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OPTIMAL PARTIAL REGULARITY FOR QUASILINEAR ELLIPTIC
SYSTEMS WITH VMO COEFFICIENTS BASED ON A-HARMONIC

APPROXIMATIONS

HAIYAN YU, SHENZHOU ZHENG

A. In this article, we consider quasi-linear elliptic systems in divergence form with
discontinuous coefficients under controllable growth. We establish an optimal partial reg-
ularity of the weak solutions by a modification of A-harmonic approximation argument
introduced by Duzaar and Grotowski.

1. I

Let Ω be a bounded smooth domain of Rn(n ≥ 2) and u : Ω→ RN be a vectorial-valued
function in Sobolev spaces W1,2(Ω,RN). In this article, we obtain optimal partial regularity
in Hölder spaces to the weak solution of quasi-linear elliptic systems in divergence form
under the controllable growth as follows:

− Dα(Aαβ
i j (x, u)Dβu j) = Bi(x, u,Du), a. e. x ∈ Ω, i = 1, 2, . . . ,N; (1.1)

where A(x, u) = (Aαβ
i j (x, u)) is a VMO function in x ∈ Ω uniformly with respect to u ∈

RN and continuous in u uniformly with respect to x ∈ Ω, and Bi(x, u,Du) satisfies the
controllable growth. In the context, we adopt Einstein’s convention by summing over
repeated indices with α, β = 1, 2, . . . , n and i, j = 1, 2, . . . ,N. Therefore, a vectorial-
valued function u ∈ W1,2

loc (Ω,RN) is understood as a weak solution of (1.1) in the following
distributional sense:∫

Ω

A(x, u)Du · Dϕ dx =

∫
Ω

B(x, u,Du)ϕ dx, ∀ϕ ∈ C∞0 (Ω,RN). (1.2)

Before stating our basic assumptions and main result, let us briefly review some recent
studies on the topic. As we know, the discontinuity of the coefficients is not so crucial for
Hölder continuity of the weak solutions of the scalar partial differential equations, which
is due to the famous De Giorgi-Moser-Nash iterating technique, see [16]. However, for the
vectorial-valued case (i.e. N > 1) some counterexamples showed that nonlinear elliptic
systems, even in the Euclidian metric, do not possess everywhere regularity conclusion,
see Giaquinta’s monograph [15]. In addition, to get the regularity of weak solutions of
elliptic systems, one needs to assume the continuity of coefficients in general. In fact, the
system (1.1) arises naturally in many different contexts. Giaquinta and Modica [18, 15]
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first studied partial regularity of weak solutions of the system (1.1) in the Morrey space
and in the Campanato space [15, 24] when each entry of the leading coefficients A(x, u) is
assumed to be continuous four order tensorial-valued function.

It is an important observation that many stochastic processes with discontinuous coef-
ficients reappeared in connected with diffusion approximation [20]. However, according
to the famous counterexample of Nadirashvili there could not exist theory of solvability
of systems with general discontinuous coefficients even if they are uniformly bounded and
elliptic, and solutions are understood in a very weak sense. This reminds us of the signifi-
cance to treat particular cases of discontinuity. As an important turning point, Sarason [25]
introduced the function classes of the so-called Vanishing Mean Oscillations (briefly called
VMO), which is a class of functions that neither contains nor is contained within C0(Ω)
and contains discontinuous functions. Moreover, the VMO functions own a good prop-
erty similar to the class of continuous functions, which is not shared by general bounded
measurable functions and BMO functions. Since then, the Calderón-Zygmund’s theory
of linear and nonlinear PDEs with VMO coefficients were immensely developed which
naturally originated from the singular integral operators and the estimates of commutators
with a VMO function [3, 1]. In the meantime, the regularity in Morrey spaces of weak
solutions to PDEs with the discontinuous leading coefficients was also investigated in a
similar approach by Fazio [13] and Fan-Lu-Yang [14]. Very recently, it developed some
new different arguments to deal with the divergence or non-divergence elliptic and para-
bolic PDEs with the VMO leading coefficients, for example a few celebrated approaches
of Chiarenza-Frasca-Longo [3], Syun-Wang [2] and Krylov-Dong-Kim [21, 9]. Now we
are in the position to recall some assumptions imposed on A(x, u) and B(x, u,Du).

