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EXISTENCE AND NON-EXISTENCE OF SOLUTIONS FOR A
p(z)-BIHARMONIC PROBLEM

GHASEM A. AFROUZI, MARYAM MIRZAPOUR, NGUYEN THANH CHUNG

ABSTRACT. In this article, we study the following problem with Navier bound-
ary conditions
A(|AuP® 2 A0) + [u|P®) 20 = Au]T® 2y 4 pluY @2y in Q,
u=Au=0 on Q.
where Q is a bounded domain in RY with smooth boundary o, N > 1.
p(x),q(x) and (x) are continuous functions on 2, A and p are parameters.

Using variational methods, we establish some existence and non-existence re-
sults of solutions for this problem.

1. INTRODUCTION

In recent years, the study of differential equations and variational problems with
p(z)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [11], Zhikov [I6] and the reference therein; see also [2, [ [5] [7].

Fourth-order equations appears in many context. Some of theses problems come
from different areas of applied mathematics and physics such as Micro Electro-
Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see [§]). In
addition, this type of equations can describe the static from change of beam or the
sport of rigid body. El Amrouss et al [I] studied a class of p(z)-biharmonic of the
form

A(|AuP@2Au) = Mu|P® 20 + f(z,u) in Q,
u=Au=0 on 0,

where € is a bounded domain in RY, with smooth boundary 99, N > 1, A < 0 and
some assumptions on the Carathéodory function f : Q x R — R. They obtained
the existence and multiplicity of solutions.

In a recent article, Lin Li et al [9] considered the above problem and using
variational methods, by the assumptions on the Carathéodory function f, they
establish the existence of at least one solution and infinitely many solutions of the
problem.

2010 Mathematics Subject Classification. 35J60, 35B30, 35B40.

Key words and phrases. p(z)-Biharmonic; variable exponent; critical points;
minimum principle; fountain theorem; dual fountain theorem.

(©2015 Texas State University - San Marcos.

Submitted July 22, 2014. Published June 15, 2015.

1



2 G. A. AFROUZI, M. MIRZAPOUR, N. T. CHUNG EJDE-2015/158

Inspired by the above references and the work of Jinghua Yao [13], the aim of this
article is to study the existence and multiplicity of weak solutions of the following
fourth-order elliptic equation with Navier boundary conditions

A(|AuP® 2 Au) + |uP@ 20 = N|u|7@ "2y + plu] @24 in Q,
u=Au=0 on 0.

where € is a bounded domain in RY with smooth boundary 99, N > 1, p(x), q(z)

and () are continuous functions on Q with inf _gp(z) > 1,inf _gq(x) > 1,

inf_ .gv(z) > 1 and A and p are parameters. Throughout the paper, we assume
that A2 + 2 # 0.

(1.1)

2. PRELIMINARIES

To study p(x)-Laplacian problems, we need some results on the spaces LP(*) ()
and W*P(®)(Q), and properties of p(x)-Laplacian, which we use later. Let Q be a
bounded domain of RY, denote

C1(Q) = {h(x); h(z) € C(Q), h(x) > 1,Vx € Q}.
For any h € C(Q), we define
hT = max{h(x); x € Q}, h~ =min{h(x); x € Q};
For any p € C(Q), we define the variable exponent Lebesgue space

LPO(Q) = {u; u is a measurable real-valued function such that

/ Ju(a) [P da < oo},
Q

endowed with the so-called Luzemburg norm
[ulp(z) = inf {p > 0; / |M\p(z)dx <1}
Q M
Then (LP@®) (), | - [,(x)) becomes a Banach space.
Proposition 2.1 ([6]). The space (LP®)(Q), | |p(a)) is separable, uniformly convez,

reflexive and its conjugate space is L9 (Q) where q(x) is the conjugate function of

p(x), i.e.,
1 1

[ + [
p(z)  q()
for all x € Q. Foru € LP®)(Q) and v € L) (Q), we have

11
|/“vd$| < (i + i)|u\p(x>|v|q<x> < 2Julp) |vlg()-
Q P~ q

)

The Sobolev space with variable exponent W*P(#)(Q) is defined as
WEP@(Q) = {u € LPW(Q) : D% € LP@(Q), |a| < k},

ol ) . ..
where D%y = & —x Uy with & = (a1,...,ay) is a multi-index and |a| =
N

9z 1oxy?...0
Zilil ;. The space W*P(*)(Q) equipped with the norm

lullkp@) = D D%y,
|a| <k
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also becomes a separable and reflexive Banach space. For more details, we refer the
reader to [3], 6], [10, [13]. Denote

Np(@) ¢ pp(x) < N,

* — ) N—kp(z)
) =
Pi(@) {+oo if kp(z) > N

for any z € Q, k > 1.

