(z) is the Gamma-function, and θ(t) is the Heaviside function. Note that

fλ ∗ fµ = fλ+µ .

Also note that the Riemann-Liouville derivative v(α)
t (x, t) of order α > 0 is defined

by
v

(α)
t (x, t) = f−α(t) ∗ v(x, t)

and

Dα
t v(x, t) =

1
Γ(1− α)

[ ∂
∂t

∫ t

0

v(x, τ)
(t− τ)α

dτ − v(x, 0)
tα

]
= v

(α)
t (x, t)− f1−α(t)v(x, 0), for α ∈ (0, 1),

while

Dα
t v(x, t) =

1
Γ(2− α)

[ ∂
∂t

∫ t

0

vτ (x, τ)
(t− τ)α−1

dτ − vt(x, 0)
(t− τ)α−1

]
= v

(α)
t (x, t)− f1−α(t)v(x, 0)− f2−α(t)vt(x, 0) for α ∈ (1, 2).

We denote D1
t v = ∂v

∂t .
Let C(Q0), C(Q0), C[0, T ] be spaces of continuous functions on Q0, Q0 and

[0, T ], respectively, Cγ(Ω0) (Cγ(Ω̄0)) be a space of bounded continuous functions
on Ω0 (Ω̄0) satisfying Hölder continuity condition, Cγ(Qi) (Cγ(Q̄i)), i = 0, 1, be a
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space of bounded continuous functions on Qi (Q̄i) which for all t ∈ (0, T ] satisfies
Hölder continuity condition with respect to space variables, Cγ(Q0×R2) be a space
of bounded continuous functions f(x, t, v, z) on Q0 × R2 which for all t ∈ (0, T ],
v, z ∈ R satisfies Hölder continuity condition with respect to space variables x ∈ Ω0,

Cβ(Q0) = {v ∈ C(Q0) : Dβ
t v ∈ C(Q0)},

Cγβ (Q0) = {v ∈ Cγ(Q0) : Dβ
t v ∈ Cγ(Q0)},

C2,α(Q0) = {v ∈ C(Q0) : ∆v,Dα
t v ∈ C(Q0)},

C2,α(Q̄0) = {v ∈ C2,α(Q0) : v, vt ∈ C(Q̄0)}.
We use the following assumptions:

(A1) F0 ∈ Cγ(Q0 × R2), γ ∈ (0, 1), |F0(x, t, v, w)| ≤ A0 +B0[|v|q + |w|p],
|F0(x, t, v1, w1)− F0(x, t, v2, w2)| ≤ D0[|v1 − v2|q + |w1 − w2|p]

for all v, w, v1, v2, w1, w2 ∈ R where p, q ∈ [0, 2], A0, B0, D0 are some posi-
tive constants,

(A2) F1 ∈ Cγ(Ω̄0), F1|Ω1 = 0,
(A3) F2 ∈ Cγ(Ω̄0),
(A4) F,DβF,DαF ∈ C[0, T ], there exists f := inft∈[0,T ] |DβF (t)| > 0,
(A5) ϕ0 ∈ C2(Ω̄0), ϕ0|Ω1 = 0.

Definition 2.1. A pair of functions (u, r) ∈ C2,α(Q̄0)×C[0, T ] satisfying (1.1) on
Q0 and the conditions (1.2)-(1.5) is called a solution of the problem (1.1)-(1.5).

From (1.3), (1.4) and (1.5), it follows the necessary agreement conditions∫
Ω0

F1(x)ϕ0(x)dx = F (0),
∫

Ω0

F2(x)ϕ0(x)dx = F ′(0). (2.1)

We introduce the operators

(Lv)(x, t) ≡ v(α)
t (x, t)−∆v(x, t), (x, t) ∈ Q0, v ∈ D′(Q0),

(Lregv)(x, t) ≡ Dα
t v(x, t)−∆v(x, t), (x, t) ∈ Q0, v ∈ C2,α(Q̄0).

Definition 2.2. A vector-function (G0(x, t, y, τ), G1(x, t, y), G2(x, t, y)) is called a
Green’s vector-function of the problem

(Lregu)(x, t) = g0(x, t), (x, t) ∈ Q0, (2.2)

u(x, t) = 0, (x, t) ∈ Q̄1, (2.3)

u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ Ω̄0, (2.4)

if for rather regular g0, g1, g2 the function

u(x, t) =
∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)g0(y, τ)dy +
2∑
j=1

∫
Ω0

Gj(x, t, y)gj(y)dy, (2.5)

for (x, t) ∈ Q0, is the classical solution (in C2,α(Q̄0)) of the first boundary-value
problem (2.2)–(2.4).

