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EXISTENCE AND NON-EXISTENCE OF SOLUTIONS FOR A
p(x)-BIHARMONIC PROBLEM

GHASEM A. AFROUZI, MARYAM MIRZAPOUR, NGUYEN THANH CHUNG

Abstract. In this article, we study the following problem with Navier bound-
ary conditions

∆(|∆u|p(x)−2∆u) + |u|p(x)−2u = λ|u|q(x)−2u+ µ|u|γ(x)−2u in Ω,

u = ∆u = 0 on ∂Ω.

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1.
p(x), q(x) and γ(x) are continuous functions on Ω, λ and µ are parameters.

Using variational methods, we establish some existence and non-existence re-

sults of solutions for this problem.

1. Introduction

In recent years, the study of differential equations and variational problems with
p(x)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [11], Zhikov [16] and the reference therein; see also [2, 4, 5, 7].

Fourth-order equations appears in many context. Some of theses problems come
from different areas of applied mathematics and physics such as Micro Electro-
Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see [8]). In
addition, this type of equations can describe the static from change of beam or the
sport of rigid body. El Amrouss et al [1] studied a class of p(x)-biharmonic of the
form

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ f(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0 and
some assumptions on the Carathéodory function f : Ω × R → R. They obtained
the existence and multiplicity of solutions.

In a recent article, Lin Li et al [9] considered the above problem and using
variational methods, by the assumptions on the Carathéodory function f , they
establish the existence of at least one solution and infinitely many solutions of the
problem.
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Inspired by the above references and the work of Jinghua Yao [13], the aim of this
article is to study the existence and multiplicity of weak solutions of the following
fourth-order elliptic equation with Navier boundary conditions

∆(|∆u|p(x)−2∆u) + |u|p(x)−2u = λ|u|q(x)−2u+ µ|u|γ(x)−2u in Ω,
u = ∆u = 0 on ∂Ω.

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, p(x), q(x)
and γ(x) are continuous functions on Ω with infx∈Ω p(x) > 1, infx∈Ω q(x) > 1,
infx∈Ω γ(x) > 1 and λ and µ are parameters. Throughout the paper, we assume
that λ2 + µ2 6= 0.

2. Preliminaries

To study p(x)-Laplacian problems, we need some results on the spaces Lp(x)(Ω)
and W k,p(x)(Ω), and properties of p(x)-Laplacian, which we use later. Let Ω be a
bounded domain of RN , denote

C+(Ω) = {h(x);h(x) ∈ C(Ω), h(x) > 1,∀x ∈ Ω}.

For any h ∈ C+(Ω), we define

h+ = max{h(x); x ∈ Ω}, h− = min{h(x); x ∈ Ω};

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u;u is a measurable real-valued function such that∫

Ω

|u(x)|p(x)dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(x) = inf
{
µ > 0;

∫
Ω

|u(x)
µ
|p(x)dx ≤ 1

}
.

Then (Lp(x)(Ω), | · |p(x)) becomes a Banach space.

Proposition 2.1 ([6]). The space (Lp(x)(Ω), | · |p(x)) is separable, uniformly convex,
reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of
p(x), i.e.,

1
p(x)

+
1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣ ∫
Ω

uvdx
∣∣ ≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponent W k,p(x)(Ω) is defined as

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN ) is a multi-index and |α| =∑N
i=1 αi. The space W k,p(x)(Ω) equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x),
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also becomes a separable and reflexive Banach space. For more details, we refer the
reader to [3, 6, 10, 13]. Denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 ([6]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω,
there is a continuous embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Note that the

weak solutions of problem (1.1) are considered in the generalized Sobolev space

X = W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)

equipped with the norm

‖u‖ = inf
{
µ > 0 :

∫
Ω

(∣∣∣∆u(x)
µ

∣∣∣p(x)

+ λ
∣∣u(x)
µ

∣∣p(x)
)
dx ≤ 1

}
.

Remark 2.3. According to [14], the norm ‖ · ‖2,p(x) is equivalent to the norm
|∆ · |p(x) in the space X. Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖ and |∆ · |p(x) are
equivalent.

Proposition 2.4 ([1]). If we denote ρ(u) =
∫

Ω
(|∆u|p(x) + |u|p(x))dx, then for

u, un ∈ X, we have
(1) ‖u‖ < 1 (respectively=1; > 1) ⇐⇒ ρ(u) < 1 (respectively = 1; > 1);
(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;
(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ ;
(4) ‖u‖ → 0 (respectively →∞) ⇐⇒ ρ(u)→ 0 (respectively →∞).

It is clear that the energy functional associated with (1.1) is defined by

Iλ,µ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))dx− λ
∫

Ω

1
q(x)
|u|q(x)dx− µ

∫
Ω

1
γ(x)

|u|γ(x)dx.