Proposition 2.2 ([6]). For p,r € C(Q) such that r(x) < pi(z) for all x € Q,
there is a continuous embedding

WEP@(Q) — L7@(Q).
If we replace < with <, the embedding is compact.

We denote by Wg’p(z)(Q) the closure of C§°(Q) in W*P(®)(Q). Note that the
weak solutions of problem (1.1)) are considered in the generalized Sobolev space

X = W@ Q) nwy P ()
equipped with the norm

Jull = it {ju >0 /Q (‘M‘p(m) +A|“f)|p(”)dm <1}.

w
Remark 2.3. According to [I4], the norm || - |3 p(z) is equivalent to the norm
|A - [p(a) in the space X. Consequently, the norms || - |2 (), || - [| and |A - [, are
equivalent.

Proposition 2.4 ([1]). If we denote p(u) = [,(|AulP™ + |[u[P®)dz, then for
u, U, € X, we have

(1) |lu|l <1 (respectively=1; > 1) <= p(u) < 1 (respectively =1; > 1);

2) flull < 1= [lulP" < p(u) < |Jull?;

3) fJul = 1= [lul]”” < p(u) < [ul”";

(4) |lull = 0 (respectively — c0) <= p(u) — 0 (respectively — o).

It is clear that the energy functional associated with (1.1) is defined by
1 1 1
I, (u) = / ——(|Au[P® 4 u|P®))da — )\/ —— |u| @ dz — u/ —— |u]" @ d.
g o p()  q(z) o ()
Let us define the functional

w) = L wlP@® L 1w PEY e
T = [ (AU 4 fup)da,

It is well known that J is well defined, even and C' in X. Moreover, the operator

L=J:X — X* defined as
(L(u),v) = / (|AuP@ =2 AuAv + |uP®~2uw)da
Q

for all u,v € X satisfies the following assertions.

Proposition 2.5 ([1]). (1) L is continuous, bounded and strictly monotone.
(2) Lis a mapping of (Sy) type, namely: u, — u, andlimsup,,_, .o L(un)(tn—
u) < 0 implies u, — u.
(3) L is a homeomorphism.
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3. MAIN RESULTS AND PROOFS

In this section, we study the existence and non-existence of weak solutions for
problem (1.1). We use the letter ¢; in order to denote a positive constant.

Theorem 3.1. Assume that q(z),v(x) € C+(Q) and pt < ¢ < q(z) < p3(x),
vt < p~ for any v € Q. Then we have

(i) For every A >0, p € R, has a sequence of weak solutions (Fuy) such
that I, (tug) — +oo as k — +o0.
(ii) For every p >0, A € R, has a sequence of weak solutions (£vy) such
that Iy, (£v) <0 and I ,(Fvg) — 0 as k — +oo.
(iii) For every A <0, u <0, has no nontrivial weak solution.

We will use the following Fountain theorem to prove (i) and the Dual of the
Fountain theorem to prove (ii).

Lemma 3.2 ([I5]). Let X be a reflexive and separable Banach space, then there
exist {e;} C X and {e}} C X* such that

X =span{e; : j=1,2,...}, X" =span{ej:j=12,...},

<ei7e;f>{1 A

and

0 ifi#7],
We define
X; =span{e;}, Yi= @§:1Xj7 Zy = m (3.1)

Then we have the following Lemma.
Lemma 3.3 ([1)). If (x),7(z) € C4(@), a(z) < p3(x), and ¥(x) < p3(x) for al
x € ), denote

Br = sup{|ulg); [Jull =1, u € Zx}

Or = sup{|uly(o); lull =1, v € Zi},
then limy_ oo B = 0, limy_, o 0 = 0.

Lemma 3.4 (Fountain Theorem [12]). Let
(A1) T € CYX,R) be an even functional, where (X,|| -||) is a separable and
reflexive Banach space, the subspaces Xy, Yy and Zy, are defined by .
If for each k € N, there exist pr, > rr, > 0 such that
(A2) inf{I(u) : w€ Zy, ||ul| =rr} — 400 as k — +o0.
(A3) max{I(u) : uweYy, |ul|=pc} <O0.
(A4) I satisfies the (PS) condition for every ¢ > 0.