It follows from Definition 2.2 that

(LG0)(x, t, y, τ) = δ(x− y, t− τ), (x, t), (y, τ) ∈ Q0,

(LregGj)(x, t, y) = 0, (x, t) ∈ Q0, y ∈ Ω0, j = 1, 2,
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G1(x, 0, y) = δ(x− y),
∂

∂t
G1(x, 0, y) = 0,

G2(x, 0, y) = 0,
∂

∂t
G2(x, 0, y) = δ(x− y), x, y ∈ Ω0

where δ is Dirac delta-function.

Lemma 2.3 ([15]). The following relations hold:

Gj(x, t, y) =
∫ t

0

fj−α(τ)G0(x, t, y, τ)dτ, (x, t) ∈ Q̄0, y ∈ Ω0, j = 1, 2.

Lemma 2.4. A Green’s vector-function of the first boundary-value problem (2.2)–
(2.4) exists.

The above lemma is proved following the strategy in [17, Lemma 2].

Theorem 2.5. If g0 ∈ Cγ(Q0), γ ∈ (0, 1), gj ∈ Cγ(Ω̄0), j = 1, 2, g1|Ω1 = 0 then
there exists a unique solution u ∈ C2,α(Q̄0) of (2.2)–(2.4). It is defined by

u(x, t) =
(
G0g0

)
(x, t) +

(
G1g1)(x, t) +

(
G2g2)(x, t), (x, t) ∈ Q̄0 (2.6)

where

(G0g0)(x, t) =
∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)g0(y, τ)dy,

(Gjgj)(x, t) =
∫

Ω0

Gj(x, t, y)gj(y)dy, j = 1, 2.

Proof. Taking Lemmas 2.3 and 2.4 into account, as in [7, 8, 10, 24] for the Cauchy
problems, we show that the function (2.6) belongs to C2,α(Q̄0) and satisfies the
problem (2.2)–(2.4). We use the estimates founded in [7, 11, 15, 24]:

|G0(x, t, y, τ)| ≤ C∗0
(t− τ)|x− y|N−2

, |x− y|2 < 4(t− τ)α,

|Gj(x, t, y)| ≤
C∗j t

j−1−α

|x− y|N−2
, j = 1, 2, |x− y|2 < 4tα,

|G0(x, t, y, τ)| ≤ Ĉ0(t− τ)α−1

|x− y|N
( |x− y|2

4(t− τ)α
)1+ N

2(2−α)
e
−c( |x−y|2

4a0(t−τ)α )
1

2−α

≤ C0(t− τ)α−1

|x− y|N
, |x− y|2 > 4(t− τ)α

Gj(x, t, y) ≤ Ĉjt
j−1

|x− y|N
( |x− y|2

4tα
) N

2(2−α)
e−c(

|x−y|2
4tα )

1
2−α

≤ Cjt
j−1

|x− y|N
, j = 1, 2, |x− y|2 > 4tα

where c, C∗j , Cj , Ĉj (j = 0, 1, 2) are positive constants;

|Gj(x+ ∆x, t+ ∆t, y, τ)−Gj(x, t, y, τ)| ≤ Aj(x, t, y, τ)[|∆x|+ |∆t|α/2]γ ,

|Dβ
t Gj(x+ ∆x, t+ ∆t, y, τ)−Dβ

t Gj(x, t, y, τ)|

≤ Aβ,j(x, t, y, τ)[|∆x|+ |∆t|α/2]γ

∀(x, t), (x+ ∆x, t+ ∆t) ∈ Q̄0, (y, τ) ∈ Q̄j , j = 0, 1, 2
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with some 0 < γ < 1 where non-negative functions Aj(x, t, y, τ), Aβ,j(x, t, y, τ) have
the same kind of estimates asGj(x, t, y, τ), Dβ

t Gj(x, t, y, τ), j = 0, 1, 2, have, respec-
tively, and Gj(x, t, y, τ) = Gj(x, t, y), Aj(x, t, y, τ) = Aj(x, t, y), Aβ,j(x, t, y, τ) =
Aβ,j(x, t, y) for j = 1, 2. Note that for the general boundary-value problem to a
parabolic equation with partial derivatives the last properties of a Green’s vector-
function were obtained in [10]. �

3. Existence and uniqueness theorems for the inverse problem

Now we prove the existence of a solution for the inverse problem (1.1)–(1.5).
It follows from the theorem 2.5 that under assumptions (A1), (A2), (A3) for a
given r ∈ C[0, T ] the solution u ∈ C2,α(Q̄0) of the first boundary-value problem
(1.1)–(1.4) satisfies

u(x, t) = −
∫ t

0

r(τ)dτ
∫

Ω0

G0(x, t, y, τ)Dβ
τ u(y, τ)dy

+ h0(x, t, u,Dβ
t u) + h(x, t), (x, t) ∈ Ω0

(3.1)

where

h0(x, t, u,Dβ
t u) =

∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)F0(y, τ, u(y, τ), Dβ
τ u(y, τ))dy,

h(x, t) =
2∑
j=1

∫
Ω0

Gj(x, t, y)Fj(y)dy, (x, t) ∈ Ω0.

(3.2)

Conversely, any solution u ∈ Cγβ (Q0) of (3.1) belongs to C2,α(Q̄0) and is the solution
of (1.1)–(1.5).

It follows from the equation (1.1) and assumption (A5) that∫
Ω0

Dα
t u(x, t)ϕ0(x)dx+ r(t)

∫
Ω0

Dβ
t u(x, t)ϕ0(x)dx

=
∫

Ω0

u(x, t)∆ϕ0(x)dx+
∫

Ω0

F0(x, t, u(x, t), Dβ
t u(x, t))ϕ0(x)dx, t ∈ (0, T ].

Using (1.5) we obtain

DαF (t) + r(t)DβF (t)

=
∫

Ω0

u(x, t)∆ϕ0(x)dx+
∫

Ω0

F0(x, t, u(x, t), Dβ
t u(x, t))ϕ0(x)dx

(here DαF (t) = Dα
t F (t) and so on); that is, by using (A4),

r(t) =
[ ∫

Ω0

u(x, t)∆ϕ0(x)dx+
∫

Ω0

F0(x, t, u(x, t), Dβ
t u(x, t))ϕ0(x)dx

−DαF (t)
]
[DβF (t)]−1, t ∈ (0, T ].

(3.3)
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Note that, for u ∈ Cγβ (Q0), the function r(t), defined by (3.3), belongs to C[0, T ].
By substituting the right-hand side of (3.3) into (3.1) in place of r(t) we obtain

u(x, t) =
∫ t

0

[DβF (τ)]−1dτ

∫
Ω0

G0(x, t, y, τ)

×
[ ∫

Ω0

F0(z, τ, u(z, τ), Dβ
τ u(z, τ))ϕ0(z)dz

+
∫

Ω0

u(z, τ)∆ϕ0(z)dz −DαF (τ)
]
Dβ
τ u(y, τ)dy

+ h0(x, t, u(x, t), Dβ
t u(x, t)) + h(x, t), (x, t) ∈ Q̄0,

(3.4)

where the functions h0, h are defined by (3.2). We have reduced the problem (1.1)–
(1.5) to system (3.3), (3.4). Conversely, a pair (u, r) ∈ Cγβ (Q0)× C[0, T ] satisfying
(3.3) and (3.4) is a solution of the problem (1.1)-(1.5).

Thus, under assumptions (A1)–(A5) and (2.1), a pair of functions (u, r) ∈
C2,α(Q̄0)×C[0, T ] is the solution of (1.1)-(1.5) if and only if the function u ∈ Cγβ (Q0)
is the solution of (3.4), with r ∈ C[0, T ] defined by (3.3).

Theorem 3.1. Under the assumptions (A1)–(A5) and the condition (2.1), there
exists T ∗ ∈ (0, T ] (Q∗0 = Ω0 × (0, T ∗]) and a solution (u, r) ∈ C2,α(Q̄∗0) × C[0, T ∗]
of (1.1)-(1.5). The function u is the solution of (3.4), and r(t) is defined by (3.3).

