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ESTIMATES FOR DAMPED FRACTIONAL WAVE EQUATIONS
AND APPLICATIONS

JIECHENG CHEN, DASHAN FAN, CHUNJIE ZHANG

Abstract. In our previous article [1] we estimated the Lp-norm (p ≥ 1) of the

solution to damped fractional wave equation. In this article, we prove other
Lp estimates, with some emphasis on requiring less regularity of the initial

data. We also study the Strichartz type estimate of this equation. Finally

we present some application of these estimates, for proving existence of global
solutions to semilinear damped fractional wave equations.

1. Introduction

We consider the Cauchy problem of linear damped fractional wave equation

∂ttu+ 2ut + (−∆)αu = 0, α > 0,

u(0, x) = f(x), ut(0, x) = g(x)
(1.1)

where t > 0, x ∈ Rn and (−∆)α is defined as

(−∆)αf(x) = F−1
(
|ξ|2αf̂(ξ)

)
(x). (1.2)

Here and below, we denote f̂ the Fourier transform of a distribution f and F−1

or f̌ the Fourier inverse transform of f . The solution to this Cauchy problem is
formally given by

u(t, x) =
{
e−t cosh(t

√
L)f + e−t

sinh(t
√
L)√

L
(f + g)

}
, (1.3)

where L is the Fourier multiplier with symbol 1−|ξ|2α. When α = 1, (1.1) becomes
the damped wave equation, which is an important mathematical model in studying
many physics problems. So it has attracted a lot of authors. One can easily find
hundreds of papers addressing various research problems on this equation. For
instance, the reader may refer to [6, 7, 11, 12, 13, 14, 19, 22] and the references
therein to find results on the local and global well-posedness of the Cauchy problem,
space-time estimates and asymptotic estimates etc. In a previous paper [1], we
proved the below Lp-estimate for the solution (1.3).
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Theorem 1.1. Let α > 0, 1 ≤ r ≤ p ≤ ∞ and β > nα|1/2 − 1/p| for α 6= 1 or
β > (n− 1)|1/2− 1/p| for α = 1. Then there exists some δp > 0 such that

‖u(t, x)‖Lp � (1 + t)−
n
2α ( 1

r−
1
p ) (‖f‖Lr + ‖g‖Lr )

+ e−t(1 + t)δp
(
‖f‖Lpβ + ‖g‖Lpβ−α

)
,

where Lpβ and Lpβ−α are inhomogeneous Sobolev spaces.

Here and below, we use the notation X � Y to mean that there is some positive
constant C, independent of all essential variables such that X ≤ CY . Before stating
our new theorems, we first review some function spaces used in this paper. When
1 ≤ p ≤ ∞ and α ∈ R, L̇pα (or Lpα) is defined to be all the tempered distributions
such that the Fourier inverse of |ξ|αf̂(ξ) (or (1 + |ξ|)αf̂(ξ)) belongs to Lp. We also
denote the norms

‖f‖L̇pα = ‖F−1
(
|ξ|αf̂(ξ)

)
‖Lp , ‖f‖Lpα = ‖F−1

(
(1 + |ξ|)αf̂(ξ)

)
‖Lp .

If α is some nonnegative integer, L̇pα (or Lpα) consists of all the tempered distribu-
tions such that Dkf ∈ Lp for all |k| = α (or |k| ≤ α), where k = (k1, k2, . . . , kn).
It is not hard to see that Lp = L̇p0 = Lp0. When p = 2, we write Ḣα = L̇2

α and
Hα = L2

α, which are the Sobolev spaces we usually refer to them. Readers may con-
sult [2, 3, 18] for more properties and applications on all above mentioned function
spaces.

From [10] or [14], we already know that the solution to (1.1), when α = 1,
satisfies

‖u(t, x)‖Lp � (1 + t)−
n
2 ( 1

r−
1
p ) (‖f‖Lr + ‖g‖Lr + ‖f‖H[n/2]+1 + ‖g‖H[n/2]) (1.4)

for 1 ≤ r ≤ 2 ≤ p ≤ ∞. In Section 2, we will prove the below similar theorem for
all α > 0 and meantime, require less regularity on the initial data f and g.

Theorem 1.2. Let α > 0, 1 ≤ r ≤ p <∞ and p > 2. Then (1.3) satisfies

‖u(t, x)‖Lp � (1 + t)−
n
2α ( 1

r−
1
p ) (‖f‖Lr + ‖g‖Lr )

+ e−t (‖f‖Hn(1/2−1/p) + ‖g‖Hn(1/2−1/p)−α) .

The estimate also holds if we substitute the inhomogeneous Sobolev spaces with the
homogeneous ones.

Note that we require less regularity in Theorem 1.2 than in (1.4). As we did in
[1], we may also estimate the norm ‖u(t, x)‖Lq(R+,Lp(Rn) by taking an integral of
the above inequality. But in this way we have to assume the same regularity on
the initial data f and g. In Section 3 we will study the Strichartz type estimate
for (1.3) (Theorem 1.3 below), which shows that the Lq(R+, Lp) estimate in fact
requires less regularity on the initial data than the Lp estimate.

