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FERMAT TYPE DIFFERENTIAL AND DIFFERENCE
EQUATIONS

KAI LIU, XIANJING DONG

Abstract. This article we explore the relationship between the number of dif-

ferential and difference operators with the existence of meromorphic solutions
of Fermat type differential and difference equations. Some Fermat differential

and difference equations of certain types are also considered.

1. Introduction

Some classical results on the meromorphic solutions of Fermat type functional
equation

f(z)n + g(z)n = 1 (1.1)
can be stated as follows. Gross [2] proved that (1.1) has no transcendental meromor-
phic solutions when n ≥ 4, and Montel [11] showed that (1.1) has no transcendental
entire solutions when n ≥ 3. Iyer [5] concluded that if n = 2, then (1.1) has the
entire solutions f(z) = sin(h(z)) and g(z) = cos(h(z)), where h(z) is any entire
function, no other solutions exist. We remark that (1.1) can be rewritten as

f(z)n + [g1(z) + · · ·+ gm(z)]n = 1, (1.2)

it is easy to see that there is no relationship between the number of m with the
existence of meromorphic solutions of (1.2), since that n and functional fields are
the determinants of the existence of solutions. In this paper, we will explore the
corresponding problem when gi(z), i = 1, 2, . . . ,m, are some differential or difference
operators of f(z). Our aim is to explore the relationship between the number of
differential or difference operators with the existence of meromorphic solutions of
Fermat type differential or difference equations.

Let us begin from a result given in [15]. Yang and Li considered the entire solu-
tions of Fermat type differential equations. Here, we rewrite the original theorem
as follows for the goal of this article

Theorem 1.1. Let n be a positive integer, b0, b1, . . . , bn−1 be constants, bn be a non-
zero constant and let L(f) =

∑n
k=0 bkf

(k). Then the transcendental meromorphic
solution of the following equation

f2 + L(f)2 = 1 (1.3)
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must have the form f(z) = 1
2

(
Peλz + 1

P e
−λz) = ch(λz + A), where eA = P , P is

a non-zero constant and λ satisfies the following equations:
n∑
k=0

bkλ
k =

1
i
,

n∑
k=0

bk(−λ)k = −1
i
. (1.4)

In fact, all the transcendental meromorphic solutions of (1.3) should be tran-
scendental entire solutions. Let L(f) = f (n). From (1.4) of Theorem 1.1, we see
easily that if n is an odd, then (1.3) has transcendental entire solutions. If n is
an even, then (1.3) has no transcendental entire solutions. Some related results on
f2 + R(z)(f (n))2 = 1 also can be found in [13], where R(z) is a rational function
and n is an odd. Let L(f) = bnf

(n) + bn+1f
(n+1). Yang and Li also obtained the

following result.

Theorem 1.2 ([15, Theorem 2]). Let bn and bn+1 be non-zero constants. Then

f2 + [bnf (n) + bn+1f
(n+1)]2 = 1 (1.5)

has no transcendental meromorphic solutions.

It is not difficult to see that bn+1f
(n+1) can be replaced by bn+2k+1f

(n+2k+1) in
Theorem 1.2, where k is a non-negative integer. However, if f (n+1) is replaced by
f (n+2) or f (n+2k), then (1.5) can admit some transcendental entire solutions from
Example 1.3 below.

Example 1.3. The function f(z) = cos z satisfies

f2 + [
3
2
f ′ +

1
2
f ′′′]2 = 1,

and f(z) = sin z solve

f2 + [
1
2
f ′ − 1

2
f ′′′]2 = 1.

In fact, a necessary condition of existence of transcendental solutions of

f2 + [bnf (n) + bn+1f
(n+2k)]2 = 1

is that n must be an odd. Furthermore, the necessary condition of existence of
solutions of f2 + [bnf (n) + bmf

(m)]2 = 1 is that m,n are odds, which can be
obtained by (1.4) of Theorem 1.1.