Proof. From the previous conclusion, it is sufficient to prove the solvability of the
equation (3.4) in Cγβ (Q0). We shall use the Schauder principle. Let ‖r‖C[0,T ] =
maxt∈[0,T ] |r(t)|, and

‖v‖Cγβ (Q0) = max
{

sup
(x,t)∈Q0

|v(x, t)|, sup
(x,t)∈Q0

|Dβ
t v(x, t)|,

sup
(x,t)∈Q0,|∆x|<1

|v(x+ ∆x, t)− v(x, t)|
|∆x|γ

,

sup
(x,t)∈Q0,|∆x|<1

|Dβ
t v(x+ ∆x, t)−Dβ

t v(x, t)|
|∆x|γ

}
,

Let R be some positive number, and

MR = MR(Q0) = {v ∈ Cγβ (Q0) : ‖v‖Cγβ (Q0) ≤ R}.

On MR we consider the operator

(Pv)(x, t) := −
∫ t

0

[DβF (τ)]−1dτ

∫
Ω0

G0(x, t, y, τ)
[ ∫

Ω0

v(z, τ)∆ϕ0(z)dz

+ F0(z, τ, v(z, τ), Dβ
t v(z, τ))ϕ0(z)dz −Dα

t F (τ)
]
Dβ
τ v(y, τ)dy

+ h0(x, t, v,Dβ
t v) + h(x, t), (x, t) ∈ Ω0, v ∈MR

with the functions h0, h defined by (3.2).
At the beginning we show the existence of R > 0, T ∗ ∈ (0, T ] and therefore

M∗R = MR(Q∗0) such that P : M∗R →M∗R.
For v ∈MR, (x, t) ∈ Q̄0 we find the estimates

|h0(x, t, v,Dβ
t v)|
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=
∣∣∣ ∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)F0(y, τ, v(y, τ), Dβ
t v(y, τ))dy

∣∣∣
≤
∫ t

0

dτ
[ ∫

(y,τ)∈Ω0:

|y−x|<2(t−τ)α/2

|G0(x, t, y, τ)| |F0(y, τ, v(y, τ), Dβ
t v(y, τ))|dy

+
∫

(y,τ)∈Ω0:

|y−x|>2(t−τ)α/2

|G0(x, t, y, τ)| |F0(y, τ, v(y, τ), Dβ
t v(y, τ))|dy

]
≤
∫ t

0

dτ
[ ∫

(y,τ)∈Ω0:

|y−x|<2(t−τ)α/2

C∗

(t− τ)|y − x|N−2

[
A0 + |v(y, τ |q + |Dβ

t v(y, τ))|p
]
dy

+
∫

(y,τ)∈Ω0:

|y−x|>2(t−τ)α/2

C∗

(t− τ)1−α|y − x|N
[
A0 + |v(y, τ |q + |Dβ

t v(y, τ))|p
]]
dy

≤ C
∫ t

0

[ 1
(t− τ)

∫ 2(t−τ)α/2

0

rdr +
1

(t− τ)1−α

∫ diam Ω0

2(t−τ)α/2

dr

r

]
dτ
[
A0 +B0(Rq +Rp)

]
≤ Ĉ

∫ t

0

[
(t− τ)α−1 + (t− τ)α−1 ln

diam Ω0

(t− τ)α/2

]
dτ
[
A0 +B0(Rq +Rp)

]
≤ k0t

α1
[
A0 +B0(Rq +Rp)

]
where C∗, C, Ĉ, k̂, k0 are positive constants, and α1 = α − %, with % an arbitrary
number in (0, 1). Also we have∣∣∣ ∫

Ω0

Gj(x, t, y)Fj(y)dy
∣∣∣

≤
[ ∫

(y,τ)∈Ω0:

|y−x|<2tα/2

Gj(x, t, y)dy +
∫

(y,τ)∈Ω0:

|y−x|>2tα/2

Gj(x, t, y)dy
]
‖Fj‖C(Ω̄0)

≤ c0
[ ∫

(y,τ)∈Ω0:

|y−x|<2tα/2

tj−1−α

|x− y|N−2
dy

+
∫

(y,τ)∈Ω0:

|y−x|>2tα/2

tj−1

|y − x|N
( |y − x|2

4tα
) N

2(2−α) e−c(
|y−x|2

4tα )
1

2−α
dy
]
‖Fj‖C(Ω̄0)

≤ k̂jtj−1
[
1 +

∫ diam Ω0

2tα/2
r

N
2−α−1t−

αN
2(2−α) e

−ĉ
(
r2
tα

) 1
2−α

dr
]
· ‖Fj‖C(Ω̄0)

≤ kjtj−1‖Fj‖C(Ω̄0), j = 1, 2

where c0, ĉ, k̂j , kj (j = 1, 2) are positive constants. Therefore,

|h(x, t)| ≤
∑
j=1,2

kjt
j−1‖Fj‖C(Ω̄0), (x, t) ∈ Q̄0.