Let us define the functional

J(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))dx.

It is well known that J is well defined, even and C1 in X. Moreover, the operator
L = J ′ : X → X∗ defined as

〈L(u), v〉 =
∫

Ω

(|∆u|p(x)−2∆u∆v + |u|p(x)−2uv)dx

for all u, v ∈ X satisfies the following assertions.

Proposition 2.5 ([1]). (1) L is continuous, bounded and strictly monotone.
(2) L is a mapping of (S+) type, namely: un ⇀ u, and lim supn→+∞ L(un)(un−

u) ≤ 0 implies un → u.
(3) L is a homeomorphism.
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3. Main results and proofs

In this section, we study the existence and non-existence of weak solutions for
problem (1.1). We use the letter ci in order to denote a positive constant.

Theorem 3.1. Assume that q(x), γ(x) ∈ C+(Ω) and p+ < q− ≤ q(x) < p∗2(x),
γ+ < p− for any x ∈ Ω. Then we have

(i) For every λ > 0, µ ∈ R, (1.1) has a sequence of weak solutions (±uk) such
that Iλ,µ(±uk)→ +∞ as k → +∞.

(ii) For every µ > 0, λ ∈ R, (1.1) has a sequence of weak solutions (±vk) such
that Iλ,µ(±vk) < 0 and Iλ,µ(±vk)→ 0 as k → +∞.

(iii) For every λ < 0, µ < 0, (1.1) has no nontrivial weak solution.

We will use the following Fountain theorem to prove (i) and the Dual of the
Fountain theorem to prove (ii).

Lemma 3.2 ([15]). Let X be a reflexive and separable Banach space, then there
exist {ej} ⊂ X and {e∗j} ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . }, X∗ = span{e∗j : j = 1, 2, . . . },
and

〈ei, e∗j 〉 =

{
1 if i = j,

0 if i 6= j,

We define

Xj = span{ej}, Yk = ⊕kj=1Xj , Zk = ⊕∞j=kXj . (3.1)

Then we have the following Lemma.

Lemma 3.3 ([1]). If q(x), γ(x) ∈ C+(Ω), q(x) < p∗2(x), and γ(x) < p∗2(x) for all
x ∈ Ω, denote

βk = sup{|u|q(x); ‖u‖ = 1, u ∈ Zk}
θk = sup{|u|γ(x); ‖u‖ = 1, u ∈ Zk},

then limk→∞ βk = 0, limk→∞ θk = 0.

Lemma 3.4 (Fountain Theorem [12]). Let
(A1) I ∈ C1(X,R) be an even functional, where (X, ‖ · ‖) is a separable and

reflexive Banach space, the subspaces Xk, Yk and Zk are defined by (3.1).
If for each k ∈ N, there exist ρk > rk > 0 such that

(A2) inf{I(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞.
(A3) max{I(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.
(A4) I satisfies the (PS) condition for every c > 0.

Then I has an unbounded sequence of critical points.

Lemma 3.5 (Dual Fountain Theorem [12]). Assume (A1) is satisfied and there is
k0 > 0 such that, for each k ≥ k0, there exist ρk > rk > 0 such that

(B1) ak = inf{I(u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0.
(B2) bk = max{I(u) : u ∈ Yk, ‖u‖ = rk} < 0.
(B3) dk = inf{I(u) : u ∈ Zk, ‖u‖ ≤ ρk} → 0 as k → +∞.
(B4) I satisfies the (PS)∗c condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values converging to 0.
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Definition 3.6. We say that Iλ,µ satisfies the (PS)∗c condition (with respect to
(Yn)), if any sequence {unj} ⊂ X such that nj → +∞, unj ∈ Ynj , Iλ,µ(unj ) → c
and (Iλ,µ|Ynj )′(unj ) → 0, contains a subsequence converging to a critical point of
Iλ,µ.

Proof of Theorem 3.1. (i) First we verify Iλ,µ satisfies the (PS) condition. Sup-
pose that (un) ⊂ X is (PS) sequence, i.e.,

|Iλ,µ(un)| ≤ c9, I ′λ,µ(un)→ 0 as n→∞.

By Propositions 2.2 and 2.1, we know that if we denote

φ(u) = −λ
∫

Ω

1
q(x)
|u|q(x), dx, ψ(u) = −µ

∫
Ω

1
γ(x)

|u|γ(x), dx,

then they are both weakly continuous and their derivative operators are compact.
By Proposition 2.5, we deduce that I ′λ,µ = L+φ′+ψ′ is also of type (S+). Thus it
is sufficient to verify that (un) is bounded. Assume ‖un‖ > 1 for convenience. For
n large enough, we have

c9 + 1 + ‖un‖

≥ Iλ,µ(un)− 1
q−
〈I ′λ,µ(un), un〉

=
[ ∫

Ω

1
p(x)

(|∆un|p(x) + |un|p(x))dx− λ
∫

Ω

1
q(x)
|un|q(x)dx− µ

∫
Ω

1
γ(x)

|un|γ(x)dx
]

− 1
q−

[ ∫
Ω

(|∆un|p(x) + |un|p(x))dx− λ
∫

Ω

|un|q(x)dx− µ
∫

Ω

|un|γ(x)dx
]

≥
( 1
p+
− 1
q−

)
||un||p

−
− c10‖un‖γ

+
.