Then I has an unbounded sequence of critical points.

Lemma 3.5 (Dual Fountain Theorem [12]). Assume (A1) is satisfied and there is
ko > 0 such that, for each k > kg, there exist px > 1, > 0 such that

(B1) ar =inf{I(u) : u € Zy, ||u|| = pr} > 0.

(B2) by, = max{I(u) :u € Yy, ||u]| =rs} <O0.

(B3) d, = inf{I(u):u € Z, ||u|| < pr} — 0 as k — +o0.

(B4) I satisfies the (PS)% condition for every c¢ € [d,,0).
Then I has a sequence of negative critical values converging to 0.



EJDE-2015/158 p(z)-BIHARMONIC PROBLEM 5

Definition 3.6. We say that I , satisfies the (PS)} condition (with respect to
(Yn)), if any sequence {u,,} C X such that n; — 400, un; € Yy, In u(tun;) — ¢
and (IA,u|Ynj )'(un,) — 0, contains a subsequence converging to a critical point of
I

Proof of Theorem (i) First we verify I , satisfies the (PS) condition. Sup-
pose that (u,) C X is (PS) sequence, i.e.,

|y u(un)| < cg, [;7H(un) —0 asn— .
By Propositions 2.2 and we know that if we denote
1 1
6 = N [l do, () = —p [ ),
o q(z) o (@)

then they are both weakly continuous and their derivative operators are compact.
By Proposition we deduce that I;\’M =L+ ¢'+1' is also of type (S). Thus it
is sufficient to verify that (u,) is bounded. Assume ||u,| > 1 for convenience. For
n large enough, we have

Co + 1+ [Jun]|

1
2 Dpltn) = = {0 (1) in)

1 1 1
= {/ 7(|Aun|p(w) + |un|p($))dac _ )\/ 7\un|q($)d$—,u/ —\unﬂ(“’)dm}
Q Q7

p(z) e (@)
1 . . . .
L0800 s [ e~ [ ]
q Q Q Q
1 1 - N
> (5 = o= Ml = exollunll”"

(3.2)

Since ¢~ > p* and p~ > 4T, we know that {u,} is bounded in X. In the following
we will prove that if k is large enough, then there exist pr > 7, > 0 such that (A2)
and (A3) hold.

(A2) For any u € Zy, ||u|| = rr > 1 (ry will be specified below), we have

1 1 1
Iy, (u :/ ——(|AuP®) 4 |ufP®) dx—)\/ —— || dz — / —— |u["®) dx

1 - A
> —Jul?” - = / jufo@ dg —
p q Q Y

Since p~ > 7T, there exists 79 > 0 large enough such that Cl,yl—l,“|||u||7+ < %%\\UHP_

as v = [jull > ro. If |ufyn) < 1 then fQ |u|q(m)dx < |u|g(;) < 1. However, if
+
[ulggey > 1 then fo [u]?®di < Julf,) < (Bllul)*". So, we conclude that
oz [ R b <
w\t) = - i
e lullP” = 2 Bellul)e” i [ulgg) > 1

1A .
> —|lull? — —=(Brllul)? —ci3,
p+|\ = [l
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+\ o=
choose 1, = (;—i\q‘”‘ﬂg )p ~*" | we have

1,1 1 -
I(u) = 5(}; - qT)TZ —c13 — oo ask — oo,
because of p™ < ¢~ < g7 and B — 0.

(A3) Let u € Yy, such that ||u|| = pr > 1, > 1. Then

1 1
AMW%ﬁép(%MM“w+WV”Mw—A/ gl e = [ s
<l = 2 [ e B up@a,

Since dim Yy < oo, all norms are equivalent in Yy, we obtain
SR 1L e

1P a L N1
Ixu(u) < p= S +HUII = [[ul”

We get that: Iy ,(u) — —o0 as ||ul| — 400 since ¢~ > pt and 77 < p~. So (A2)
holds. From the proof of (A2) and (A3), we can choose py > 1, > 0. Obviously
I, is even and the proof of (i) is complete.