Similarly, ∣∣∣ ∫
Ω0

F0(y, τ, v(y, τ), Dβ
t v(y, τ))ϕ0(z)dy

∣∣∣
≤
[
A0 +B0(Rq +Rp)

] ∫
Ω0

|ϕ0(z)|dz ∀(y, τ) ∈ Q̄0
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and therefore∣∣∣ ∫ t

0

[DβF (τ)]−1dτ

∫
Ω0

G0(x, t, y, τ)F0(z, τ, v(z, τ), Dβ
t v(z, τ))ϕ0(z)dz

∣∣∣
≤ k0

f
tα1
[
A0 +B0(Rq +Rp)

] ∫
Ω0

|ϕ0(z)|dz ∀(y, τ) ∈ Q̄0.

Then, given R ≥ 1, we obtain the estimate

|(Pv)(x, t)| ≤ k0

f
tα1(c1R+ c2R

2) +H0(t) ≤ q0t
α1R2 +H0, (x, t) ∈ Q̄0

where

c1 =
∫

Ω0

dx · ‖DαF‖C[0,T ],

c2 = 2B0

(
f +

∫
Ω0

|ϕ0(z)|dz
)

+
∫

Ω0

|∆ϕ0(z)|dz,

H0(t) = A0k0t
α1

(
1 +

1
f

∫
Ω0

|ϕ0(z)|dz
)

+ k1‖F1‖C(Ω̄0) + k2t‖F2‖C(Ω̄0) ≤ H0,

q0 =
k0(c1 + c2)

f
.

In the same way for v ∈MR, (x, t) ∈ Q0, |∆x| < 1 we obtain

|(Pv)(x+ ∆x, t)− (Pv)(x, t)|
|∆x|γ

≤ q1t
α1R2 +H1, (x, t) ∈ Q0.

Here and later qj , cj , Hj (j=1,2,. . . ) are positive numbers.
For every g ∈ Cγ(Q0) we have

Dβ
t

(
G0g

)
(x, t) =

∫ t

0

(t− τ)−βdτ
Γ(1− β)

∫
Ω0

G0(x, t, y, τ)g(y, τ)dy, (x, t) ∈ Q0

and, as previously, we find that

|Dβ
t

(
G0g

)
(x, t)| ≤ q̃0t

α1−β‖g‖C(Q0), (x, t) ∈ Q0, q̃0 = const > 0.

Furthermore,

Dβ
t

(
G1F1

)
(x, t) =

∂

∂t

∫ t

0

(t− τ)−βdτ
Γ(1− β)

∫
Ω0

G1(x, τ, y)F1(y)dy − f1−β(t)F1(x)

=
∫ t

0

f1−β(t− τ)
(
G1F1

)
τ
(x, τ)dτ,

Dβ
t

(
G2F2

)
(x, t) =

∂

∂t

∫ t

0

(t− τ)−βdτ
Γ(1− β)

∫
Ω0

G2(x, τ, y)F2(y)dy − f2−β(t)F2(x)

=
∫ t

0

f1−β(t− τ)
(
G2F2

)
τ
(x, τ)dτ.

Since
(
GjFj

)
τ

(j = 1, 2) are continuous functions on Q̄0, we have∣∣Dβ
t

(
GjFj

)
(x, t)

∣∣ ≤ c2+jt
1−β , (x, t) ∈ Q̄0, j = 1, 2.

So,
|Dβ

t (Pv)(x, t)| ≤ q2t
α2R2 +H2, (x, t) ∈ Q̄0
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and similarly

|Dβ
t (Pv)(x+ ∆x, t)−Dβ

t (Pv)(x, t)|
|∆x|γ

≤ q3t
α2R2 +H3, (x, t) ∈ Q0, |∆x| < 1

for all v ∈MR with α2 = α1 − β and

H2 = c5 + c6‖F1‖C(Ω̄0) + c7t‖F2‖C(Ω̄0),

H3 = c8 + c9‖F1‖C(Ω̄0) + c10‖F2‖C(Ω̄0).