(H1) (uniform ellipticity) There exist two constants 0 < λ ≤ Λ such that

λ|ξ|2 ≤ Aαβ
i j (x, u)ξi

αξ
j
β ≤ Λ|ξ|2, ∀x ∈ Ω, u ∈ RN , ξ ∈ RnN . (1.3)

(H2) (A(x, u) is VMO in x and continuous in u) A(·, u) is VMO in x uniformly with
respect to u ∈ RN and is continuous in u uniformly with respect to x ∈ Ω; that
is, lims→0 Ms(A(·, u0)) = 0, where Ms(A(·, u)) referred to section 2, and there exist
a constant and a continuous concave function ω : R+ → R+ with ω(0) = 0,
0 ≤ ω ≤ 1 such that

|Aαβ
i j (x, u) − Aαβ

i j (x, v)| ≤ Cω(|u − v|2), ∀u, v ∈ RN , x ∈ Ω. (1.4)

The modulus of continuity may take a continuous concave function by ω(t) =

in f {λ(t) : λ(t) concave and continuous with λ(t) ≥ α(t) for any modulus of conti-
nuity α(t)}.

(H3) (controllable growth) The lower order item B(x, u,Du) satisfies the following con-
trollable growth with a constant L > 0:

|Bi(x, u,Du)| ≤ L
(
|Du|2(1− 1

γ )
+ |u|γ−1 + gi

)
, (1.5)

where

γ =

 2n
n−2 , if n > 2,
any γ > 2, if n = 2;

gi ∈ Lq(Ω), q >
n
2

;

for α = 1, 2, . . . , n and i = 1, 2, . . . ,N.
Let us review some studies on the analogous questions. Gironimo-Esposito-Sgambati in
[17] obtained the partial regularity in Morrey spaces to quasi-linear quadratic functionals
with leading coefficient A(x, u) allowing VMO dependence on x and continuous depen-
dence on u. Later, Zheng [28] and Zheng-Feng [29] derived the partial regularity in Morrey
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spaces for quasi-linear elliptic systems with VMO leading coefficients with the controllable
growth and the natural growth by a reverse Hölder inequality and perturbation argument,
respectively. Chen-Tan [4] also got an optimal interior partial regularity for nonlinear el-
liptic systems under the controllable growth condition by the A-harmonic approximation,
but their principle coefficients A(x, u) are essentially Hölder continuous in (x, u). Here,
we would like to study the above topic by way of an approach called A-harmonic ap-
proximation. As we know, the argument of harmonic approximation can go back to De
Giorgi’s work [6] who started to use the idea of approximating almost minimizers and
the equation of minimal surfaces by systems with constant coefficients. Afterwards, the
harmonic approximation argument was efficiently employed to study ε-regularity of har-
monic maps, see [26]. Recently, Duzaar-Mingione-Grotowski-Steffen in [11, 10, 23, 6]
developed this approach to so-called A-harmonic approximation, p-harmonic approxima-
tion and A-caloric approximation in proving the regularity for nonlinear elliptic systems
with continuous or Hölder continuous coefficients, p-harmonic maps and parabolic set-
tings, respectively. In particular, Daněček-John-Stará [5] employed so-called modified
A-harmonic approximation approach to prove the regularity in Morrey’s space of weak
solutions of Stokes systems with VMO coefficients. Inspired by his work, in this paper
we should like to prove an optimal partial regularity for quasi-linear elliptic systems with
VMO coefficients under the controllable growth by a modification of A-harmonic approx-
imation argument, which avoids to use the reverse Hölder inequality. We state our main
results as follows.

Theorem 1.1. In the case of vectorial-valued functions with N > 1, suppose that u ∈
W1,2

loc (Ω,RN) is a locally weak solution of the system (1.1), and A(x, u), B(x, u,Du) satisfy
the basic assumptions (H1)–(H3). Then there exists an open subset Ω0 ⊂ Ω with dimH(Ω \
Ω0) ≤ n − 2 such that u ∈ C0,α

loc (Ω0,R
N), α = 2 − n

q if n
2 < q < n or u ∈ C0,α

loc (Ω0,R
N) for all

α ∈ (0, 1) if q ≥ n, which dimH expresses the Hausdorff’s dimension.