A triplet (p, q, r) is called σ-admissible if

1
q
≤ σ(

1
r
− 1
p

), (1.5)

where 0 < r ≤ p ≤ ∞, r ≤ q ≤ ∞ and σ > 0. If the equality in (1.5) holds, then
we call (p, q, r) sharp σ-admissible.
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Theorem 1.3. Let α > 0, 2 ≤ q ≤ ∞, 2 ≤ p < ∞ and (p, q, r) be n
2α -admissible.

Then (∫ ∞
0

‖u(t, x)‖qLpdt
)1/q

� ‖f‖Lr + ‖g‖Lr + ‖f‖Hβ + ‖g‖Hβ−α

holds in each of the following cases:
(i) (p, q, 2) is n

2 -admissible, (p, q) 6= ( 2n
n−2 , 2) and β ≥ n( 1

2 −
1
p )− α

q ;
(ii) (p, q, 2) is not n

2 -admissible and β ≥ n( 1
2 −

1
p )(1− α

2 ).

The estimate also holds if we substitute Hβ , Hβ−α by Ḣβ , Ḣβ−α.

Note if (p, q, 2) is sharp n/2-admissible, then we have

n(
1
2
− 1
p

)− α

q
= n(

1
2
− 1
p

)(1− α

2
),

which means the regularity requirement on initial data varies continuously over the
sharp n

2 -admissible line. Strichartz estimates for Schrödinger equation and wave
equation have a long story ([4, 5, 8, 9, 15, 16, 20, 21]). They are closely related
to some important problem in analysis. They can also be applied to study the
well-posedness of some nonlinear equations.

In Section 4, we study the existence of small initial data time global solution to
the semilinear equation

∂ttu+ 2ut + (−∆)αu = F (u), α > 0,

u(0, x) = f(x), ut(0, x) = g(x)
(1.6)

where F (u) = ±|u|σu or ±|u|σ+1. For α = 1, the problem has been studied by many
authors. Todorova-Yordanov[19] and Zhang[22] have shown that when σ ≤ 2/n, the
solution blows up in finite time for any non-negative initial data f and g. Todorova
and Yordanov also proved the global existence when

2
n
< σ <

2
n− 2

, n ≥ 3 or
2
n
< σ, n = 1, 2

for compactly supported initial data. If one removes the compactness restriction,
the global existence when n ≤ 5, σ > 2

n has been proved by Ikehata-Miyaoka-
Nakatake[7] (n = 1, 2), Nishihara[14] (n = 3) and Narazaki[12] (n = 4, 5). The
theorem for general n ≥ 1 has also been proved assuming some rapid decay on
the initial data as |x| → ∞, see [6]. In Section 4, we prove the following existence
theorem for (1.6).

Theorem 1.4. Let α > 0, n = 1, 2 and σ > 2α/n. Take p0 > 1 close to 1 such
that n

2α (1/p0 − 1/p′0)σ > 1 where p′0 is the dual number of p0. If f ∈ ∩1<p<∞L
p
α,

g ∈ ∩1<p<∞L
p and

‖f, g‖0 = sup
1<p<p0

(
‖f‖Lpα + ‖g‖Lp

)
+ sup
p′0<p̃<∞

(
‖f‖Lp̃α + ‖g‖Lp̃

)
is sufficiently small. Then there exists a unique solution u(t, x) to (1.6) in the space
L∞(R+,∩1<p<∞L

p) such that

‖u(t, x)‖Lp � (1 + t)
− n

2α ( 1
p0
− 1
p′0

)(1− 1
p )‖f, g‖0, 1 < p <∞.

For the proof of this theorem, we get some ideas from [14, Theorem 1.2], but
choose a different working space and use our own Lp estimates from Theorem 1.1
and Section 2. Note also that the theorem is stated for all α > 0. When α = 1,
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a minor modification of the proof of Theorem 1.4 leads to the global existence for
n ≤ 3. The reason we can do this is we have slightly different estimate in Theorem
1.1 for α = 1.

2. Proof of Theorem 1.2

To study the solution (1.3), we will focus on two fundamental operators

e−t cosh(t
√
L), e−t

sinh(t
√
L)√

L
.

Denote their kernels by Kα(t) and Ωα(t). Then

Kα(t)(x) = e−t
∫

Rn
cosh(t

√
1− |ξ|2α)ei〈x,ξ〉dξ,

Ωα(t)(x) = e−t
∫

Rn

sinh(t
√

1− |ξ|2α)√
1− |ξ|2α

ei〈x,ξ〉dξ.

Now the solution (1.3) is written as

u(t, x) = Kα(t) ∗ f(x) + Ωα(t) ∗ (f + g)(x). (2.1)

Let H(ξ) be a real C∞ radial function supported in {ξ : |ξ| > 100} with H(ξ) ≡ 1
for |ξ| > 150. Define also L(ξ) = 1 −H(ξ). We then decompose Kα(t) and Ωα(t)
as

Kα(t) = L(D)Kα(t) +H(D)Kα(t),

Sα(t) = L(D)Ωα(t) +H(D)Ωα(t),

where L(D)Kα(t) is the low frequency part of the kernel Kα(t) defined as

L(D)Kα(t)(x) = e−t
∫

Rn
L(ξ) cosh(t

√
1− |ξ|2α)ei〈x,ξ〉dξ.