As a result we obtain

‖Pv‖Cγβ (Q0)

≤ max
t∈[0,T ]

max{q0t
α1R2 +H0, q1t

α1R2 +H1, q2t
α2R2 +H2, q3t

α2R2 +H3}

≤ max
t∈[0,T ]

[qR2tα2 +H] ∀v ∈MR, R ≥ 1

with q = max{q0T
β , q1T

β , q2, q3}, H = max{H0, H1, H2, H3}.
To show the inequality

max{qR2tα2 +H, 1} ≤ R ∀t ∈ [0, T ∗], v ∈M∗R (3.5)

consider the function w(s) = qs2tα2 − s, s ≥ 0. We find w′(s) = 2qtα2s − 1 and
prove that s0 = s0(t) = [2qtα2 ]−1 is the point of the minimum of f(s). Then the
inequality

‖Pv‖Cγβ (Q∗0) ≤ R ∀v ∈M∗R
is satisfied for some R ≥ max{1, H}, T ∗ = min{t∗, T} if qtα2s2

0 − s0 ≤ −H and
2qtα2 max{1, H} ≤ 1 for all t ∈ [0, t∗]. We have qtα2s0 − s0 = − 1

4qtα2 . There exists
t∗ > 0 such that 4qtα2H ≤ 1 and 2qtα2 max{1, H} ≤ 1 for all t ∈ [0, t∗]. Then

t∗ = min{[ 1
4qH

]1/α2 , [
1

2qmax{1, H}
]1/α2}.

Note that (2.1) and (A4) imply ‖F1‖C(Ω̄0) > 0. We have proven the existence of
R ≥ 1, T ∗ > 0 such that P : M∗R →M∗R.

The operator P is continuous on

M̃∗R = {v ∈ Cβ(Q∗0) : ‖v‖Cβ(Q∗0) = max{‖v‖C(Q∗0), ‖Dβ
t v‖C(Q∗0)} ≤ R};

thus, on M∗R. Namely, for v1, v2 ∈ M̃∗R, (x, t) ∈ Q∗0,

|(Pv1)(x, t)− (Pv2)(x, t)|

=
∣∣∣ ∫ t

0

[DβF (τ)]−1dτ

∫
Ω0

G0(x, t, y, τ)
[ ∫

Ω0

v2(z, τ)∆ϕ0(z)dz[Dβ
τ v2(y, τ)

−Dβ
τ v1(z, τ)]−

∫
Ω0

[v1(z, τ)− v2(z, τ)]∆ϕ0(z)dz ·Dβ
τ v1(y, τ)

+
∫

Ω0

[F0(z, τ, v1(z, τ), Dβ
τ v1(z, τ)− F0(z, τ, v2(z, τ), Dβ

τ v2(z, τ)]ϕ0(z)dz
]
dy

+ h0(z, τ, v1(z, τ), Dβ
τ v1(z, τ)− h0(z, τ, v2(z, τ), Dβ

τ v2(z, τ)
∣∣∣

≤ c11 sup
(x,t)∈Q∗0

∫ t

0

[DβF (τ)]−1dτ

∫
Ω0

∣∣G0(x, t, y, τ)
∣∣dy
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×
[
‖v2‖C(Q∗0)‖Dβv1 −Dβv2‖C(Q∗0) + ‖Dβv1‖C(Q∗0)‖v1 − v2‖C(Q∗0)

+ 2D0‖v1 − v2‖qC(Q∗0) + 2D0‖Dβv1 −Dβv2‖pC(Q∗0)

]
+ 2D0 sup

(x,t)∈Q∗0

∫ t

0

dτ

∫
Ω0

∣∣G0(x, t, y, τ)
∣∣dy[‖v1 − v2‖qC(Q∗0)

+ 2D0‖Dβv1 −Dβv2‖pC(Q∗0)

]
≤ c12(T ∗)α1R‖v1 − v2‖Cγβ (Q∗0).