Let us consider the case of L(f) = bnf
(n) + bn+1f

(n+1) + bn+2f
(n+2). From

Theorem 1.1, we see that if n is an even, then

f2 + [bnf (n) + bn+1f
(n+1) + bn+2f

(n+2)]2 = 1 (1.6)

may admit some transcendental solutions. If n is odd, then (1.6) has no tran-
scendental solutions. From the above statements, we conclude that the necessary
conditions for (1.3) to admit transcendental solutions are as follows:

(i) k is an odd (it is also a sufficient condition), provided that L(f) = f (k),
(ii) m+n is an even and m,n are odds, provided that L(f) = bnf

(n) + bmf
(m),

(iii) n+ p+ q is an odd, provided that L(f) = bnf
(n) + bpf

(p) + bqf
(q).

We give two notations for more convenient statements. Denoting D(L(f)) by
the number of differential operators in L(f), for example D(L(f)) = n + 1, if
L(f) =

∑n
k=0 bkf

(k) and bk 6= 0, k = 0, 1, . . . , n. Denoting W (L(f)) by the sum
of order of all differential operators in L(f), for example W (L(f)) = n(n+1)

2 , if
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L(f) =
∑n
k=0 bkf

(k) and bk 6= 0, k = 0, 1, . . . , n. So far, we have obtained that
if D(L(f)) is odd (even), the necessary condition of existence of transcendental
solutions of (1.3) is that W (L(f)) is odd (even), provided that L(f) has no more
than three terms. A natural question happens as follows.

Question 1.4. Can we get the parity of D(L(f)) and W (L(f)) are same for any
L(f), provided that there exist transcendental solutions of (1.3)?

Unfortunately, Question 1.4 is not true for L(f) with four terms by Example 1.5
below.

Example 1.5. The function f(z) = cos(−
√

b2
b4
z +Ai) is an entire solution of

f2 + [b1f ′ + b2f
′′ + b3f

′′′ + b4f
(4)]2 = 1,

where b1b4 + b2b3 = b4

√
b2
b4

. Here D(L(f)) = 4 and W (L(f)) = 10. The function
f(z) = sin z solves the equation

f2 + [f ′ +
3
2
f ′′ + 2f (4) +

1
2
f (6)]2 = 1.

Here, D(L(f)) = 4 and W (L(f)) = 13.

If we add the condition that all |bi| = 1, Question 1.4 is also not true, which can
be seen by the Example 1.6.

Example 1.6. Assume that λ satisfies

b5λ
5 + b4λ

4 + b1λ+ b0 =
1
i
,

b5[−λ]5 + b4[−λ]4 + b1[−λ] + b0 = −1
i
.

Then f(z) = ch(λz +A) solves f2 + [b5f (5) + b4f
(4) + b1f

′ + b0f ]2 = 1, where A is
a constant. If t satisfies

b5t
5 + b4t

4 + b1t
2 + b0 =

1
i
,

b5[−t]5 + b4[−t]4 + b2[−t]2 + b0 = −1
i
,

then f(z) = ch(tz +B) solves f2 + [b5f (5) + b4f
(4) + b2f

′′ + b0f ]2 = 1, where B is
a constant.

We always considered that there is just one term f(z)2 in the beginning place of
(1.3), we proceed to consider the following equation

[f + f ′]2 + [f + f ′′]2 = 1, (1.7)

and obtain the following result.

Theorem 1.7. The equation (1.7) has no transcendental meromorphic solutions.

Furthermore, we want to explore when the following equation

[af + bf ′]2 + [cf + df ′′]2 = 1, (1.8)

can admit a transcendental meromorphic solution, where a, b, c, d are constants. We
obtain the following result.
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Theorem 1.8. If (1.8) admits transcendental meromorphic solutions f(z), then
one of the following holds:

(i) a = 0, c = 0, b 6= 0, d 6= 0 and f(z) = id
b2 sh( bid z − B) + A, where A is a

constant.
(ii) a, b, c, d are non-zero constants and c

a = 1−e2p

1+e2p i, then f(z) = De−
a
b z +

ep+e−p

2a , where p is a constant, D is a non-zero constant.
(iii) a = 0, b 6= 0, c 6= 0 and f(z) = bi+d

bc sh(e
c

bi+d z−A) +B, where d+ dc
b2i+bd = 0

and A,B are constants.