The other three terms are defined similarly. For the two low frequency parts, we
have already proved their Lp estimates below (see [1, Propositions 8 and 10]).

Proposition 2.1. Let α > 0 and 1 ≤ r ≤ p ≤ ∞. Then for any t > 0, we have

‖L(D)Kα(t) ∗ h‖Lp � (1 + t)−
n
2α (1/r−1/p)‖h‖Lr ,

‖L(D)Ωα(t) ∗ h‖Lp � (1 + t)−
n
2α (1/r−1/p)‖h‖Lr .

For the high frequency parts, we have the following proposition.

Proposition 2.2. Let α > 0 and 1 ≤ p ≤ ∞. Then there exists some δp > 0 such
that

‖H(D)Kα(t) ∗ h‖Lp � e−t(1 + t)δp‖h‖Lpβ ,

‖H(D)Ωα(t) ∗ h‖Lp � e−t(1 + t)δp‖h‖Lpβ−α
whenever β > nα|1/2− 1/p| or β > (n− 1)|1/2− 1/p| for α = 1.

This proposition is a minor modification of [1, Propositions 11 and 12], where the
estimates were stated with homogeneous Sobolev spaces L̇pβ and L̇pβ−α. The proof
of Proposition 2.2 here is almost the same. One only has to notice the definitions of
Sobolev spaces and the fact that when dealing with the high frequency parts of the
two operators, we actually have |ξ| ' 1 + |ξ| (see also the proof of Proposition 2.3).
It is easy to see that Theorem 1.1 is the combination of the above two propositions.
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In a same manner, Theorem 1.2 will be proved if we substitute Proposition 2.2 with
the following proposition.

Proposition 2.3. Let α > 0 and 2 ≤ p <∞. Then we have

‖H(D)Kα(t) ∗ h‖Lp � e−t‖h‖Hn(1/2−1/p) ,

‖H(D)Ωα(t) ∗ h‖Lp � e−t‖h‖Hn(1/2−1/p)−α .

Proof. Let us first prove the estimate for Kα(t). Since

H(D)Kα(t) ∗ h = e−tF−1
(
H(ξ) cosh

(
it
√
|ξ|2α − 1

)
ĥ(ξ)

)
,

by Plancherel’s Theorem, we easily have

‖H(D)Kα(t) ∗ h‖L2 = e−t‖F−1
(
H(ξ) cosh

(
it
√
|ξ|2α − 1

)
ĥ(ξ)

)
‖L2

= e−t‖
(
H(ξ) cosh

(
it
√
|ξ|2α − 1

)
ĥ(ξ)

)
‖L2

� e−t‖ĥ(ξ)‖L2 = e−t‖h‖L2 .

On the other hand, by the Sobolev imbedding BMO(Rn) ↪→ Hn/2(Rn), we have

‖H(D)Kα(t) ∗ h‖BMO � ‖H(D)Kα(t) ∗ h‖Hn/2

= e−t‖(1 + |ξ|)n/2H(ξ) cosh
(
it
√
|ξ|2α − 1

)
ĥ(ξ)‖L2

� e−t‖(1 + |ξ|)n/2ĥ(ξ)‖L2 = e−t‖h‖Hn/2 .

Now interpolating between the two estimates

‖H(D)Kα(t) ∗ h‖L2 � e−t‖h‖L2 ,

‖H(D)Kα(t) ∗ h‖BMO � e−t‖h‖Hn/2

yields that, for 2 ≤ p <∞,

‖H(D)Kα(t) ∗ h‖Lp � e−t‖h‖Hn(1/2−1/p) . (2.2)

To prove the second estimate of the proposition, we note that

H(D)Ωα(t) ∗ h

= e−tF−1
(
H(ξ)

sinh(it
√
|ξ|2α − 1)

i
√
|ξ|2α − 1

ĥ(ξ)
)

' e−tF−1
(
H(ξ) sinh(it

√
|ξ|2α − 1)

(1 + |ξ|)α

i
√
|ξ|2α − 1

F((1 + |D|)−αh)
)
.

Since the support of H(ξ) lies in {ξ : |ξ| > 100}, we know the term

H(ξ) sinh(it
√
|ξ|2α − 1)

(1 + |ξ|)α

i
√
|ξ|2α − 1

is still bounded. invoking the steps we prove (2.2), one obtains

‖H(D)Ωα(t) ∗ h‖Lp � e−t‖F((1 + |D|)−αh)‖Hn(1/2−1/p) = e−t‖h‖Hn(1/2−1/p)−α .

�
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3. Strichartz estimate

We first prove the following high frequency part estimate.

Proposition 3.1. Let n ≥ 2, α > 0, 2 ≤ q ≤ ∞ and 2 ≤ p <∞. Then

‖H(D)(e−teit
√
−Lf)‖LqtLpx � ‖f‖Hβ

holds in eaach of the following cases,
(i) (p, q, 2) is n

2 -admissible, (p, q) 6= ( 2n
n−2 , 2) and β ≥ n( 1

2 −
1
p )− α

q ;
(ii) (p, q, 2) is not n

2 -admissible and β ≥ n( 1
2 −

1
p )(1− α

2 ).