Similarly, by using previous estimates,

|Dβ
t (Pv1)(x, t)−Dβ

t (Pv2)(x, t)| ≤ c13(T ∗)α2R‖v1 − v2‖Cγβ (Q∗0)

for all v1, v2 ∈ M̃∗R, (x, t) ∈ Q̄∗0.
The operator P is compact on M̃∗R (and thus on M∗R): it was established earlier

the uniform boundedness of the set

PM̃∗R := {(Pv)(x, t), (x, t) ∈ Q∗0 : v ∈ M̃∗R}

in addition, it follows from the properties of Green’s operators that for all ε > 0
there exists δ = δ(ε) such that for all (x, t) ∈ Q∗0, |∆x| < δ, |∆t| < δ and for all
v ∈ M̃∗R

sup
(x,t)∈Q∗0

|(Pv)(x+ ∆x, t+ ∆t)− (Pv)(x, t)| < ε,

sup
(x,t)∈Q∗0

|Dβ
t (Pv)(x+ ∆x, t+ ∆t)−Dβ

t (Pv)(x, t)| < ε.

As a result, the operator P is equicontinuous on M∗R. According to Schauder
principle there exists a solution u ∈M∗R of the equation (3.4). �

Theorem 3.2. Assume that F0 ∈ C1(Q0 × R2) and is bounded, DβF ∈ C[0, T ]
and DβF (t) 6= 0, t ∈ [0, T ], ϕ satisfies the assumption (A5) and ϕ(x) 6= 0, x ∈ Ω0.
Then a solution (u, r) ∈ C2,α(Q̄0)× C[0, T ] of the problem (1.1)-(1.5) is unique.

Proof. Take two solutions (u1, r1), (u2, r2) ∈ C2,α(Q̄0) × C[0, T ] of (1.1)-(1.5) and
substitute them into equation (1.1). For u = u1 − u2, r = r1 − r2 we obtain the
equation

Dα
t u = ∆u− r1(t)Dβ

t u− r(t)D
β
t u2 + F0(x, t, u1, D

β
t u1)− F0(x, t, u2, D

β
t u2).

By Hadamard lemma

F0(x, t, u1, D
β
t u1)− F0(x, t, u2, D

β
t u2) = F01(x, t)u+ F02(x, t)Dβ

t u

with some known functions F0j , j = 1, 2, which are continuous and bounded on
Q0, depend on u1, u2, Dβ

t u1, D
β
t u2. Then the previous equation becomes

Dα
t u+

(
r1(t)− F02(x, t)

)
Dβ
t u = ∆u+ F01(x, t)u− r(t)Dβ

t u2, (x, t) ∈ Q0.

It follows from the boundary condition that

u(x, t) = 0, x ∈ Ω̄1, t ∈ [0, T ],

and from the initial conditions

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω̄0.
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Let G∗0(x, t, y, τ) be the main Green’s function of the first boundary-value prob-
lem for the equation

Dα
t u+

(
r1(t)− F02(x, t)

)
Dβ
t u = ∆u+ F01(x, t)u.

Then the function u(x, t) satisfies the equation

u(x, t) = −
∫ t

0

dτ

∫
Ω0

G∗0(x, t, y, τ)Dβ
τ u2(y, τ)r(τ)dy, (x, t) ∈ Q̄0.

It follows from the over-determination condition (1.5) that

r(t)DβF (t) =
∫

Ω0

[
u(x, t)∆ϕ0(x)

+
(
F01(x, t)u(x, t) + F02(x, t)Dβ

t u(x, t)
)
ϕ0(x)

]
dx,

(3.6)

and then u(x, t) satisfies the equation

u(x, t) =
∫ t

0

dτ

DβF (τ)

∫
Ω0

K∗(x, t, τ)
[(
F01(z, τ)ϕ0(z) + ∆ϕ0(z)

)
u(z, τ)dz

+ F02(z, τ)ϕ0(z)Dβ
τ u(z, τ)

]
dz, (x, t) ∈ Q̄0

(3.7)

where

K∗(x, t, τ) =
∫

Ω0

G∗0(x, t, y, τ)Dβ
τ u2(y, τ)dy

is continuous with respect to x and integrable in time function.
If F01(z, τ) = F02(z, τ) = 0, (z, τ) ∈ Q0 then by the uniqueness of the solution of

this linear second type Volterra integral equation we obtain u(x, t) = 0, (x, t) ∈ Q0.
Then it follows from (3.6) that r(t)DβF (t) = 0, t ∈ [0, T ]. Since DβF (t) 6= 0 on
[0, T ] (under the assumptions of this theorem), it follows that r(t) ≡ 0 for t ∈ [0, T ].

