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HOMOCLINIC ORBITS AT INFINITY FOR SECOND-ORDER
HAMILTONIAN SYSTEMS WITH FIXED ENERGY

DONG-LUN WU, SHIQING ZHANG

Abstract. We obtain the existence of homoclinic orbits at infinity for a class

of second-order Hamiltonian systems with fixed energy. We use the limit for a

sequence of approximate solutions which are obtained by variational methods.

1. Introduction and main results

In this article, we consider the second-order Hamiltonian system

ü(t) +∇V (u(t)) = 0 (1.1)

with
1
2
|u̇(t)|2 + V (u(t)) = H. (1.2)

where u ∈ C2(R,RN ), V ∈ C1(RN ,R). Subsequently, ∇V (x) denotes the gradient
with respect to the x variable, (·, ·) : RN×RN → R denotes the standard Euclidean
inner product in RN and | · | is the induced norm. In this article, we say a solution
u(t) of problem (1.1)-(1.2) is homoclinic at infinity (following the terminology of
Serra [19]) if |u(t)| → +∞ and |u̇(t)| → H as t→ ±∞.

In previous two decades, many mathematicians have considered the existence of
homoclinic and periodic orbits for problem (1.1); see [1-4,6-10,12-18,20-23] and the
reference therein. Equation (1.1) can be used to describe the motion of heaven bod-
ies under the law of universal gravitation. But in celestial mechanic, the potential
V possesses singularities at any collision points. In 2000, Felmer and Tanaka [8]
considered the existence of hyperbolic orbits for problem (1.1)-(1.2) with singular
potential. Recently, Wu and Zhang [24] obtained the similar conclusion under some
weaker conditions. As to the smooth potential, it can be referred to the restricted
three-body problems which is a reduced model of N-body problems. The restricted
three-body problem consists in determining u such that

ü(t) +
αu(t)

(|u(t)|2 + |r(t)|2)
α+2

2

= 0, (1.3)

where r(t) = r(t + 2π) > 0 for any t ∈ R. Obviously, the potential in (1.3) has
no singularity. In 1990, Rabinowitz [15] used variational methods to study the
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existence of orbits for (1.1) which are homoclinic to zero with the so called (AR)
condition. Since the pioneering work of Rabinowitz, there are many works on the
existence of homoclinic solutions to zero for problem (1.1). But as to the homoclinic
orbits for non-singular Hamiltonian systems with a fixed energy, there are only few
paper involving this topic. In 1994, Serra [19] obtained the existence of a class of
homoclinic orbits at infinity for a class of second order conservative systems. In his
paper, He treated the systems with zero energy and the approximated homoclinic
orbits with a sequence of brake orbits which are obtained by variational methods.
He obtain the following theorem.

Theorem 1.1 ([19]). Suppose that the potential V ∈ C2(RN ,R) satisfies

(A1) V (x) < 0 for all x ∈ RN ,
(A2) there exist R0 > 0, γ > 2 such that

V (x) = − 1
|x|γ

+W (x), ∀|x| ≥ R0,

(A3) lim|x|→+∞W (x)|x|γ = 0,
(A4) (x,∇W (x)) > 0, for all |x| ≥ R0.

Then there exists at least one homoclinic solution at infinity for (1.1)-(1.2) with
H=0.

Motivated by above papers, we shall obtain the homoclinic orbits at infinity for
problem (1.1)-(1.2) with the symmetrical potential V , but we do not (A2). Through
out this article, we assume V ∈ C1(RN ,R) and the following conditions:

(A5) (x,∇V (x))→ 0 as|x| → +∞.
(A6) there exist constants β > 2, M0 > 0 and r0 > 0 such that |x|β |V (x)| ≤M0

for all |x| ≥ r0.

Remark 1.2. It follows from (A6) that V (x)→ 0 as |x| → +∞.

We set

A = inf{V (x)|x ∈ RN}, B = sup{V (x)|x ∈ RN}. (1.4)

Since V is of C1 class in RN and satisfies (A6), we can conclude that −∞ < A ≤
B < +∞. Under above conditions, we have the following theorem.

Theorem 1.3. Suppose V ∈ C1(RN ,R) (N ≥ 2) satisfies (A5)-(A6). If V (−x) =
V (x) for all x ∈ RN , then (1.1)-(1.2) possesses at least one homoclinic orbit to
infinity for any given H > B.

Remark 1.4. It follows from Remark 1.2 that B ≥ 0. So the total energy H must
be positive.