Keel-Tao[9] proved an abstract Strichartz estimate which applies to the case
eit(−∆)α/2 . They actually proved that

‖eit(−∆)α/2f‖LqtLpx � ‖f‖L̇2
β

for σ-amdissible (p, q, 2),

where β = n( 1
2 −

1
p )− α

q and σ = n
2 (α 6= 1) or σ = n−1

2 (α = 1). Let us compare
Proposition 3.1 to this result. First, β is taken to be larger than n( 1

2 −
1
p ) − α

q

in our proposition. This is because we only estimate the high frequency part of
the operator. Secondly, we always assume (p, q, 2) to be n

2 -admissible (ever when
α = 1), which is caused by the difference between

√
−L and (−∆)α/2. Finally,

we even have the space-time estimate for non-admissible index. This in fact is the
contribution of the extra term e−t. But this term also hinders us from applying
Keel and Tao’s theorem directly. So in the proof of Proposition 3.1, we will modify
some of their argument to treat this extra term.

Lemma 3.2. Let α > 0 and Φ be be some C∞ function supported in {ξ : 2 < |ξ| <
8} with Φ(ξ) ≥ c > 0 for 3 ≤ |ξ| ≤ 5. Then we have∣∣ ∫

Rn
eit
√
|ξ|2α−1Φ(ξ)ei〈x,ξ〉dξ

∣∣ � (1 + t)−n/2.

Proof. The lemma follows from standard stationary phase argument. But we still
present the proof here for clarity. Let us denote

I(t, x) =
∫

Rn
eit
√
|ξ|2α−1Φ(ξ)ei〈x,ξ〉dξ.

If t ≤ 1, then since |I(t, x)| � C, the lemma follows. So we assume t > 1. By polar
decomposition,

I(t, x) =
∫ ∞

0

eit
√
r2α−1Φ(r)rn−1

∫
Sn−1

ei〈rx,ξ
′〉dσ(ξ′)dr. (3.1)

Denote g(r) =
√
r2α − 1. Then it is easy to check that, in the support of Φ(r),

g′(r) =
αr2α−1

√
r2α − 1

' 1.

By some further but elementary calculation, one also finds that |g′′(r)| ≥ c > 0.
When |x| > 1/4, using the asymptotic of Fourier transform on Sn−1 (see [17]

page 347-348), we have

I(t, x) ' |x|
1−n

2

∫ ∞
0

ei(tg(r)±|x|r)Φ(r)r
n−1

2 dr .
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If |x| > 2t, then integrating by parts, we have

I(t, x) ' |x|
1−n

2

∫ ∞
0

ei(tg(r)±|x|r)d
( Φ(r)r

n−1
2

tg′(r)± |x|

)
= |x|

1−n
2

∫ ∞
0

ei(tg(r)±|x|r)
( (Φ(r)r

n−1
2 )′

tg′(r)± |x|
+
−tg′′(r)Φ(r)r

n−1
2

(tg′(r)± |x|)2

)
dr .

Using integration by parts N times and by induction,

I(t, x) ' |x|
1−n

2

∫ ∞
0

2N∑
j=N

tj−NφNj (r)
(tg′(r)± |x|)j

ei(tg(r)±|x|r)dr, (3.2)

where φNj (r) are C∞0 functions. Since

|tg′(r)± |x|| ≥ 1/2|x|,
taking N large enough, we have

|I(t, x)| � |x|
1−n

2

2N∑
j=N

∫ ∞
0

|x|j−N |φNj (r)|
|x|j

dr ≤ |x|−N+ 1−n
2 � t−n/2.

If 1/4 < |x| < t/2, then
|tg′(r)± |x|| ≥ t/2,

and by (3.2), we also have

|I(t, x)| ≤ |x|
1−n

2

2N∑
j=N

t−N
∫ ∞

0

|φNj (r)|dr � |t|−N � t−n/2.

If t/2 ≤ |x| ≤ 2t, since

|(tg(r)± |x|r)′′ = |tg′′(r)| ≥ t/100,

by the Van de Coupt lemma [17, page 334], we have

|I(t, x)| � |x|
1−n

2 t−
1
2 � t−n/2.

When |x| ≤ 1/4, we have r|x| ≤ 1 so∫
Sn−1

ei〈rx,ξ
′〉dσ(ξ′) = O(1)

and consequently

I(t, x) '
∫ ∞

0

eitg(r)Φ(r)rn−1dr

by (3.1). Integrating by parts as above, we complete the proof. �

Remark 3.3. By checking the above proof carefully, we find that the lemma holds
uniformly for all

I(t, x) = e−t
∫

Rn
eit
√
|ξ|2α−hΦ(ξ)et〈x,ξ〉dξ

with 0 < h < 1. This enables us to estimate

Ij(t, x) =
∫

Rn
eit
√
|ξ|2α−1Φ(2−jξ)ei〈x,ξ〉dξ, j ≥ 1.