Assume that
|F01(z, τ)|+ |F02(z, τ)| 6= 0, (z, τ) ∈ Q0. (3.8)

If F02(z, τ) = 0, (z, τ) ∈ Q0 then by the uniqueness of the solution of the linear
second type Volterra integral equation (3.7) with integrable kernel

K∗(x, t, τ)
(
F01(z, τ)ϕ0(z) + ∆ϕ0(z)

)
we obtain, as in previous case, that u(x, t) = 0, (x, t) ∈ Q0 and then, from (3.6),
that r(t) ≡ 0, t ∈ [0, T ].

In the general case denote

V (x, t) =
(
F01(x, t)ϕ0(x) + ∆ϕ0(x)

)
u(x, t) + F02(x, t)ϕ0(x)Dβ

t u(x, t).

Then (3.7) implies

V (x, t) =
∫ t

0

dτ

DβF (τ)

∫
Ω0

(
F01(x, t)ϕ0(x) + ∆ϕ0(x)

)
K∗(x, t, τ)V (z, τ)dz

+ F02(x, t)ϕ0(x)Dβ
t

∫ t

0

dτ

DβF (τ)

∫
Ω0

K∗(x, t, τ)V (z, τ)dz;

that is,

V (x, t) =
∫ t

0

dτ

∫
Ω0

K(x, t, z, τ)V (z, τ)dz, (x, t) ∈ Q̄0,
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where

K(x, t, z, τ)

=
1

DβF (τ)

[
F01(x, t)ϕ0(x) + ∆ϕ0(x) +

F02(x, t)ϕ0(x)(t− τ)−β

Γ(1− β)

]
K∗(x, t, τ).

By the uniqueness of the solution of this linear second type Volterra integral equa-
tion with integrable kernel K(x, t, z, τ) we obtain V (x, t) = 0, (x, t) ∈ Q0.

Note that (3.8) implies

|F01(x, t)ϕ0(x) + ∆ϕ0(x)|+ |F02(x, t)ϕ0(x)| 6= 0, (x, t) ∈ Q0.

Note also that

Dβ
t u(x, t) = 0 ⇐⇒ f−β(t) ∗ u(x, t) = 0

⇐⇒ fβ(t) ∗ f−β(t) ∗ u(x, t) = 0

⇐⇒ u(x, t) = 0, (x, t) ∈ Q0,

for the function u(x, t) satisfying zero initial conditions.
Then it follows from the previous results that u(x, t) = 0, (x, t) ∈ Q0 and from

(3.6), by the assumptions of this theorem, we obtain r(t) ≡ 0, t ∈ [0, T ].
In separate case F01(x, t)ϕ0(x) + ∆ϕ0(x) = 0 for all (x, t) ∈ Q0 we may put

V1(x, t) = F02(x, t)ϕ0(x)Dβ
t u(x, t) and, as before, obtain the linear second type

Volterra integral equation

V1(x, t) =
∫ t

0

dτ

∫
Ω0

K1(x, t, z, τ)V1(z, τ)dz, (x, t) ∈ Q̄0

with integrable kernel

K1(x, t, z, τ) = F02(x, t)ϕ0(x)K∗(x, t, τ)(t− τ)−β
/

Γ(1− β)DβF (τ).

As before, from here we obtain V1(x, t) = 0, (x, t) ∈ Q0 and, as in the general case,
since F02(x, t)ϕ0(x) 6= 0 on Q0, conclude that u(x, t) = 0, (x, t) ∈ Q0 and r(t) ≡ 0,
t ∈ [0, T ]. �

The similar result holds for the inverse problem on determination of a pair of
functions (u, b): a solution u of the first (or second) boundary-value problem for
the equation

Dα
t u = ∆u+ b(t)u = F0(x, t), (x, t) ∈ Q0

and an unknown coefficient b(t) under the same over-determinating condition (1.2).
We may study the cases N = 1, 2 in the same way.

Acknowledgments. The authors are grateful to Prof. Mokhtar Kirane for useful
discussions.
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