Remark 1.5. In Theorem 1.3, V can change sign. The potential in (1.3) satisfies
the conditions of Theorem 1.3 for α > 2. There are functions satisfying Theorem
1.3 but not Theorem 1.1. For example,

V (x) =

{
− 1

4 (|x|+ 1)2 + 1 for 0 ≤ |x| ≤ 1,
− 1
|x|3 + 1

|x|4 for |x| ≥ 1.
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2. Variational settings

We obtain the homoclinic orbits at infinity as the limits of solutions for the
following equations

q̈(t) +∇V (q(t)) = 0 ∀t ∈ (−TR, TR) (2.1)
1
2
|q̇(t)|2 + V (q(t)) = H ∀t ∈ (−TR, TR) (2.2)

Where TR is a suitable number defined in the proof of the following lemma. We
consider equations (2.1)-(2.2) on the set

GR = {q ∈ ER : q(t+
1
2

) = −q(t)},

where

ER = {q ∈ H1(R/Z,RN ) : |q(0)| = |q(1)| = R}.

Here R stands for the constraint on the Euclidean norm of the functions in ER at
the end of the time interval. If q ∈ GR, it is easy to check that

∫ 1

0
q(t)dt = 0, then

by Poincaré-Wirtinger’s inequality, we have the equivalent norm

‖q‖H1 =
(∫ 1

0

|q̇(t)|2dt
)1/2

.

Let L∞([0, 1],RN ) be a space of measurable functions from [0, 1] into RN and
essentially bounded under the norm

‖q‖L∞([0,1],RN ) = ess sup{|q(t)| : t ∈ [0, 1]}.

Then functional f : GR → R can be defined as

f(q) =
1
2
‖q‖2

∫ 1

0

(H − V (q(t)))dt. (2.3)

Then

〈f ′(q), q(t)〉 = ‖q‖2
∫ 1

0

(
H − V (q(t))− 1

2
(∇V (q(t)), q(t))

)
dt. (2.4)

To prove Theorem 1.3, we approach the homoclinic orbits with a sequence of ap-
proximate solutions obtained using minimizing theory. The following lemma shows
that the critical points of f are the solutions of (1.1)-(1.2) after some kind of time
scaling.

Lemma 2.1 ([3]). Let

f(q) =
1
2

∫ 1

0

|q̇(t)|2dt
∫ 1

0

(H − V (q(t)))dt

and q̃ ∈ H1 be such that f ′(q̃) = 0, f(q̃) > 0. Set

T 2 =
1
2

∫ 1

0
| ˙̃q(t)|2dt∫ 1

0
(H − V (q̃(t))dt

.

Then ũ(t) = q̃(t/T ) is a non-constant T -periodic solution for (1.1) and (1.2).
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Lemma 2.2 ([21]). Let σ be an orthogonal representation of a finite or compact
group Π in the real Hilbert space H such that for any σ ∈ Π,

f(σ · x) = f(x),

where f ∈ C1(H,R1). Let S = {x ∈ H|σx = x, ∀σ ∈ Π}, then the critical point of
f in S is also a critical point of f in H.

Remark 2.3. Since V (x) is even in x, by the principle of symmetric criticality, we
can see that all the critical points of f on GR are the critical points of f on H1

if we set the group Π = {−e, e}, P : H1 → H1 such that Pq(t) = −q(t + 1
2 ) and

σ(−e) = P , σ(e) = P 2 = id, where id is the identity operator.

3. Existence of approximate solutions

Firstly, we prove the existence of the approximate solutions, then we study the
limit process.

Lemma 3.1. Suppose the conditions of Theorem 1.3 hold, then for any R > 0,
there exists at least one approximate solution on GR for systems (2.1)-(2.2) with
some suitable TR.

Proof. We notice that H1 is a reflexive Banach space and GR is a weakly closed
subset of H1. By the definition of f and H > B, we obtain that f is a functional
bounded from below and

f(q) =
1
2
‖q‖2

∫ 1

0

(H − V (q(t)))dt

≥ H −B
2
‖q‖2 → +∞ as ‖q‖ → +∞.