This article is organized as follows. In section 2, we recall some notations and facts,
and give the proof of modification of so-called A-harmonic approximation, Caccioppoli
inequality. Section 3 is devoted to prove the main conclusions.

2. P

We adopt the usual convention of denoting by C a general constant, which may vary
from line to line in the same chain of inequalities. Let us first recall some notation and
basic facts [25, 27].

Definition 2.1. A locally integrable function f is said to belong to BMO(Ω)(the spaces of
bounded mean oscillation), if f ∈ Lloc(Ω) and for any 0 < s < ∞, we have

Ms( f ,Ω) = sup
x∈Ω,0<ρ<s

|Ω(x, ρ)|−1
∫

Ω(x,ρ)
| f (y) − fx,ρ| dy < +∞,

where Ω(x, ρ) = Ω ∩ B(x, ρ) with any open ball B(x, ρ) in Rn centered at x of radius ρ, and
fx,ρ :=

>
Ω(x,ρ) f (y) dy = 1

|Ω(x,ρ)|

∫
Ω(x,ρ) f (y) dy.

Definition 2.2. A function f ∈ Lloc(Ω) is said to be in V MO(Ω)(vanishing mean oscillation
in Ω), if

M0( f ) = lim
s→0

Ms( f ,Ω) = 0.
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As we know, Caccioppoli’s inequality is usually a very beginning of studying regularity
to elliptic and parabolic PDEs, see [15]. Here, we provide the so-called second Cacciop-
poli’s inequality.

Lemma 2.3. Let u ∈ W1,2
loc (Ω,RN) be a weak solution of (1.1) and A(x, u), B(x, u,Du)

satisfy the assumption (H1)–(H3). Then for any Bρ(x0) ⊂ Ω, we have∫
B ρ

2
(x0)
|Du|2 dx ≤

C1

ρ2

∫
Bρ(x0)

|u −m|2 dx + C2

( ∫
Bρ(x0)

(|Du|2 + |u|γ + |g|
γ
γ−1 )dx

)2(1− 1
γ )
, (2.1)

where m is a vectorial-valued constant in RN .

Proof. For any x0 ∈ Ω, 0 < ρ < dist(x0, ∂Ω), denoting Bρ := Bρ(x0), we take η ∈

C∞0 (Bρ(x0)) as a cut-off function with 0 ≤ η ≤ 1, |Dη| ≤ 4
ρ

and η ≡ 1 on B ρ
2
(x0). As

usual, we can take the function ϕ = η2(u − m) as a test function with any vectorial-valued
constant m ∈ RN . By (1.2), we have∫

Bρ
A(x, u)Du · [2ηDη(u − m) + η2Du]dx =

∫
Bρ

B(x, u,Du)η2(u − m)dx,

which implies∫
Bρ
η2A(x, u)Du · Du dx = −2

∫
Bρ

A(x, u)Du · (η(u − m)Dη) +

∫
Bρ

B(x, u,Du)η2(u − m)dx.

By the ellipticity (H1) and the controllable growth (H3) we obtain

λ

∫
Bρ
|ηDu|2 dx

≤ 2Λ

∫
Bρ
|ηDu| · |(u − m)Dη| dx + L

∫
Bρ

(
|Du|2(1− 1

γ )
+ |u|γ−1 + |g|

)
|ϕ|dx := I + II.

(2.2)

For I, by Young’s inequality we have

I ≤ ε
∫

Bρ
|ηDu|2 dx +

C(ε)
ρ2

∫
Bρ
|u − m|2 dx. (2.3)

For II, by Hölder’s inequality and Sobolev’s inequality and Young’s inequality we have

II ≤ CL
∫

Bρ
(|Du|2 + |u|γ + |g|

γ
γ−1 )1− 1

γ |ϕ|dx

≤ CL
( ∫

Bρ
(|Du|2 + |u|γ + |g|

γ
γ−1 )dx

)1− 1
γ
( ∫

Bρ
|ϕ|γ dx

) 1
γ

≤ CL
( ∫

Bρ
(|Du|2 + |u|γ + |g|

γ
γ−1 )dx

)1− 1
γ
( ∫

Bρ
|Dϕ|2 dx

)1/2

≤ ε

∫
Bρ
|Dϕ|2 dx + C(ε)

( ∫
Bρ

(|Du|2 + |u|γ + |g|
γ
γ−1 )dx

)2(1− 1
γ )
.