(3.2)

Since q− > p+ and p− > γ+, we know that {un} is bounded in X. In the following
we will prove that if k is large enough, then there exist ρk > rk > 0 such that (A2)
and (A3) hold.

(A2) For any u ∈ Zk, ‖u‖ = rk > 1 (rk will be specified below), we have

Iλ,µ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))dx− λ
∫

Ω

1
q(x)
|u|q(x)dx− µ

∫
Ω

1
γ(x)

|u|γ(x)dx

≥ 1
p+
‖u‖p

−
− λ

q−

∫
Ω

|u|q(x)dx− c11|µ|
γ−
‖u‖γ

+
.

Since p− > γ+, there exists r0 > 0 large enough such that c11|µ|
γ− ‖u‖

γ+ ≤ 1
2p+ ‖u‖

p−

as r = ‖u‖ ≥ r0. If |u|q(x) ≤ 1 then
∫

Ω
|u|q(x)dx ≤ |u|q

−

q(x) ≤ 1. However, if

|u|q(x) > 1 then
∫

Ω
|u|q(x)dx ≤ |u|q

+

q(x) ≤ (βk‖u‖)q
+

. So, we conclude that

Iλ,µ(u) ≥

{
1

2p+ ‖u‖
p− − λc12

q− if |u|q(x) ≤ 1,
1

2p+ ‖u‖
p− − λ

q− (βk‖u‖)q
+

if |u|q(x) > 1.

≥ 1
p+
‖u‖p

−
− λ

q−
(βk‖u‖)q

+
− c13,
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choose rk =
(

2λ
q− q

+βq
+

k

) 1
p−−q+ , we have

Iλ,µ(u) =
1
2

( 1
p+
− 1
q+

)
rp
−

k − c13 →∞ ask →∞,

because of p+ < q− ≤ q+ and βk → 0.
(A3) Let u ∈ Yk such that ‖u‖ = ρk > rk > 1. Then

Iλ,µ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))dx− λ
∫

Ω

1
q(x)
|u|q(x)dx− µ

∫
Ω

1
γ(x)

|u|γ(x)dx

≤ 1
p−
‖u‖p

+
− λ

q+

∫
Ω

|u|q(x)dx+
|µ|
γ−

∫
Ω

|u|γ(x)dx.

Since dimYk <∞, all norms are equivalent in Yk, we obtain

Iλ,µ(u) ≤ 1
p−
‖u‖p

+
− λ

q+
‖u‖q

−
+
|µ|
γ−
‖u‖γ

+
.

We get that: Iλ,µ(u) → −∞ as ‖u‖ → +∞ since q− > p+ and γ+ < p−. So (A2)
holds. From the proof of (A2) and (A3), we can choose ρk > rk > 0. Obviously
Iλ,µ is even and the proof of (i) is complete.

(ii) We use the Dual Fountain theorem to prove conclusion (ii). Now we prove
that there exist ρk > rk > 0 such that if k is large enough (B1), (B2) and (B3) are
satisfied.

(B1) For any u ∈ Zk we have

Iλ,µ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))d− λ
∫

Ω

1
q(x)
|u|q(x)dx− µ

∫
Ω

1
γ(x)

|u|γ(x)dx

≥ 1
p+
‖u‖p

+
− c14|λ|

q−
‖u‖q

−
− µ

γ−

∫
Ω

|u|γ(x)dx.

Since q− > p+, there exists ρ0 > 0 small enough such that c14|λ|
q− ‖u‖

q− ≤ 1
2p+ ‖u‖

p+

as 0 < ρ = ‖u‖ ≤ ρ0. Then from the proof above, we have

Iλ,µ(u) ≥

{
1

2p+ ‖u‖
p+ − µc15

γ− if |u|γ(x) ≤ 1,
1

2p+ ‖u‖
p+ − µ

γ− (θk‖u‖)γ
+

if |u|γ(x) > 1.
(3.3)

Choose ρk =
( 2p+µθγ

+

k

γ−

) 1
p+−γ+ , then

Iλ,µ(u) =
1

2p+
(ρk)p

+
− 1

2p+
(ρk)p

+
= 0.