Recently, using the difference analogues of Nevanlinna theory, the meromorphic
solutions of complex difference equations or differential-difference equations with
certain types also be considered, such as [6, 7, 8, 9, 10, 12]. The first author and
his colleagues considered Fermat type difference equations, such as Liu, Cao and
Cao [8] investigated the finite order entire solutions of

f(z)2 + f(z + c)2 = 1. (1.9)

Here and in the following, c is a non-zero constant, unless otherwise specified. The
result can be stated as follows.

Theorem 1.9 ([8, Theorem 1.1]). The transcendental entire solutions with finite
order of (1.9) must satisfy f(z) = sin(Az + B), where B is a constant and A =
(4k+1)π

2c , with k an integer.

When f(z + c) is replaced by f(z + c)− f(z) in (1.9), that is

f(z)2 + [f(z + c)− f(z)]2 = 1, (1.10)

Liu [6] proved the following result.

Theorem 1.10 ([6, Proposition 5.3]). There is no transcendental entire solutions
with finite order of (1.10).

Let a0, a1, . . . , an be non-zero constants. If

f(z)2 + [a0f(z) + a1f(z + c1) + . . .+ anf(z + cn)]2 = 1 (1.11)

admits transcendental entire solutions with finite order, we hope that n is an odd.
However, it is not true again by Example 1.11 below.

Example 1.11. The function f(z) = sin z is a solution of

f(z)2 + [2f(z) + f(z +
π

2
) + f(z + π)]2 = 1

and also a solution of

f(z)2 + [2f(z) + f(z +
π

2
) +

1
2
f(z + π) +

3
2
f(z + 3π)]2 = 1.

If we put the additional condition that |ai| = 1 for i = 0, 1, 2, . . . , n, then Ques-
tion 1.4 is also not true; we will construct an example as follows.

Example 1.12. The function f(z) = sin z is a solution of

f(z)2 + [if(z) + f(z + c1) + f(z + c2) + f(z + c3)]2 = 1,

where ec1 = A, ec2 = B, ec3 = C and
A+B + C = 0,

1
A

+
1
B

+
1
C

= −2i,
(1.12)
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it is also a solution of

f(z)2 + [if(z) + f(z + t1) + f(z + t2) + f(z + t3) + f(z + t4)]2 = 1,

where et1 = A1, et2 = B1, et3 = C1, et4 = D1 and
A1 +B1 + C1 +D1 = 0,

1
A1

+
1
B1

+
1
C1

+
1
D1

= −2i.
(1.13)

As a generalization of (1.10), we want to consider when the following equation

D2f(z)2 + [Af(z + c) +Bf(z)]2 = 1 (1.14)

admits transcendental entire solutions, we get the next result.

Theorem 1.13. Let A,B be constants. If there are transcendental entire solutions
with finite order of (1.14), then A2 = B2 +D2.

Example 1.14. We see that f(z) = sin(az + b) is an entire solution of

f(z)2 + [−
√

2f(z + c) + f(z)]2 = 1,

here D = 1, B = 1, A = −
√

2 and c = π
4a .

Finally, we also consider a difference equation similar to (1.7), and get the fol-
lowing result.

Theorem 1.15. Let a1, a2, a3, a4 be non-zero constants. If

[a1f(z + c) + a2f(z)]2 + [a3f(z + c) + a4f(z)]2 = 1 (1.15)

admits transcendental entire solutions with finite order, then a2
1 + a2

3 = a2
2 + a2

4 and
f(z) = a3 cos(aiz+bi)+a1 sin(aiz+bi)

a2a3−a1a4
, where a is non-zero constant and b is a constant.