(ii) We use the Dual Fountain theorem to prove conclusion (ii). Now we prove
that there exist py > 7 > 0 such that if k is large enough (B1), (B2) and (B3) are
satisfied.

(B1) For any u € Zj, we have

) — ulP@ 4 [ P@) @ ae — o [ @ e
Do) = [ (180 + up@a = x| e | @

q\x AR
A B
> ol = 2Bl - 2 [ e,
q
Since ¢~ > p™T, there exists pg > 0 small enough such that 614‘)" lullf < 2I#Hu”’ﬁ

as 0 < p = ||lul]| < po. Then from the proof above, we have

1 + 1 i
R i O A bl (33
HZ el — Ol oy > 1

N
2pT 0]\
Choose py = (%) rt—2F then

S
1 + 1 +
Dop(u) = ——(pu)?" — ——(px)?" =0.
(W) 2p+(/’k) 2p+(Pk)

Since p~ > 7T, 0, — 0, we know p, — 0 as k — 0.
(B2) For u € Yk with |lul| < 1, we have

1
I AulP@) pr) _ /7 (@) o — /7 v (=)

Q
A
P + ”/HW ffjwmm

Since dimY, = k, conditions v* < p~ and pT < ¢~ imply that there exists a
i € (0, p) such that I ,(u,) < 0 when |ju|| = ry. So we obtain

max I ,(u) <0,

UEYg,||ull=rk
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i.e., (B2) is satisfied.
(B3) Because Y, N Zy # 0 and r, < pg, we have

inf Iyy(u) <bp= max I ,(u) <O0.
weZlull<pp wevi,ufl=re H

From (3.3) , for u € Zy, |lu|]| < pi small enough we can write

1 + At + At +
Iy u(u) > 2]?”“”}7 — 0] |ul” > —7_92 flull”,

Since 0, — 0 and pr — 0 as k — oo, (B3) holds. Finally we verify the (PS)}
condition. Suppose {u,,} C X such that

n; — +o00, Un,; € Ynj, I>\7M(unj) — C16, (I>\7H|Ynj)/(u’ﬂj) — 0.

If X > 0, similar to (3.2)), we can get the boundedness of [|uy;||. Assume |[uy,,|| > 1
for convenience. If A < 0, for n > 0 large enough, we have

1
C16 + 1+ Hun] || > IAvIvL(unj) - qj<li,u(unj)’unj>

1 1
= {/ —(|Aunj|p(w) + |un_j|p(7”))dx— )\/ —|un_7|Q(z)dx
Q

o p(x) q(z)
1 1
Y L @ g — 2 p(x) p(z)
u/ Un, v dm} [/ Auni + [un, dx
Qv(x)l | = Q(\ | [t [PH)
— /|unj|q(w)dx—u/ |unj\7(w)d$}
Q ’ Q
1 1 - +
> (o = o ) lun 7 = exrlfun, 7

Since p~ > ~T and ¢t > p*, we know that {u,,} is bounded in X. Hence there
exists u € X such that u,; — v in z. Observe now that X = U, Y, , then we can
find v,; € Y,, such that v,;, — u. We have

(I3 (U )ty — ) = (I3, (U )y Uy — Uny) + (I3 (), Un; — 1)
Having in mind that (u,;, — v,,) € Yy, it yields
<I,/\7H(unj)a unj - U> = <(I>\,;L|Ynj )/(unj)a unj - Unj> + <I//\,u(unj)a Unj - u> —0 (34)

as n — 0o. By Proposition the operator Ié\,u is obviously of (Sy) type. Using
this fact with (3.4)), we deduce that u,; — win X, furthermore I} ,(un,;) — I} ,(u).

We claim now that w is in fact a critical point of I ,. Taking wy € Y}, notice
that when n; > k we have

(I (), ) = (I3 (0) = I (i, ), o)+ (IS () )
= (14 u) = I (i, ) on) + ( (Dalya, ) () )-

Going to the limit on the right side of the above equation reaches

<I;\,/L(u)7wk> = 0, Vwk c Yk,

so I} ,(u) =0, this show that I, , satisfies the (PS); condition for every c € R.
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(iii) Assume for the sake of contradiction, v € X\{0} is a weak solution of
problem (1.1). Then multiplying the equation in (L.1) by w, integrating by parts

we obtain
J 080 fap e =3 [ juft g [ .
Q Q Q

This leads to contradiction and the proof is complete.
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