Note that Dϕ = 2ηDη(u − m) + η2Du. Then

II ≤ ε
∫

Bρ
|ηDu|2 dx + C(ε)

∫
Bρ
|Dη|2|u − m|2 dx + C(ε)

( ∫
Bρ

(|Du|2 + |u|γ + |g|
γ
γ−1 )dx

)2(1− 1
γ )
.

(2.4)
Now by combining (2.3) and (2.4) it yields

(λ−2ε)
∫

Bρ
|ηDu|2 dx ≤

C(ε)
ρ2

∫
Bρ
|u−m|2 dx+C(ε)

( ∫
Bρ

(|Du|2+|u|γ+|g|
γ
γ−1 )dx

)2(1− 1
γ )
. (2.5)
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So, we only choose some ε < λ/2, it yields the desired result. �

We are in position to introduce a modification of so-called A-harmonic approximation
lemma. Let us first recall the definition of locally A-harmonic.

Definition 2.4. Let A ∈ Bil(BR(x0) × RN ,Rn2×N2
) be a bilinear form with constant coef-

ficients, which satisfies the assumptions of (1.3). We call a map h ∈ W1,2(BR(x0),RN)
A-harmonic in BR(x0) if it satisfies∫

BR(x0)
A(Dh,Dϕ)dx = 0, ∀ϕ ∈ C1

0(BR(x0),RN).

Since A ∈ Bil(BR(x0)×RN ,Rn2×N2
) is a bilinear form with constant coefficients, it’s well

known that for any A-harmonic function h we have the following inequality.

Lemma 2.5 ([15]). Let h(x) ∈ W1,2(BR(x0),RN) be a weak solution of the following linear
system with constant coefficients

Dα(Aαβ
i j Dβh j) = 0, i = 1, . . . ,N.

Then there exists a constant C = C(n, λ,Λ) such that for any x0 ∈ Ω, 0 < ρ < R ≤
dist(x0, ∂Ω), it holds ∫

Bρ(x0)
|Dh|2 dx ≤ C

( ρ
R
)n

∫
BR(x0)

|Dh|2 dx. (2.6)

Now we give the modified A-harmonic approximation which is based on the usual
A-harmonic lemma originated by Duzaar and Grotowski’ works [10, 6]. In the sequel,
suppose that there exist two constants 0 < λ ≤ Λ < ∞ such that the bilinear form
A ∈ Bil(BR(x0) × RN ,Rn2×N2

) satisfies

Aαβ
i j (x, u)ξi

αξ
j
β ≥ λ|ξ|

2, ∀ξ ∈ RnN , (2.7)

Aαβ
i j (x, u)ξi

αξ̄
j
β ≤ Λ|ξ||ξ̄|, ∀ξ, ξ̄ ∈ RnN ; (2.8)

Lemma 2.6. Consider fixed positive constants λ,Λ and n,N ∈ N with n ≥ 2 as above.
Then for any given ε > 0, there exists δ = δ(n,N, λ,Λ, ε) ∈ (0, 1] with the following
property: for any bilinear form A ∈ Bil(BR(x0) × RN ,Rn2×N2

) with (2.7),(2.8), assume
g ∈ W1,2(BR(x0),RN) satisfies

R−n
∫

BR(x0)
|Dg|2 dx ≤ 1, (2.9)

∣∣∣R−n
∫

BR(x0)
A(Dg,Dϕ)dx

∣∣∣ ≤ δ sup
BR(x0)

|Dϕ|, ∀ϕ ∈ C∞0 (BR(x0),RN); (2.10)

there exists an A-harmonic function

ω ∈ H =
{
h ∈ W1,2(BR(x0),RN) : R−n

∫
BR(x0)

|Dh|2 dx ≤ 1
}

with

R−n−2
∫

BR(x0)
|ω − g|2 dx ≤ ε. (2.11)