Example 1.16. It is easy to see that

[f(z + c) + f(z)]2 + [f(z + c)− f(z)]2 = 1 (1.16)

can admit a transcendental entire solution of f(z) =
√

2
2 sin(z + π

4 ) = cos z+sin z
2 ,

which implies that a = −i and b = 0 in Theorem 1.15.

2. Proof of Theorem 1.7

For the proof of Theorem 1.7, we need the following lemma.

Lemma 2.1 ([16, Theorem 1.46]). Suppose that f(z) is a transcendental meromor-
phic function and h(z) is a non-constant entire function. Then

lim
r→∞

T (r, f(h))
T (r, h)

=∞.

Now, we give the proof of Theorem 1.7. Using the classical results of Fermat
equations in the beginning of the introduction, we have

f + f ′ = sin(h(z)),

f + f ′′ = cos(h(z)).
(2.1)

It is a system of differential equations, however we do not know what is h(z). Hence,
it is not convenient to slove using the basic theory of differential equations. Here,
we use the following method. Firstly, from (2.1), we get

f ′ − f ′′ = sin(h(z))− cos(h(z)). (2.2)
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Then taking the first order derivative of first equation of (2.1), we have

f ′ + f ′′ = h′(z) cos(h(z)). (2.3)

Thus, combining the second equation of (2.1) and (2.3), we have

f − f ′ = cos(h(z))− h′(z) cos(h(z)), (2.4)

then taking derivative of the above equation, we have

f ′ − f ′′ = −h′(z) sin(h(z))− h′′(z) cos(h(z)) + [h′(z)]2 sin(h(z)). (2.5)

Combining (2.2) and (2.5), we have

tan(h(z)) =
h′′(z)− 1

(h′(z))2 − h′(z)− 1
, (2.6)

which implies that h(z) should be a constant from Lemma 2.1. By a simple com-
putation, we have f(z) should be a constant. So, there is no transcendental entire
solutions.

3. Proof of Theorem 1.8

The method is a factorization. Here, we give the details. We easily get

af + bf ′ =
ep(z) + e−p(z)

2
(3.1)

and

cf + df ′′ =
ep(z) − e−p(z)

2i
, (3.2)

where p(z) is a transcendental entire function. Taking the first derivative of (3.1),
we have

af ′ + bf ′′ =
p′(z)ep(z) − p′(z)e−p(z)

2
. (3.3)

Combining (3.2) with (3.3), we have

bcf − adf ′ =
ep(z) − e−p(z)

2
[−bi− p′(z)d]. (3.4)

Combining (3.4) with (3.1), we have

[a2d+ b2c]f =
adep(z) + ade−p(z)

2
+
ep(z) − e−p(z)

2
[−b2i− p′(z)bd] (3.5)

and

[a2d+ b2c]f ′ =
bcep(z) + bce−p(z)

2
− ep(z) − e−p(z)

2
[−bai− p′(z)ad]. (3.6)

Next, we talk about two cases.
Case 1: If a2d+ b2c = 0, then from (3.5) we have

e2p(z)[ad− b2i− p′(z)bd] = −ad− b2i− p′(z)bd. (3.7)

Subcase 1.1. If a = 0, d 6= 0 and b2i + p′(z)bd 6= 0, then c = 0 follows. Thus, it
implies e2p(z) = 1, that is p(z) reduces to a constant, which is a contradiction with
f is transcendental. If a = 0, d 6= 0 and b2i + p′(z)bd = 0, then c = 0 and b 6= 0
(a, b are not zeros simultaneously) and p(z) = − bid z + B, where B is a constant,
which implies that f(z) = di

b2 sh( bid z −B) +A, where A is a constant.
Subcase 1.2. If a 6= 0, d = 0 and b2i+ p′(z)bd 6= 0, then b 6= 0 and c = 0 follows, a
contradiction. If a 6= 0, d = 0 and b2i + p′(z)bd = 0, then b = 0, thus f should be
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a constant from (1.8).
Subcase 1.3. If ad 6= 0, then bc 6= 0, thus p(z) should be a constant for avoiding a
contradiction. From a simple computation, we have f(z) = De−

a
b z + ep+e−p

2a and
c
a = 1−e2p

1+e2p i.