Furthermore, it is easy to check that f is weakly lower semi-continuous. Then, we
can see that for every R > 0 there exists a minimizer qR ∈ GR such that

f ′(qR) = 0, f(qR) = inf
q∈GR

f(q) ≥ 0. (3.1)

It is easy to see that ‖qR‖2 =
∫ 1

0
|q̇R(t)|2dt > 0, otherwise we deduce that qR(t) ≡

Re0 for some e0 ∈ SN−1, which is a contradiction, since the anti-symmetry of qR.
Let

T 2
R =

1
2

∫ 1

0
|q̇R(t)|2dt∫ 1

0
(H − V (qR(t)))dt

, (3.2)

Then by Lemma 2.1, uR(t) = qR( t+TR2TR
) : (−TR, TR) → H1 is a non-constant

approximate solution satisfying (2.1) and (2.2). The proof is complete. �

Remark 3.2. In Lemma 3.1, we minimize the functional on the set GR, but we
can not show that uR(t) solves the equations at ±TR. But we do not need uR(t)
to be a solution at these two moments, since we will let R→ +∞ in the end.

4. Estimations on approximate solutions

Subsequently, we need to let R→ +∞. But before doing this, we need to prove
uR can not approach infinity as R→ +∞, which is the following lemma.
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Lemma 4.1. Suppose that uR(t) : (−TR, TR) → H1 is the solution obtained in
Lemma 3.1, then mint∈(−TR,TR) |uR(t)| is bounded uniformly. More precisely, there
is a constant M > 0 independent of R such that

min
t∈(−TR,TR)

|uR(t)| ≤M for all R > 0.

Proof. Since qR ∈ GR is a minimizer of f , we have f ′(qR) = 0 which implies that∫ TR

−TR
2H − (2V (uR(t)) + (∇V (uR(t)), uR(t)))dt = 0.

Then there exists t0 ∈ (−TR, TR) such that

2H − (2V (uR(t0)) + (∇V (uR(t0)), uR(t0))) ≤ 0,

which implies
2H ≤ 2V (uR(t0)) + (∇V (uR(t0)), uR(t0)).

It follows from Remark 1.4 that H > 0. Then by hypotheses (A5) and Remark 1.2
that there exists a constant M1 > 0 independent of R such that

min
t∈(−TR,TR)

|uR(t)| ≤M1.

Then the proof is complete. �

Lemma 4.2. Suppose that R > max{M, r0} and uR(t) is the solution for (2.1)-
(2.2) obtained in Lemma 3.1, where M is from Lemma 4.1 and r0 is defined in
(A6). Set

t+ = sup{t ∈ (−TR, TR) : |uR(t)| ≤ L}, (4.1)

t− = inf{t ∈ (−TR, TR) : |uR(t)| ≤ L} (4.2)

where L is a constant independent of R such that max{M, r0} < L < R. Then we
obtain

TR − t+ → +∞, t− + TR → +∞ as R→ +∞.

Proof. By the definition of B, we have∫ TR

t+

√
H − V (uR(t))|u̇R(t)|dt ≥

√
H −B

∫ TR

t+

|u̇R(t)|dt

≥
√
H −B

∣∣ ∫ TR

t+

u̇R(t)dt
∣∣

≥
√
H −B(R− L).

(4.3)

Similarly, we can get∫ t−

−TR

√
H − V (uR(t))|u̇R(t)|dt ≥

√
H −B(R− L). (4.4)

It follows from (1.4) and (2.2) that∫ TR

t+

√
H − V (uR(t))|u̇R(t)|dt =

√
2
∫ TR

t+

(H − V (uR(t)))dt

≤
√

2(H −A) (TR − t+)

From this inequality and (4.3), we obtain
√
H −B(R− L) ≤

√
2(H −A) (TR − t+) .
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Then we have TR − t+ → +∞, as R → +∞. The limit for t− + TR is obtained in
the similar way. The proof is complete. �

Lemma 4.3. Suppose that uR(t) is the solution for (2.1)−(2.2) obtained in Lemma
3.1. Then there exists a constant M2 > 0 independent of R > r0 such that∫ TR

−TR

√
H − V (uR(t))|u̇R(t)|dt ≤ 2

√
HR+M2,

where r0 comes from (A6).

Proof. Define the function ξ(t) on [1,+∞) as a solution of the differential equation

ξ̇(t) =
√

2(H − V (ξ(t)e))

ξ(1) = r0,

where e ∈ SN−1. Let τR > 1 be a real number such that ξ(τR) = R. Furthermore,
ξ(t) can be odd extended to (−∞,−1] and define τ−R = −τR such that ξ(τ−R) =
−R. Then we can fix ϕ(t) ∈ H1([−1, 1],RN ) such that γ̃R(t) ∈ GR where

γ̃R(t) = γR(t(τR − τ−R) + τ−R), γR(t) =

{
ξ(t)e for t ∈ [τ−R,−1]

⋃
[1, τR],

ϕ(t) for t ∈ [−1, 1].