Thanks to the A-harmonic approximation above, we obtain its modified version by im-
itating an argument from Stoke system by Daněček-John-Stará [5].
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Lemma 2.7 (Modification of A-harmonic approximation). Let 0 < λ ≤ Λ < ∞ and n ≥ 2
as the above lemma. Then, for any given ε > 0 there exists k = k(n,N, λ,Λ, ε) > 0 with
the following property: for any A ∈ Bil(BR(x0)×RN ,Rn2×N2

) satisfying (2.7),(2.8) and any
u ∈ W1,2(BR(x0),RN), there exists an A-harmonic function h ∈ W1,2(BR(x0),RN) such that∫

BR(x0)
|Dh|2 dx ≤

∫
BR(x0)

|Du|2 dx; (2.12)

moreover, there exists ϕ ∈ C∞0 (BR(x0),RN) with

‖Dϕ‖L∞(BR(x0),RN ) ≤
1
R

; (2.13)

such that∫
BR(x0)

|u − h|2 dx ≤ εR2
∫

BR(x0)
|Du|2 dx + k(ε)

[
R4−n

( ∫
BR(x0)

ADu · Dϕ dx
)2]
. (2.14)

Proof. First, observe that it is sufficient to prove the lemma for x0 = 0 and R = 1 by a
standard scaling argument. In the context, we let B = B1(0). For any given ε > 0, we pick
δ = δ(n,N, λ,Λ, ε) as the above Lemma 2.6. Consider u ∈ W1,2(B,RN), we take

g = u
( ∫

B
|Du|2 dx

)−1/2
,

therefore,
∫

B |Dg|2 dx ≤ 1 which implies (2.9). Next, we consider the estimates divided
into two cases.

Case 1. If for g there holds the inequality (2.10). By Lemma 2.6 there exists an A-
harmonic function ω satisfying

∫
Bρ(x0) |Dω|

2 dx ≤ 1 and
∫

B |ω − g|2 dx ≤ ε.

Let h =
( ∫

B |Du|2 dx
)1/2

ω, which satisfies (2.12). In fact, we can easily know h is
A-harmonic and ∫

B
|Dh|2 dx =

∫
B
|Du|2 dx

∫
B
|Dω|2 dx ≤

∫
B
|Du|2 dx.

Moreover, we have

|u − h|2 =

∫
B
|Du|2 dx · |g − ω|2,

which implies ∫
B
|u − h|2 dx ≤

∫
B
|Du|2 dx

∫
B
|g − ω|2 dx ≤ ε

∫
B
|Du|2 dx.

Hence, the inequality (2.14) is valid.
Case 2. If for g the inequality (2.10) is false. Then there exists a non-constant function

ψ ∈ C∞0 (B,RN) such that ∣∣∣ ∫
B

A(Dg,Dψ)dx
∣∣∣ > δ(ε) sup

B
|Dψ|.

By taking ϕ = ψ/ supB |Dψ| it yields ‖Dϕ‖L∞ = 1, which implies
1
δ(ε)

∣∣∣ ∫
B

A(Dg,Dϕ)dx
∣∣∣ > 1.

Now we take h = ū. By Poincaré inequality and recalling Dg =
( ∫

B |Du|2
)−1/2

· Du, it
follows that ∫

B
|u − h|2 dx =

∫
B
|u − ū|2 dx ≤ C

∫
B
|Du|2 dx
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≤
C

δ2(ε)

∫
B
|Du|2 dx

∣∣∣ ∫
B

A(Dg,Dϕ)dx
∣∣∣2

≤
C

δ2(ε)

∣∣∣ ∫
B

A(Du,Dϕ)dx
∣∣∣2.

By combining Cases 1 and 2, and taking k(ε) = C
δ2(ε) , we obtain the inequality (2.14). The

proof is complete. �

Lemma 2.8 ([12]). Let Ω be an open subset of Rn and u ∈ Lloc(Ω,RN). Then for 0 ≤ s < n
and set

Es :=
{
x ∈ Ω : lim inf

ρ→0
ρ−s

∫
Bρ(x)
|u| dy > 0

}
, (2.15)

there holds the estimate Hs(Es) = 0.