In fact by Lemma 3.2 and a change of variable,

|Ij(t, x)| =
∣∣2jn ∫

Rn
ei2

jαt
√
|ξ|2α−2−2jα

Φ(ξ)ei〈2
jx,ξ〉dξ

∣∣
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= 2jn|I(2jαt, 2jx)| � 2jn(1 + 2jαt)−n/2.

Proof of Proposition 3.1. Let Φ be as in Lemma 3.2 and require that
∑
j∈Z Φ(2jξ) =

1 for all ξ 6= 0. Noting the support of H(ξ), we have the decomposition,

H(D)(e−teit
√
−Lf)(x) = e−t

+∞∑
j=6

∫
Rn
eit
√
|ξ|2α−1Φ(2−jξ)H(ξ)f̂(ξ)ei〈x,ξ〉dξ

:=
∞∑
j=6

Uj(t)f(x).

Since H(ξ) ≡ 1 for 2 < 2−jξ < 8 after some j0 > 0, we may omit this term in the
above expression for simplicity. If we obtain

‖Uj(t)f(x)‖LpxLqt � 2jβ‖f‖L2(Rn), (3.3)

then Proposition 3.1 follows from some standard arguments involving Littlewood-
Paley theory, see also [9].

Now we prove (3.3) using the bilinear method of [9]. First we notice that the
dual of (3.3) is

‖
∫ ∞

0

U∗j (s)F (s, ·)(x)ds‖L2(Rn) � 2jβ‖F (t, x)‖
Lq
′
t L

p′
x
,

which by the TT ∗ method, is further equivalent to the bilinear form∣∣ ∫ ∞
0

∫ ∞
0

〈U∗j (s)F (s), U∗j (t)G(t)〉 ds dt
∣∣

� 22jβ‖F (t, x)‖
Lq
′
t L

p′
x
‖G(t, x)‖

Lq
′
t L

p′
x
.

(3.4)

Here U∗j (t) denotes the adjoint operator of Uj(t). By checking the definition, it is
easy to see that

U∗j (t)f(x) = e−t
∫

Rn
e−it
√
|ξ|2α−1Φ(2−jξ)f̂(ξ)ei〈x,ξ〉dξ.

Therefore,

Uj(s)U∗j (t)g = e−te−s
∫

Rn
ei(s−t)

√
|ξ|2α−1Φ(2−jξ)ĝ(ξ)ei〈x,ξ〉dξ.

By Young’s inequality and Remark 3.3, we obtain

‖Uj(s)U∗j (t)g‖L∞ � e−te−s2jn
(
1 + 2jα|t− s|

)−n/2 ‖g‖L1 .

We rewrite it in the bilinear form as
|〈U∗j (s)F (s), U∗j (t)G(t)〉|

� e−te−s2jn
(
1 + 2jα|t− s|

)−n/2 ‖F (s)‖L1
x
‖G(t)‖L1

x
.

(3.5)

On the other hand, by Prancherel’s Theorem, we have

‖Uj(t)f‖L2 � e−t‖f‖L2 .

Again we take its bilinear form

|〈U∗j (s)F (s), U∗j (t)G(t)〉| � e−te−s‖F (s)‖L2
x
‖G(t)‖L2

x
. (3.6)
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Interpolating between (3.5) and (3.6) yields

|〈U∗j (s)F (s), U∗j (t)G(t)〉| � e−te−s2jθn

(1 + 2jα|t− s|)nθ/2
‖F (s)‖

Lp
′
x
‖G(t)‖

Lp
′
x
, (3.7)

where θ = 1− (2/p).
Extending the definition of F (s, x), G(t, x) such that F (s, x) = G(t, x) ≡ 0 when-

ever s, t ≤ 0. Note also that

e−te−sχ{s>0,t>0}(s, t) ≤ e−|s−t|.

Denoting the left side of (3.4) by J , then by (3.7) and Hölder’s inequality, we have

J � 2jθn
∫

R
‖F (s)‖

Lp
′
x

∫
R

e−|s−t|

(1 + 2jα|t− s|)nθ/2
‖G(t)‖

Lp
′
x
dtds

� 2jθn‖F (s)‖
Lq
′
s L

p′
x
‖
∫

R

e−|s−t|

(1 + 2jα|t− s|)nθ/2
‖G(t)‖

Lp
′
x
dt‖Lqs .

When 1
q = 1

q′ − (1− nθ
2 ) and q′ > q, by the Hardy-Littlewood-Sobolev inequality

[18, Section V.1.2], the second norm above is less than

2−j
nθα
2 ‖

∫
R

‖G(t)‖
Lp
′
x

|t− s|nθ/2
dt‖Lqs � 2−j

nθα
2 ‖G(t)‖

Lq
′
t L

p′
x
.

Due to the restriction that q′ > q, we have to exclude the point (p, q) = ( 2n
(n−2) , 2)

in Proposition 3.1. Note also that nθ/2 = 2/q in this case. So plugging the above
inequality into the estimate of J we easily reach

J � 22jβ‖F (s)‖
Lq
′
s L

p′
x
· ‖G(t)‖

Lq
′
t L

p′
x
.