Case 2: If a2d+b2c 6= 0, then taking derivative for (3.5) and combining with (3.6),
we have

e2p(z)[iba+ p′′(z)bd+ φ] = iba+ p′′(z)bd− φ, (3.8)

where p′(z)b2i + [p′(z)]2bd + bc = φ, hence we have either iba + p′′(z)bd = 0 and
φ = 0 or p(z) should be a constant.
Subcase 2.1. If iba+ p′′(z)bd = 0 and φ = 0, we assume that b = 0, form (3.1) and
(3.2), we have

e2p(z)[
dp′′(z)
a

+
d

a
p′(z)2 +

c

a
− 1
i
] =

dp′′(z)
a

− d

a
p′(z)2 − c

a
− 1
i
, (3.9)

hence either p(z) is a constant, then f(z) is a constant or T (r, e2p) = S(r, e2p)
which is impossible. Assume that b 6= 0, we can get p′(z) = − c

bi+d and a = 0, by a
simple computation, we have f(z) = bi+d

bc sh(e
c

bi+d z−A) + B, where d + dc
b2i+bd = 0

and A,B are constants.
Subcase 2.2. If p(z) is a constant p, we have e2p(iba + bc) = iba − bc from (3.8),
if b = 0, then f should be a constant. If b 6= 0, we have e2p = ia−c

ia+c , then f(z) =

De−
a
b z + ep+e−p

2a , then substitute f(z) into (3.1) and (3.2), we have a2d+ b2c = 0,
which is a contradiction of the Case 2.

4. Proof of Theorem 1.13

We need the following result by Yang and Yi, [16, Theorem 1.56].

Lemma 4.1. Let f1, f2, f3 be meromorphic functions such that f1 is not a constant.
If f1 + f2 + f3 = 1 and if

3∑
j=1

N(r, 1/fj) + 2
3∑
j=1

N(r, fj) < (λ+ o(1))T (r),

where λ < 1 and T (r) := max1≤j≤3 T (r, fj), then either f2 = 1 or f3 = 1.

Using the classical results of Fermat equations of in the beginning of the intro-
ductions, we get Df(z) = sin(h(z)) and Af(z + c) + Bf(z) = cos(h(z)). Thus, we
have the equation

A sin(h(z + c)) +B sin(h(z)) = D cos(h(z)).

So we have
A sin(h(z + c)) =

√
D2 +B2 sin(h(z) + ϕ),

where tanϕ = −DB . Thus, we have

eih(z+c) − e−ih(z+c)

2i
=
√
D2 +B2

A

eih(z)+iϕ − e−ih(z)−iϕ

2i
,

which implies that

e2ih(z+c) −
√
D2 +B2

A
eih(z+c)+ih(z)+iϕ +

√
D2 +B2

A
eih(z+c)−ih(z)−iϕ = 1. (4.1)



8 K. LIU, X. DONG EJDE-2015/159

Using Lemma 4.1 and remark that e2ih(z+c) and eih(z+c)+ih(z)+iϕ are not constants,
then we have

√
D2 +B2

A
eih(z+c)−ih(z)−iϕ = 1,

e2ih(z+c) −
√
D2 +B2

A
eih(z+c)+ih(z)+iϕ = 0.

For avoiding a contradiction from the above two equations, we should have h(z) =
az + b, thus, we get A2 = B2 + D2. Then ac = ϕ + 2kπ or ac = ϕ + π + 2kπ. If
Df(z) = cos(h(z)) = sin(h(z) + π

2 + 2kπ), using the similar method as above.

