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SOME RELATIONS BETWEEN THE CAPUTO FRACTIONAL
DIFFERENCE OPERATORS AND INTEGER-ORDER

DIFFERENCES

BAOGUO JIA, LYNN ERBE, ALLAN PETERSON

Abstract. In this article, we are concerned with the relationships between

the sign of Caputo fractional differences and integer nabla differences. In

particular, we show that if N − 1 < ν < N , f : Na−N+1 → R, ∇νa∗f(t) ≥ 0,

for t ∈ Na+1 and ∇N−1f(a) ≥ 0, then ∇N−1f(t) ≥ 0 for t ∈ Na. Conversely,
if N − 1 < ν < N , f : Na−N+1 → R, and ∇Nf(t) ≥ 0 for t ∈ Na+1,

then ∇νa∗f(t) ≥ 0, for each t ∈ Na+1. As applications of these two results,

we get that if 1 < ν < 2, f : Na−1 → R, ∇νa∗f(t) ≥ 0 for t ∈ Na+1 and
f(a) ≥ f(a− 1), then f(t) is an increasing function for t ∈ Na−1. Conversely

if 0 < ν < 1, f : Na−1 → R and f is an increasing function for t ∈ Na, then

∇νa∗f(t) ≥ 0, for each t ∈ Na+1. We also give a counterexample to show that
the above assumption f(a) ≥ f(a − 1) in the last result is essential. These

results demonstrate that, in some sense, the positivity of the ν-th order Caputo

fractional difference has a strong connection to the monotonicity of f(t).

1. Introduction

If a is a real number, then we use the notation

Na := {a, a+ 1, a+ 2, . . . }.

If f : Na → R, then we define the nabla (backwards difference) operator by

∇f(t) = f(t)− f(t− 1), t ∈ Na+1.

Discrete fractional calculus has generated a lot of interest in recent years. Some of
the work has employed the delta (forward) or nabla (forward difference) operator.
We refer the readers to [3, 7, 1, 13, 11], for example. It seems, however, that more
work has been developed for the backward or nabla difference operator and we refer
the readers to [8, 12]. There has also been some work to develop relations between
the forward and backward fractional operators, ∆ν

a and ∇νa [4] (see also [13]) and
fractional calculus on time scales [7]. Anastassiou [2] has introduced the study of
nabla fractional calculus in the case of Caputo fractional difference.

This work is motivated by the paper by Dahal and Goodrich [9]. They obtained
some interesting monotonicity results for the delta fractional difference operator.
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In this paper, we prove the following corresponding results for Caputo fractional
differences.

Theorem 1.1. Assume that N − 1 < ν < N , f : Na−N+1 → R, ∇νa∗f(t) ≥ 0 for
t ∈ Na+1 and ∇N−1f(a) ≥ 0. Then ∇N−1f(t) ≥ 0 for t ∈ Na

Theorem 1.2. Assume N − 1 < ν < N , f : Na−N+1 → R, and ∇Nf(t) ≥ 0 for
t ∈ Na+1. Then ∇νa∗f(t) ≥ 0, for each t ∈ Na+1.

As applications, we have:

Corollary 1.3. Assume that 1 < ν < 2, f : Na−1 → R, ∇νa∗f(t) ≥ 0 for t ∈ Na+1

and f(a) ≥ f(a− 1), then f(t) is an increasing function for t ∈ Na−1.

Corollary 1.4. Assume 0 < ν < 1, f : Na−1 → R and f is an increasing function
for t ∈ Na. Then ∇νa∗f(t) ≥ 0, for each t ∈ Na+1.

We also give a counterexample to show that the above assumption f(a) ≥ f(a−1)
in Corollary 1.3 is essential.

2. Caputo fractional difference

The following definitions appear in [13, Chapter 3]. First we define the nabla
fractional sum of f : Na+1 → R based at a.

Definition 2.1. Let f : Na+1 → R be given and ν > 0, then the nabla fractional
sum of f based at a is defined by

∇−νa f(t) =
∫ t

a

Hν−1(t, ρ(s))f(s)∇s, (2.1)

for t ∈ Na, where by convention ∇−νa f(a) = 0.

Next we define the Caputo fractional difference in terms of the nabla fractional
sum.

Definition 2.2. Assume f : Na−N+1 → R and µ > 0. Then the µ-th Caputo nabla
fractional difference of f based at a is defined by

∇µa∗f(t) = ∇−(N−µ)
a ∇Nf(t)

for t ∈ Na+1, where N = dµe, d·e the ceiling of number, m ∈ N.

Let Γ denote the gamma function, then the rising function tr is defined by

tr =
Γ(t+ r)

Γ(t)
,

for those values of t and r such that the right hand side of this last equation makes
sense. We also use the convention that if the numerator is well defined and the
denominator is not well defined, then tr := 0. We define the µ-th degree Taylor
monomial based at a by

Hµ(t, a) :=
(t− a)µ

Γ(µ+ 1)
.