When 1
q 6=

1
q′ − (1− nθ

2 ), we apply Young’s inequality and obtain

J � 2jθn‖F (s)‖
Lq
′
s L

p′
x
‖G(t)‖

Lq
′
t L

p′
x
‖ e−|t|

(1 + 2jα|t|)nθ/2
‖Lrt ,

where r = q/2. In order to prove (3.4), we need to show

M = 2jθn‖ e−|t|

(1 + 2jα|t|)nθ/2
‖Lrt � 22jβ .

Let us first compute

N =
∫

R

( e−|t|

(1 + 2jα|t|)nθ/2
)r
dt = 2

∫ ∞
0

e−rt

(1 + 2jαt)
nrθ
2
dt.

Since 1
q 6=

1
q′ − (1 − nθ

2 ), we have nrθ
2 6= 1. If nrθ

2 > 1, by change of variable, we
have

N = 2 · 2−jα
∫ ∞

0

e−2−jαrt

(1 + t)
nrθ
2
dt � 2−jα

∫ ∞
0

1

(1 + t)
nrθ
2
dt � 2−jα.

Thus
M ≤ 2jθnN1/r � 22j(n( 1

2−
1
p )−αq ).

If (p, q) is not n
2 -admissible, i.e. nrθ

2 < 1, we note that

1 + 2jαt ' 1 if 0 < t < 2−jα, and 1 + 2jαt ' 2jαt if t ≥ 2−jα.
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Therefore,

N �
∫ 2−jα

0

e−rtdt+ 2−j
nrθ
2

∫ ∞
2−jα

e−rtt−
nrθ
2 dt

� 2−jα + 2−j
nrθ
2

(∫ 1

2−jα
t−

nrθ
2 dt+

∫ ∞
1

e−rtt−
nαθ
2 dt

)
� 2−jα + 2−jα

nθr
2 .

So N � 2−jαnθr/2 and

M ≤ 2jθnN1/r � 22jn(1−α/2)(1/2−1/p). (3.8)

�

From Proposition 3.1, one easily has

‖H(D)Kα(t) ∗ f‖LqtLpx � ‖f‖Hβ ,
‖H(D)Ωα(t) ∗ f‖LqtLpx � ‖f‖Hβ−α

whenever p, q, β satisfies the conditions of Proposition 3.1. On the hand, taking
integral (with variable t) on both sides of the two estimates in Proposition 2.1, we
easily have (see also [1, Eq. 115])

‖L(D)Kα(t) ∗ h‖LqtLpx � ‖h‖Lr ,
‖L(D)Ωα(t) ∗ h‖LqtLpx � ‖h‖Lr

for all n
2α -admissible triplet (p, q, r). Theorem 1.3 is then an easy combination of

the above four estimates.

4. Some global existence theorems

Let us first prove Theorem 1.4. Set

‖u(t, x)‖X = sup
t

(
sup

1<p<p0

‖u(t, x)‖Lp + (1 + t)
n
2α ( 1

p0
− 1
p′0

)
sup

p′0<p̃<∞
‖u(t, x)‖Lp̃

)
and define a map

Du(t, x) = ul(t, x) +
∫ t

0

Ωα(t− τ) ∗ F (u(τ, ·))(x)dτ,

where ul(t, x) is the solution to linear equation (1.1). Now we estimate the term
‖Du‖X .

When 1 < p < p0, we have nα|1/p − 1/2| < α by the assumptions of Theorem
1.4. So taking β = α and r = p in Theorem 1.1, we obtain

‖ul(t, x)‖Lp � (‖f‖Lp + ‖g‖Lp) + e−t(1 + t)δp(‖f‖Lpα + ‖g‖Lp) � ‖f‖Lpα + ‖g‖Lp .
For p′0 < p̃ <∞, we still have nα|1/p̃− 1/2| < α thus

‖ul(t, x)‖Lp̃ � (1 + t)−
n
2α ( 1

p−
1
p̃ ) (‖f‖Lp + ‖g‖Lp)

+ e−t(1 + t)δp(‖f‖Lp̃α + ‖g‖Lp̃)

� (1 + t)
− n

2α ( 1
p0
− 1
p′0

)
(‖f‖Lp + ‖g‖Lp + ‖f‖Lp̃α + ‖g‖Lp̃).

Combining the above two estimates, we reach

‖ul(t, x)‖X � sup
1<p<p0

(
‖f‖Lpα + ‖g‖Lp

)
+ sup
p′0<p̃<∞

(
‖f‖Lp̃α + ‖g‖Lp̃

)
= ‖f, g‖0.
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Next we bound the term

‖
∫ t

0

Ωα(t− τ) ∗ F (u(τ, ·))(x)dτ‖X .

When 1 < p < p0, by applying Proposition 2.1 and Proposition 2.2 with β = α, we
have

‖
∫ t

0

Ωα(t− τ) ∗ F (u)dτ‖Lp

≤
∫ t

0

‖Ωα(t− τ) ∗ F (u)‖Lpdτ

≤
∫ t

0

‖L(D)Ωα(t− τ) ∗ F (u)‖Lp + ‖H(D)Ωα(t− τ) ∗ F (u)‖Lpdτ

�
∫ t

0

(
1 + e−(t−τ)(1 + (t− τ))δp

)
‖F (u)‖Lpdτ

�
∫ t

0

‖F (u(τ, x))‖Lpdτ.