3. P   

In the section, we prove our main result by way of the idea from modification of A-
harmonic approximation argument and perturbation approach.

Proof of Theorem 1.1. For any x0 ∈ Ω and fixed 0 < R ≤ 1
2 dist(x0, ∂Ω). Without loss of

generality, we let x0 = 0 and for any 0 < ρ < R write Bρ in place of Bρ(0). Now letting
m = u0,ρ = uρ in Lemma 2.3, it follows that∫

B ρ
2

|Du|2 dx ≤
C1

ρ2

∫
Bρ
|u − uρ|2 dx + C2

( ∫
Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2(1− 1
γ )
, (3.1)

Let Ā = A(·, uR)R be defined by

Ā := A(x, uR)R =

?
BR

A(x, uR)dx.

Thanks to the modification of A-harmonic Lemma 2.7, there exists an Ā-harmonic function
h ∈ W1,2(BR,R

N) such that the inequalities (2.12),(2.13) and (2.14) are valid. Therefore,
from (3.1) we have∫

B ρ
2

|Du|2 dx

≤
2C1

ρ2

( ∫
Bρ
|u − uρ − (h − hρ)|2 dx +

∫
Bρ
|h − hρ|2 dx

)
+ C

( ∫
Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2(1− 1
γ )

:=
C
ρ2 (I1 + I2) + C

( ∫
Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2(1− 1
γ )
.

(3.2)

Next we estimate I1 and I2. For the estimation of I1, by Poincaré inequality and Lemma
2.5 on the system with constant coefficients it follows that

I1 =

∫
Bρ
|h − hρ|2 dx ≤ Cρ2

∫
Bρ
|Dh|2 dx ≤ Cρ2( ρ

R
)n

∫
BR

|Dh|2 dx.

Hence, from (2.12) it yields

I1 ≤ Cρ2( ρ
R
)n

∫
BR

|Du|2 dx. (3.3)
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For I2, by employing Poincaré inequality again and (2.14) in Lemma 2.7, we have

I2 =

∫
Bρ
|u − uρ − (h − hρ)|2 dx ≤ 2

∫
Bρ
|u − h|2 dx

≤ Cερ2
∫

Bρ
|Du|2 dx + Ck(ε)ρ4−n

( ∫
Bρ

ĀDu · Dϕ dx
)2

≤ Cερ2
∫

BR

|Du|2 dx + Ck(ε)ρ4−n
( ∫

Bρ
ĀDu · Dϕ dx

)2
,

(3.4)

where ϕ satisfies ‖Dϕ‖L∞(BR,RN ) ≤
1
R . Next, we estimate the term

∫
Bρ

ĀDu ·Dϕ dx. Note that
u is a weak solution of (1.1), then∫

Bρ
ĀDu · Dϕ dx =

∫
Bρ

[Ā − A(x, uρ)]Du · Dϕ dx +

∫
Bρ

[A(x, uρ) − A(x, u)]Du · Dϕ dx

+

∫
Bρ

B(x, u,Du)ϕ dx;

that is, ( ∫
Bρ

ĀDu · Dϕ dx
)2
≤ C

( ∫
Bρ

[Ā − A(x, uρ)]Du · Dϕ dx
)2

+ C
( ∫

Bρ
[A(x, uρ) − A(x, u)]Du · Dϕ dx

)2
+ C

( ∫
Bρ

B(x, u,Du)ϕ dx
)2
.

(3.5)

Since ‖Dϕ‖L∞(BR,RN ) ≤
1
R in (2.13) and A(·, u) ∈ V MO

⋂
L∞(Ω) of the assumptions (H1)–

(H2), it follows( ∫
Bρ

[Ā − A(x, uρ)]Du · Dϕ dx
)2
≤

1
ρ2

∫
Bρ
|Du|2 dx

∫
Bρ
|A(x, uρ) − Ā|2 dx

≤
1
ρ2 · 2Λαnρ

n
?