Subsequently, we set ur(t) = γ̃R( t+r2r ). And it is easy to see that ur(t) = γR(t) if
τ±R = ±r. Similar to [8], we can deduce that for r > 0

(2f(γ̃R))1/2 = inf
r>0

1√
2

∫ r

−r

1
2
|u̇r(t)|2 +H − V (ur(t))dt

≤ 1√
2

∫ τR

−τR

1
2
|γ̇R(t)|2 +H − V (γR(t))dt.

(4.5)

Since [−τR, τR] = [−τR,−1]
⋃

[−1, 1]
⋃

[1, τR], by (A6), we can estimate (4.5) by
three integrals. Firstly, we estimate the integral on [1, τR], which is

I[1,τR] =
1√
2

∫ τR

1

1
2
|γ̇R(t)|2 +H − V (γR(t))dt

=
1√
2

∫ τR

1

H − V (ξ(t)e)dt

=
∫ τR

1

√
H − V (ξ(t)e)ξ̇(t)dt =

∫ R

r0

√
H − V (se)ds

≤
∫ R

r0

√
H +

√
|V (se)|ds =

√
H(R− r0) +

∫ R

r0

√
|V (se)|ds

≤
√
HR+

√
M0

∫ R

r0

s−
β
2 ds ≤

√
HR+

√
M0

∫ +∞

r0

s−
β
2 ds

≤
√
HR+M3

where

M3 =
β
√
M0

2
r

2−β
2

0 .

Similarly, we have
I[−τR,−1] ≤

√
HR+M3.
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Since I[−1,1] is independent of R, we obtain that

1√
2

∫ τR

−τR

1
2
|γ̇R(t)|2 +H − V (γR(t))dt ≤ 2

√
HR+M4

for some M4 > 0 independent of R. Then by (4.5) and qR(t) is the minimizer of f
on GR, we have∫ TR

−TR

√
H − V (uR(t))|u̇R(t)|dt ≤

(∫ TR

−TR
H − V (uR(t))dt

)1/2(∫ TR

−TR
|u̇R(t)|2dt

)1/2

= (2f(qR))1/2 ≤ (2f(γ̃R))1/2

≤ 1√
2

∫ τR

−τR

1
2
|γ̇R(t)|2 +H − V (γR(t))dt

≤ 2
√
HR+M2.

This completes the proof of this lemma. �

5. Proof of Theorem 1.3

Subsequently, we set

t∗ = inf{t ∈ (−TR, TR)||uR(t)| = M},
u∗R(t) = uR(t∗ − t),

where M is defined in Lemma 4.1. Since all the functions in GR are continuous, it
follows from Lemma 4.1 that {t ∈ (−TR, TR)||uR(t)| = M} is not empty when R is
large enough.

Lemma 5.1. Let uR ∈ ER be the solution of (2.1)-(2.2) and u∗R be defined as
above. Then there exists a subsequence {u∗Rj} of {u∗R}R>0 that convergences to u∞
in Cloc(R,RN ). Furthermore, u∞ is a homoclinic solution at infinity of (1.1)-(1.2).

Proof. Step 1: We show that {u∗R}R>0 possesses a subsequence in Cloc(R,RN ). By
the definition of L and t∗, we can deduce that t+ ≥ t∗ ≥ t−. Then it follows from
Lemma 4.2 that

−TR + t∗ → −∞, TR + t∗ → +∞ asR→ +∞.

By the energy equation (2.2), we obtain that

|u̇∗R(t)|2 = 2(H − V (u∗R(t))) ≤ 2(H −A), ∀t ∈ (−TR + t∗, TR + t∗), (5.1)

which implies that

|u∗R(t1)− u∗R(t2)| ≤
∣∣ ∫ t1

t2

u̇∗R(s)ds
∣∣ ≤ ∫ t1

t2

|u̇∗R(s)|ds ≤
√

2(H −A)|t1 − t2| (5.2)

for each R > 0 and t1, t2 ∈ [−TR+t∗, TR+t∗], which shows {u∗R} is equicontinuous.
Subsequently, we show that u∗R is uniformly bounded on any compact set of R.