By Hölder’s inequality,

‖F (u)‖Lp =
(∫

Rn
|u|σp|u|pdx

)1/p

≤
(∫

Rn
|u|p(1+ε)dx

) 1
p(1+ε)

(∫
Rn
|u|σp(1+ε)′dx

) σ
σp(1+ε)′

.

By the fact that

σp(1 + ε)′ = σp
1 + ε

ε
≥ σ

ε
>

2α
nε
,

we choose sufficiently small ε > 0 such that both p(1 + ε) < p0 and σp(1 + ε)′ > p′0
hold. Thus

‖F (u(τ, x))‖Lp ≤ sup
1<p<p0

‖u(τ, x)‖Lp sup
p′0<p̃<∞

‖u(τ, x)‖σLp̃

� (1 + τ)
− n

2α ( 1
p0
− 1
p′0

)σ‖u(τ, x)‖σ+1
X ,

and consequently (noting that n
2α ( 1

p0
− 1

p′0
)σ > 1) we have

‖
∫ t

0

Ωα(t− τ) ∗ F (u)dτ‖Lp � ‖u‖σ+1
X

∫ t

0

(1 + τ)
− n

2α ( 1
p0
− 1
p′0

)σ
dτ � ‖u‖σ+1

X .

When p′0 < p̃ <∞, we have

‖
∫ t

0

Ωα(t− τ) ∗ F (u)dτ‖Lp̃

≤
∫ t

0

‖L(D)Ωα(t− τ) ∗ F (u)‖Lp̃dτ +
∫ t

0

‖H(D)Ωα(t− τ) ∗ F (u)‖Lp̃dτ

:= I1 + I2.

Applying Proposition 2.2 with β = α we have

I2 �
∫ t

0

e−(t−τ)(1 + (t− τ))δp‖F (u)‖Lp̃dτ
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�
∫ t

0

(1 + (t− τ))−N ‖u‖σ+1
Lp̃(σ+1)dτ

� ‖u‖σ+1
X

∫ t

0

(1 + (t− τ))−N (1 + τ)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)
dτ.

Splitting the integral, we have∫ t/2

0

(1 + (t− τ))−N (1 + τ)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)
dτ

� (1 + t/2)−N
∫ t/2

0

(1 + τ)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)
dτ

� (1 + t)−N

for any positive N , and∫ t

t/2

(1 + (t− τ))−N (1 + τ)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)
dτ

� (1 + t/2)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)
∫ t

t/2

(1 + (t− τ))−N dτ

� (1 + t/2)
− n

2α ( 1
p0
− 1
p′0

)
∫ t/2

0

(1 + τ)−N dτ

� (1 + t)
− n

2α ( 1
p0
− 1
p′0

)
.

Let us turn to I1. Note we always assume 1 < p < p0 and p′0 < p̃ <∞. So splitting
the integral and applying Proposition 2.2 we have

I1 �
∫ t/2

0

(1 + (t− τ))−
n
2α ( 1

p−
1
p̃ )‖F (u)‖Lpdτ +

∫ t

t/2

‖F (u)‖Lp̃dτ := J1 + J2.

Plugging the estimate for ‖F (u)‖Lp above implies

J1 �
∫ t/2

0

(1 + (t− τ))−
n
2α ( 1

p−
1
p̃ )(1 + τ)

− n
2α ( 1

p0
− 1
p′0

)σ‖u‖σ+1
X dτ

� (1 + t/2)−
n
2α ( 1

p−
1
p̃ )

∫ t/2

0

(1 + τ)
− n

2α ( 1
p0
− 1
p′0

)σ
dτ‖u‖σ+1

X

� (1 + t)
− n

2α ( 1
p0
− 1
p′0

)‖u‖σ+1
X .

For J2, we have

J2 =
∫ t

t/2

‖u‖σ+1
Lp̃(σ+1)dτ

�
∫ t

t/2

(1 + τ)
− n

2α ( 1
p0
− 1
p′0

)(σ+1)‖u‖σ+1
X dτ

� (1 + t/2)
− n

2α ( 1
p0
− 1
p′0

)
∫ t

t/2

(1 + τ)
− n

2α ( 1
p0
− 1
p′0

)σ
dτ · ‖u‖σ+1

X

� (1 + t)
− n

2α ( 1
p0
− 1
p′0

)‖u‖σ+1
X .

Combining all, we have proved that

‖Du‖X � ‖f, g‖0 + ‖u‖σ+1
X .
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We can similarly show that

‖Du−Dv‖X �
1
2
‖u− v‖X

whenever ‖u‖X and ‖v‖X are small. Theorem 1.4 then follows by a standard
contraction map argument.

Remark 4.1. Throughout the above proof, we applied many times the estimates

‖H(D)Ωα(t) ∗ h‖Lp � e−t(1 + t)δp‖h‖Lp , 1 < p <∞ (4.1)

which is derived from Proposition 2.2 by taking

α = β > nα|1/2− 1/p| or 1 = β > (n− 1)|1/2− 1/p|. (4.2)

So we have to assume n ≤ 2 (or n ≤ 3 when α = 1). But if we let n = 1 (or n ≤ 2
when α = 1), then (4.2), thus (4.1) holds for p = 1 and p =∞.