Bρ
|A(x, uρ) − Ā|dx

∫
Bρ
|Du|2 dx

≤ C(n,Λ)Ms(A(x, uρ))αnρ
n−2

∫
Bρ
|Du|2 dx,

(3.6)

where αn is the volume of unit ball in Rn. Similarly, in terms of the continuous assumptions
of A(x, ·) in u uniformly with respect to x ∈ Ω we have the following estimates( ∫

Bρ
[A(x, uρ) − A(x, u)]Du · Dϕ dx

)2

≤
1
ρ2

∫
Bρ
|Du|2 dx

∫
Bρ
|A(x, uρ) − A(x, u)|2 dx

≤
1
ρ2 · 2Λαnρ

n
?

Bρ
|A(x, uρ) − A(x, u)|dx ·

∫
Bρ
|Du|2 dx

≤ C
1
ρ2 · Λαnρ

n
?

Bρ
ω(|u − uρ|)dx

∫
Bρ
|Du|2 dx

≤ CΛαnρ
n−2ω

(?
Bρ
|u − uρ|2 dx

) ∫
Bρ
|Du|2 dx

≤ C(n,Λ)ρn−2ω
(
ρ2
?

Bρ
|Du|2 dx

) ∫
Bρ
|Du|2 dx, (3.7)
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where we use the Jensen’s inequality in the fourth step and the Poincaré’s inequality in the
last step. Finally, we consider the controllable growth condition (H3) it yields( ∫

Bρ
B(x, u,Du)ϕ dx

)2
≤

( ∫
Bρ
|B(x, u,Du)| dx

)2

≤ C
( ∫

Bρ

(
|Du|2(1− 1

γ )
+ |u|γ−1 + |g|

)
dx

)2

≤ C
( ∫

Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2(1− 1
γ )(
αnρ

n) 2
γ

= C(n)ρn−2
( ∫

Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2(1− 1
γ )

(3.8)

Now, substitute estimates (3.6), (3.7) and (3.8) into (2.4), it yields( ∫
Bρ

ĀDu · Dϕ dx
)2

≤ C(n,Λ)ρn−2
(
Ms(A(x, uρ)) + ω

(
ρ2
?

Bρ
|Du|2 dx

)) ∫
Bρ
|Du|2 dx

+ C(n)ρn−2
( ∫

Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2
(

1− 1
γ

)
.

(3.9)

Denoting

σ(ρ) = Ms(A(x, uρ)) + ω
(
ρ2
?

Bρ
|Du|2 dx

)
(3.10)

and inserting (3.9) into the estimate of I2, we obtain

I2 ≤ C
(
ε + σ(ρ)

)
ρ2

∫
BR

|Du|2 dx + Cρ2
( ∫

Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2
(

1− 1
γ

)
.

Substitute the estimates for I and II into (3.2), we obtain∫
B ρ

2

|Du|2 dx ≤ C
(( ρ

R

)n
+ ε + σ(ρ)

) ∫
BR

|Du|2 dx

+ C
( ∫

Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2
(

1− 1
γ

)
.

(3.11)

It remains to estimate the term of the controllable growth. Observe that gi ∈ Lq(Ω) with
q > n/2 and

γ =

 2n
n−2 , if n > 2,
any γ > 2, if n = 2.

As we know it is trivial if n = 2. So, we only consider the case of n > 2 so that 2(1 − 1
γ
) =

(n + 2)/n, by Hölder inequality it yields( ∫
Bρ

(
|Du|2 + |u|γ + |g|

γ
γ−1

)
dx

)2
(

1− 1
γ

)
≤ C

( ∫
Bρ
|Du|2 + |u|γdx

)1+ 2
n

+ C
( ∫

Bρ
|g|

2n
n+2 dx

) n+2
n

≤ C
( ∫

Bρ
|Du|2 + |u|γdx

)1+ 2
n

+ Cα
(n+2)q−2n

nq
n Rn+2− 2n

q ‖g‖2Lq ,
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putting it into (3.11), yields∫
B ρ

2

|Du|2 dx ≤ C
(( ρ

R

)n
+ ε + σ(ρ) +

( ∫
Bρ
|Du|2 + |u|γdx

)2/n) ∫
BR

(|Du|2

+ |u|γ)dx + CRn+2− 2n
q ‖g‖2Lq .