Take a, b ∈ R such that a < b. When R is large enough, by Lemma 4.2, we can see
that [a, b] ⊆ [−TR + t∗, TR + t∗]. Then, for any t ∈ [a, b], it follows from (5.1) and
the definition of t∗ that

|u∗R(t)| =
∣∣ ∫ t

0

u̇∗R(t)dt+ u∗R(0)
∣∣
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≤
∣∣ ∫ t

0

u̇∗R(t)dt
∣∣+ |u∗R(0)|

≤ |
∫ t

0

|u̇∗R(t)|dt|+ |uR(t∗)|

≤
√

2(H −A)|t|+M

≤
√

2(H −A)(|a|+ |b|) +M,

which implies

max
t∈[a,b]

|u∗R(t)| ≤
√

2(H −A)(|a|+ |b|) +M. (5.3)

We have shown that u∗R is uniformly bounded on any compact set of R and uniformly
equi-continuous on R. By Arzelá-Ascoli theorem, it follows from inequalities (5.2)
and (5.3) that there is a subsequence {u∗Rj}j>0 converging to u∞ uniformly in
Cloc(R,RN ).

Step 2: We show that u∞ is a homoclinic solution at infinity of (1.1)-(1.2). By
Lemma 3.1 and the definition of u∗Rj , we have

ü∗Rj (t) +∇V (u∗Rj (t)) = 0,

with
1
2
|u̇∗Rj (t)|

2 + V (u∗Rj (t)) = H,

for each j > 0 and t ∈ (−TR + t∗, TR + t∗). Take a, b ∈ R such that a < b. Since V
is of C1 class, üRj (t) is continuous on [a, b] and üRj (t)→ −∇V (t, u∞(t)) uniformly
on [a, b]. It follows that üRj is a classical derivative of u̇Rj in (a, b) for each j > 0.
Moreover, since u̇Rj → u̇∞ uniformly on [a, b], we get

ü∞(t) +∇V (u∞(t)) = 0,

with
1
2
|u̇∞(t)|2 + V (u∞(t)) = H,

for all t ∈ [a, b]. Since a and b are arbitrary, we conclude that u∞ satisfies (1.1)−
(1.2).

Furthermore, we need to prove that |u∞(t)| → +∞ as t→ ±∞. First, we show
that |u∞(t)| → +∞ as t→ +∞. Otherwise, there exists a sequence, denoted by tn
such that tn → +∞ as n→ +∞ and

|u∞(tn)| ≤M∞ for all n ∈ N+ (5.4)

for some M∞ > 0. On one hand, it follows from Lemma 4.3, (4.3) and (4.4) that

2
√
HRj +M2 ≥

∫ TRj+t
∗

−TRj+t∗

√
H − V (u∗Rj (t))|u̇

∗
Rj (t)|dt

≥
(∫ t∗+t+

t∗+t−

+
∫ TRj+t

∗

t++t∗
+
∫ t−+t∗

−TRj+t∗

)√
H − V (u∗Rj (t))|u̇

∗
Rj (t)|dt

≥
∫ t∗+t+

t∗+t−

√
H − V (u∗Rj (t))|u̇

∗
Rj (t)|dt+ 2

√
H(Rj − L).
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The above inequality and (2.2) imply

2
√
HL+M2 ≥

∫ t∗+t+

t∗+t−

√
H − V (u∗Rj (t))|u̇

∗
Rj (t)|dt

=
√

2
∫ t∗+t+

t∗+t−

(H − V (u∗Rj (t)))dt

≥
√

2(H −B)(t+ − t−).

(5.5)

On the other hand, in the proof of Lemma 5.1, we choose L > max{M,M∞, r0}.
By (4.2) and the definition of GR, it is easy to see that t− < 0. From (5.5), we
can deduce that there exists M5 > 0 independent of j such that t+ ≤ M5. By our
assumption, we can choose tn0 such that tn0 > M5 and |u∞(tn0)| ≤ M∞. By the
uniformly convergence of {uRj}, there exists j0 > 0 such that

|uRj (tn0)− u∞(tn0)| ≤ L−M∞
2

for any j > j0, which implies that |uRj (tn0)| ≤ L+M∞
2 < L for any j > j0, which

contradicts (4.1). Then |u∞(t)| → +∞ as t → +∞. The proof for t → −∞ is
similar. Then we complete the proof. �

From the above lemmas, we have proved there is at least one homoclinic solution
at infinity for (1.1)-(1.2) with H > B. We finish the proof of Theorem 1.3.
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