Since p− > γ+, θk → 0, we know ρk → 0 as k →∞.
(B2) For u ∈ Yk with ‖u‖ ≤ 1, we have

Iλ,µ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) + |u|p(x))dx− λ
∫

Ω

1
q(x)
|u|q(x)dx− µ

∫
Ω

1
γ(x)

|u|γ(x)dx

≤ 1
p−
‖u‖p

−
+
|λ|
q−

∫
Ω

|u|q(x)dx− µ

γ+

∫
Ω

|u|γ(x)dx.

Since dimYk = k, conditions γ+ < p− and p+ < q− imply that there exists a
rk ∈ (0, ρk) such that Iλ,µ(un) < 0 when ‖u‖ = rk. So we obtain

max
u∈Yk,‖u‖=rk

Iλ,µ(u) < 0,
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i.e., (B2) is satisfied.
(B3) Because Yk ∩ Zk 6= ∅ and rk < ρk, we have

dk = inf
u∈Zk,‖u‖≤ρk

Iλ,µ(u) ≤ bk = max
u∈Yk,‖u‖=rk

Iλ,µ(u) < 0.

From (3.3) , for u ∈ Zk, ‖u‖ ≤ ρk small enough we can write

Iλ,µ(u) ≥ 1
2p+
‖u‖p

+
− λ

γ−
θγ

+

k ‖u‖
γ+
≥ − λ

γ−
θγ

+

k ‖u‖
γ+
,

Since θk → 0 and ρk → 0 as k → ∞, (B3) holds. Finally we verify the (PS)∗c
condition. Suppose {unj} ⊂ X such that

nj → +∞, unj ∈ Ynj , Iλ,µ(unj )→ c16, (Iλ,µ|Ynj )′(unj )→ 0.

If λ ≥ 0, similar to (3.2), we can get the boundedness of ‖unj‖. Assume ‖unj‖ ≥ 1
for convenience. If λ < 0, for n > 0 large enough, we have

c16 + 1 + ‖unj‖ ≥ Iλ,µ(unj )−
1
q+
〈I ′λ,µ(unj ), unj 〉

=
[ ∫

Ω

1
p(x)

(|∆unj |p(x) + |unj |p(x))dx− λ
∫

Ω

1
q(x)
|unj |q(x)dx

− µ
∫

Ω

1
γ(x)

|unj |γ(x)dx
]
− 1
q+

[ ∫
Ω

(|∆unj |p(x) + |unj |p(x))dx

− λ
∫

Ω

|unj |q(x)dx− µ
∫

Ω

|unj |γ(x)dx
]

≥
( 1
p+
− 1
q+

)
‖unj‖p

−
− c17‖unj‖γ

+
.

Since p− > γ+ and q+ > p+, we know that {unj} is bounded in X. Hence there
exists u ∈ X such that unj → u in x. Observe now that X = ∪njYnj , then we can
find vnj ∈ Ynj such that vnj → u. We have

〈I ′λ,µ(unj ), unj − u〉 = 〈I ′λ,µ(unj ), unj − vnj 〉+ 〈I ′λ,µ(unj ), vnj − u〉.

Having in mind that (unj − vnj ) ∈ Ynj , it yields

〈I ′λ,µ(unj ), unj −u〉 = 〈(Iλ,µ|Ynj )′(unj ), unj − vnj 〉+ 〈I ′λ,µ(unj ), vnj −u〉 → 0 (3.4)

as n→∞. By Proposition 2.5, the operator I ′λ,µ is obviously of (S+) type. Using
this fact with (3.4), we deduce that unj → u in X, furthermore I ′λ,µ(unj )→ I ′λ,µ(u).

We claim now that u is in fact a critical point of Iλ,µ. Taking ωk ∈ Yk, notice
that when nj ≥ k we have

〈I ′λ,µ(u), ωk〉 = 〈I ′λ,µ(u)− I ′λ,µ(unj ), ωk〉+ 〈I ′λ,µ(unj ), ωk〉

= 〈I ′λ,µ(u)− I ′λ,µ(unj ), ωk〉+
〈

(Iλ,µ|Ynj )′(unj ), ωk
〉
.

Going to the limit on the right side of the above equation reaches

〈I ′λ,µ(u), ωk〉 = 0, ∀ωk ∈ Yk,

so I ′λ,µ(u) = 0, this show that Iλ,µ satisfies the (PS)∗c condition for every c ∈ R.
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(iii) Assume for the sake of contradiction, u ∈ X\{0} is a weak solution of
problem (1.1). Then multiplying the equation in (1.1) by u, integrating by parts
we obtain ∫

Ω

(|∆u|p(x) + |u|p(x))dx = λ

∫
Ω

|u|q(x) + µ

∫
Ω

|u|γ(x).

This leads to contradiction and the proof is complete.
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