We will use the following power rule (see [13, Chapter 3]):

∇Hµ(t0, t) = −Hµ−1(t0, ρ(t)), (2.2)

where t0 ∈ Na.
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Then (see [13, Chapter 3]) if f : Na+1 → R and N − 1 < µ < N , N ∈ N1, then
the µ-th nabla fractional difference is given by

∇µaf(t) =
∫ t

a

H−µ−1(t, ρ(s))f(s)∇s, (2.3)

for t ∈ Na, where by convention ∇µaf(a) = 0.

Theorem 2.3. Assume that f : Na−N+1 → R, and ∇µa∗f(t) ≥ 0, for each t ∈ Na+1,
with N − 1 < µ < N . Then

∇N−1f(a+ k) ≥
k−1∑
i=1

[ (k − i+ 1)N−µ−2

Γ(N − µ− 1)

]
∇N−1f(a+ i− 1)

+HN−µ−1(a+ k, a)∇N−1f(a),

(2.4)

for k ∈ N1 (note by our convention on sums the first term on the right hand side
is zero when k = 1).

Proof. If t = a+ 1 we have

0 ≤ ∇µa∗f(a+ 1) = ∇−(N−µ)
a ∇Nf(t)

=
∫ a+1

a

HN−µ−1(a+ 1, ρ(s))∇Nf(s)∇s

= HN−µ−1(a+ 1, a)∇Nf(a+ 1)

= ∇Nf(a+ 1) = ∇N−1f(a+ 1)−∇N−1f(a),

where we used HN−µ−1(a+1, a) = 1. Solving for∇N−1f(a+1) we get the inequality

∇N−1f(a+ 1) ≥ ∇N−1f(a)

which gives us the inequality (2.4) for t = a + 1. Hence the inequality (2.4) holds
for t = a+ 1.

Next consider the case t = a + k for k ≥ 2. Taking t = a + k, k ≥ 2 we have
from (2.1) we have

0 ≤ ∇µa∗f(t)

= ∇−(N−µ)
a ∇Nf(t)

=
∫ t

a

HN−µ−1(t, ρ(s))∇Nf(s)∇s

=
∫ a+k

a

HN−µ−1(a+ k, ρ(s))∇Nf(s)∇s

=
k∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇Nf(a+ i)

=
k∑
i=1

HN−µ−1(a+ k, a+ i− 1)
[
∇N−1f(a+ i)−∇N−1f(a+ i− 1)

]
=

k∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇N−1f(a+ i)
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−
k∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇N−1f(a+ i− 1)

= ∇N−1f(a+ k) +
k−1∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇N−1f(a+ i)

−HN−µ−1(a+ k, a)∇N−1f(a)

−
k∑
i=2

HN−µ−1(a+ k, a+ i− 1)∇N−1f(a+ i− 1),

where we used HN−µ−1(a+ k, a+ k − 1) = 1. It follows that

0 ≤ ∇N−1f(a+ k) +
k−1∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇N−1f(a+ i)

−HN−µ−1(a+ k, a)∇N−1f(a)−
k−1∑
i=1

HN−µ−1(a+ k, a+ i)∇N−1f(a+ i)

= ∇N−1f(a+ k)−HN−µ−1(a+ k, a)∇N−1f(a+ i)

−
k−1∑
i=1

[
HN−µ−1(a+ k, a+ i)

−HN−µ−1(a+ k, a+ i− 1)
]
∇N−1f(a+ i).

It follows that

0 ≤ ∇N−1f(a+ k)−HN−µ−1(a+ k, a)∇N−1f(a)

−
k−1∑
i=1

∇sHN−µ−1(a+ k, s)|s=a+i∇N−1f(a+ i)

(2.2)
= ∇N−1f(a+ k)−HN−µ−1(a+ k, a)∇N−1f(a)

+
k−1∑
i=1

HN−µ−2(a+ k, a+ i− 1)∇N−1f(a+ i)

= ∇N−1f(a+ k)−HN−µ−1(a+ k, a)∇N−1f(a)

+
k−1∑
i=1

[ (k − i+ 1)N−µ−2

Γ(N − µ− 1)

]
∇N−1f(a+ i).

Solving the above inequality for ∇N−1f(a+ k), we obtain the desired inequality
(2.4). Next we consider for 1 ≤ i ≤ k − 1,

(k − i+ 1)N−µ−2

Γ(N − µ− 1)
=

Γ(N − µ+ k − i− 1)
Γ(k − i+ 1)Γ(N − µ− 1)

=
(N − µ+ k − i− 2) . . . (N − µ− 1)

(k − i)!
< 0
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since N < µ+ 1. Also

HN−µ−1(a+ k, a) =
kN−µ−1

Γ(N − µ)

=
Γ(N − µ+ k − 1)

Γ(k)Γ(N − µ)

=
(N − µ+ k − 2) . . . (N − µ)

(k − 1)!
> 0.