By a similar proof as above, we obtain the following Theorem.

Theorem 4.2. Let α > 0, n = 1 (or n = 1, 2 if α = 1) and σ > 2α/n. If
f ∈ L1

α ∩ L∞α , g ∈ L1 ∩ L∞ and

‖f, g‖0 = ‖f‖L1
α

+ ‖f‖L∞α + ‖g‖L1 + ‖g‖L∞

is sufficiently small. Then there exists a unique solution u(t, x) to (1.6) in the space
L∞(R+, L1 ∩ L∞) such that

‖u(t, x)‖Lp � (1 + t)(1− 1
p )‖f, g‖0, 1 ≤ p ≤ ∞.

The Strichartz estimate in Section 3 could be applied to solve certain semilinear
equations in the space Lq(R+, Lp(Rn)) for some admissible pairs (p, q). But to do
this, we need further Strichartz type estimate on semilinear equations. We will
explore this issue in our upcoming paper.

Acknowledgments. This research is supported by the NSF of China (11271330,
11201103, and 11471288).

References

[1] J. Chen, D. Fan, C. Zhang; Space-time estimates on damped fractional wave equations,

Abstract and Applied Analysis, 2014, Article ID 428909.

[2] M. Frasier, B. Jawerth; A discrete transform and decompositions of distribution spaces, J.
Func. Analysis, 93 (1990), 34-170.

[3] M. Frasier, B. Jawerth, G. Weiss; Littlewood-Paley theory and the study of function spaces,

CBMS Regional Conference Series On Math. 79, 1991.
[4] J. Ginibre, G. Velo; Smoothing properties and retarded estimates for some dispersive evolu-

tion equations, Comm. Math. Phys. 123 (1989), 535-573.

[5] J. Ginibre, G. Velo; Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.
133 (1995), 50-68.

[6] R. Ikehata, K. Tanizawa; Global existence of solutions for semilinear damped wave equations

in Rn with non-compactly supported initial data, Nonlinear Anal. 61 (2005), 1189-1208.
[7] R. Ikehata, Y. Miyaoka, T. Nakatake; Decay estimates of solutions for dissipative wave

equations in Rn with lower power nonlinearities, J. Math. Soc. Japan 56 (2004), 365-373.

[8] L. Kapitanski; Some generalizations of the Strichartz-Brenner inequality, Leningrad Math.
J. 1 (1990), 693-676.

[9] M. Keel, T. Tao; Endpoint Strichartz estimates, Amer. J. of Math. 120 (1998), 955-980.
[10] A. Matsumura; On the asymptotic behavior of solutions of semi-linear wave equations, Publ.

Res. Inst. Math. Sci. Kyoto Univ. 12 (1976), 169-189.



14 J. CHEN, D. FAN, C. ZHANG EJDE-2015/162

[11] P. Marcati, K. Nishihara; The Lp-Lq estimates of solutions to one dimensional damped wave

equations and their applications to the compressible flow through porus media, J. Differential

Equations 191 (2003), 445-469.
[12] T. Narazaki; Lp-Lq estimates for damped wave equations and their applications to semi-

linear problem, J. Math. Soc. Japan 56 (2004), 585-626.

[13] T. Narazaki; Lp-Lq estimates for damped wave equations with odd initial data, Electronic
Journal of Differential Equations 2005 (2005), 1-17.

[14] K. Nishihara; Lp-Lq estimates of solutions to damped wave equation in 3-dimensional space

and their application, Math. Z. 244 (2003), 631-649.
[15] I. E. Segal; Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311.

[16] R. S. Strichartz; Restrictions of Fourier transforms to quadratic surfaces and decay of solu-

tions of wave equations, Duke Math. J. 44 (1977), 705-714.
[17] E. M. Stein; Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory

Integrals, Princeton University Press, Princeton, NJ, 1993.
[18] E. M. Stein; Singular integrals and differentiability properties fo functions. Princeton Uni-

versity Press, Princeton, NJ, 1970.

[19] G. Todorova, B. Yordanov; Critical exponent for a nonlinear wave equation with damping,
J. Differential Equations 174 (2001) 464-489.

[20] K. Yajima; Existence of solutions for Schrodinger evolution equations, Comm. Math. Phys.

110 (1987), 415-426.
[21] C. Zhang; Strichartz estimates in the frame of modulation spaces, Nonlinear Analysis 78

(2013) 156-167.

[22] Q. Zhang; A blow-up result for a nonlinear wave equation with damping: the critical case,
C. R. Acad. Sci. Paris Sr. I 333 (2001), 109-114.

Jiecheng Chen

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
E-mail address: jcchen@zjnu.edu.cn

Dashan Fan

Department of Mathematics, University of Wisconsin-Milwaukee, WI 53201, USA
E-mail address: fan@uwm.edu

Chunjie Zhang (corresponding author)
Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China

E-mail address: purezhang@hdu.edu.cn


	1. Introduction
	2. Proof of Theorem 1.2
	3. Strichartz estimate
	4. Some global existence theorems
	Acknowledgments

	References