5. Proof of Theorem 1.15

If one of a1, a2, a3, a4 is zero, then using Theorem 1.13, we get the conclusion.
Next, we talk about all a1, a2, a3, a4 being non-zero constants. Using the factoriza-
tion, we obtain

a1f(z + c) + a2f(z) =
ep(z) + e−p(z)

2
, (5.1)

a3f(z + c) + a4f(z) =
ep(z) − e−p(z)

2i
. (5.2)

Then we have the following two equations

(a2a3 − a1a4)f(z) = a3
ep(z) + e−p(z)

2
− a1

ep(z) − e−p(z)

2i
,

(a2a3 − a1a4)f(z + c) = a2
ep(z) − e−p(z)

2i
− a4

ep(z) + e−p(z)

2
.

(5.3)

If a2a3 − a1a4 = 0, then we have e2p(z) = −1, which implies that a1f(z + c) +
a2f(z) = 0 and a3f(z + c) + a4f(z) = ±1, so f(z) should be a constant.

If a2a3 − a1a4 6= 0, we have

a3
ep(z+c) + e−p(z+c)

2
− a1

ep(z+c) − e−p(z+c)

2i

= a2
ep(z) − e−p(z)

2i
− a4

ep(z) + e−p(z)

2
.

(5.4)

Furthermore, we get

[a3 + a1i]ep(z+c)+p(z) + [a3 − a1i]ep(z)−p(z+c) + [a4 + a2i]e2p(z) = a2i− a4. (5.5)

From Lemma 4.1, we have p(z) − p(z + c) should be a constant, it implies that
p(z) = az + b, where a is a non-zero constant and we have

[a3 + a1i]eac + [a4 + a2i] = 0, (5.6)

[a3 − a1i]e−ac = a2i− a4, (5.7)

which implies that a2
1+a2

3 = a2
2+a2

4. Then f(z) = a3 cos(aiz+bi)+a1 sin(aiz+bi)
a2a3−a1a4

follows.
Thus, we have the proof of Theorem 1.15.
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6. Further discussions

We remark that the finite order transcendental entire solutions should be of
order one in Fermat differential or difference equations that we have considered.
Of course, we always using the theory of factorization to get the expressions. We
raise the following conjecture for the further studying on Fermat type differential
or difference equations.

Conjecture 6.1. If there exist transcendental entire solutions f(z) of Fermat dif-
ferential or difference equations P (f)2 +Q(f)2 = 1, then the order σ(f) = 1, where
P (f), Q(f) are two linear differential or difference polynomials with constant coef-
ficients.

Wiman-Valiron theory [14] and the difference Wiman-Valiron theory [1] can be
used to get σ(f) ≥ 1 in some cases. However, we have no ideas to remove the case
σ(f) > 1.

Finally, let us remind some results on the equation

fn + gm + hp = 1 . (6.1)

Gundersen [3] summed up some results, and recent results can be found in [18],
[17]. Considering Fermat type difference equation with three terms, such as

f(z)n + f(z + c1)m + f(z + c2)p = 1. (6.2)

It is easy to see that the necessary conditions of existence of transcendental entire
solutions of finite order is m = n = p. So the classical result in Fermat functional
equations show that there is no any entire solutions when m = n = p ≥ 7. Here, we
consider when (6.2) can admit entire solutions. It is easy to see that if m = n = p =
1, then f(z) = ez + 1

3 and ec1 = 1
2 and ec1 = − 3

2 is a solution of f(z) + f(z + c1) +
f(z+c2) = 1. We also can find an entire solution of f(z)2+f(z+c1)2+f(z+c2)2 = 1.
For example, f(z) = ez +

√
3

3 and ec1 = −1+
√

3i
2 and ec2 = −1−

√
3i

2 .
For our further studying, we raise the following questions about the equation

f(z)n + f(z + c1)n + f(z + c2)n = 1, (6.3)

where c1 and c2 are non-zero constants.

Question 6.2. Does there exist a transcendental entire solution with finite order
of (6.3), provided that 3 ≤ n ≤ 6.

Question 6.3. Does there exist a transcendental meromorphic solution with finite
order of (6.3), provided that 3 ≤ n ≤ 8.
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