(3.12)

On the other hand, by a direct calculation it follows that∫
B ρ

2

|u|γ dx ≤ C
∫

B ρ
2

|ux0,ρ|
γ dx + C

∫
B ρ

2

|u − ux0,ρ|
γ dx

≤ C(n)
( ρ
R

)n
∫

BR

|u|γ dx + C
( ∫

BR

|Du|2 dx
) γ

2−1( ∫
BR

(|Du|2 + |u|γ)dx
)
.

Now add the item
∫

B ρ
2

|u|γ dx to both sides of (3.12) to obtain∫
B ρ

2

|Du|2 + |u|γ dx ≤ C
(( ρ

R

)n
+ ε + σ(ρ) + δ(ρ)

) ∫
BR

(
|Du|2 + |u|γ

)
dx + CRn+2− 2

q n
‖g‖2Lq ,

(3.13)
where

δ(ρ) =
( ∫

Bρ
(|Du|2 + |u|γ) dx

)2/n
+

( ∫
Bρ
|Du|2 dx

)2/(n−2)
. (3.14)

Note that δ(ρ)→ 0 as ρ→ 0 due to the absolute continuity of
∫

Bρ
(|Du|2 + |u|γ) dx on domain

of integration, and if we assume ρ2
>

Bρ(x)
|Du|2dy → 0 on x ∈ Ω0 ⊂ Ω as ρ → 0, then it

yields σ(ρ) = Ms(A(x, uρ)) + ω
(
ρ2
>

Bρ
|Du|2 dx

)
< ε as ρ→ 0 due to the V MO property of

A(x, u) in x ∈ Ω. Observe that n − 2 < n + 2 − 2
q n < n if n

2 < q < n, by the iteration lemma
it follows∫

B ρ
2

(
|Du|2 + |u|γ

)
dx ≤ C

( ρ
R

)n+2− 2
q n

∫
BR

(
|Du|2 + |u|γ

)
dx + Cρn+2− 2

q n
‖g‖2Lq(BR), (3.15)

which implies Du ∈ L2,λ(Ω0) with λ = n + 2 − 2n
q . If q ≥ n, also by the iteration lemma for

any ε > 0 we have∫
B ρ

2

(
|Du|2 + |u|γ

)
dx ≤ C

( ρ
R

)n−ε
∫

BR

(
|Du|2 + |u|γ

)
dx + Cρn−ε‖g‖2Lq(BR), (3.16)

which implies Du ∈ L2,λ(Ω0) with λ = n−ε. Summarizing, in terms of the famous Morrey’s
lemma one concludes that u ∈ C0,α

loc (Bρ,RN), α = 2 − n
q if n/2 < q < n or u ∈ C0,α

loc (Bρ,RN)
for all α ∈ (0, 1) if q ≥ n.

Finally, let us recall a “small” hypothesis of the following so-called an excess quantity

E(ρ) = ρ2−n
∫

Bρ(x0)
|Du|2 dx,

According to the definition of Ω0, we attain

Ω \Ω0 =
{
x ∈ Ω : lim inf

ρ→0
ρ2−n

∫
Bρ
|Du|2 dx > 0

}
.

Therefore, by Lemma 2.8,Hn−2(Ω \Ω0) = 0. This completes proof. �
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[5] Daněček, J.; John, O.; Stará, J.; Morrey space regularity for weak solutions of Stokes systems with VMO

coefficients. Annali di Matematica, 190 (2011), 681-701.
[6] Duzaar,F; Mingione, G.; Harmonic type approximation lemmas. J. Math. Anal. Appl., 352(1)(2009), 301-

335.
[7] Di Fazio, G.; Ragusa, M. A.; Interior estimate in Morrey spaces for strong solutions to nondivergence form

equations with discontinuous coefficients. J. Funct. Anal., 112(2) (1993), 241-256.
[8] Dong, Y.; Niu, P. C.; Estimates in Morrey spaces and Hölder continuity for weak solutions to degenerate
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