�

From Theorem 2.3, we have the following result.

Theorem 2.4. Assume that N − 1 < ν < N , f : Na−N+1 → R, ∇νa∗f(t) ≥ 0 for
t ∈ Na+1 and ∇N−1f(a) ≥ 0. Then ∇N−1f(t) ≥ 0 for t ∈ Na.

Proof. By using the principle of strong induction, we prove that the conclusion of
the theorem is correct.

By assumption, the result holds for t = a. Suppose that ∇N−1f(t) ≥ 0, for
t = a, a+ 1, . . . , a+k−1. From Theorem 2.3 and (2.4), we have ∇N−1f(a+k) ≥ 0
and the proof is complete. �

Taking N = 2 and N = 3, we can get the following corollaries.

Corollary 2.5. Assume that 1 < ν < 2, f : Na−1 → R, ∇νa∗f(t) ≥ 0 for t ∈ Na+1

and f(a) ≥ f(a− 1), then f(t) is increasing for t ∈ Na−1.

Corollary 2.6. Assume that 2 < ν < 3, f : Na−2 → R, ∇νa∗f(t) ≥ 0 for t ∈ Na+1

and ∇2f(a) ≥ 0, then ∇f(t) is increasing for t ∈ Na.

In the following, we give the inverse proposition of Theorem 2.4.

Theorem 2.7. Assume that N − 1 < ν < N , f : Na−N+1 → R, ∇Nf(t) ≥ 0 for
t ∈ Na+1, then ∇νa∗f(t) ≥ 0, for each t ∈ Na+1.

Proof. From (2.1), taking t = a+ k, we have

∇−µa∗ f(t) = ∇−(N−µ)
a ∇Nf(t) (2.5)

=
∫ t

a

HN−µ−1(t, ρ(s))∇Nf(s)∇s (2.6)

=
k∑
i=1

HN−µ−1(a+ k, a+ i− 1)∇Nf(a+ i). (2.7)

Since

HN−µ−1(a+ k, a+ i− 1) =
(k − i+ 1)N−µ−1

Γ(N − µ)

=
Γ(k +N − i− µ)

Γ(N − µ)Γ(k − i+ 1)

=
(−µ+ k +N − i) . . . (N − µ+ 1)(N − µ)

(k − i)!
> 0,

(2.8)

where we used µ < N , from (2.5) and (2.8) we get that ∇νa∗f(t) ≥ 0, for each
t ∈ Na+1, �
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Taking N = 1 and N = 2, we get the following corollaries.

Corollary 2.8. Assume that 0 < ν < 1, f : Na−1 → R and f is an increasing
function for t ∈ Na. Then ∇νa∗f(t) ≥ 0, for t ∈ Na+1.

Corollary 2.9. Assume that 1 < ν < 2, f : Na−1 → R and ∇2f(t) ≥ 0 for
t ∈ Na+1. Then ∇νa∗f(t) ≥ 0, for each t ∈ Na+1.

In the following, we will give a counterexample to show that the assumption in
Corollary 2.5 “f(a) ≥ f(a− 1)” is essential. To verify this example we will use the
following simple lemma.

Lemma 2.10. Assume that f ′′(t) ≥ 0 on [a,∞). Then ∇νa∗f(t) ≥ 0, for each
t ∈ Na+1, with 1 < ν < 2.

Proof. By Taylor’s Theorem,

f(a+ i+ 1) = f(a+ i) + f ′(a+ i) +
f ′′(ξi)

2
, ξi ∈ [a+ i, a+ i+ 1], (2.9)

f(a+ i− 1) = f(a+ i)− f ′(a+ i) +
f ′′(ηi)

2
, ηi ∈ [a+ i− 1, a+ i] (2.10)

for i = 0, 1, . . . , k − 1. Using (2.9) and (2.10), we have

∇2f(a+ i+ 1) = f(a+ i+ 1)− 2f(a+ i) + f(a+ i− 1)

=
f ′′(ξi) + f ′′(ηi)

2
≥ 0.

(2.11)

From (2.11) and Corollary 2.9, we obtain ∇νa∗f(t) ≥ 0, for each t ∈ Na+1, with
1 < ν < 2. �

Example 2.11. Let f(t) = −
√
t, a = 2. We have f ′′(t) ≥ 0, for t ≥ 1. By

Corollary 2.9, we have ∇νa∗f(t) ≥ 0

Note that f(a− 1) = f(1) = −1 > f(a) = −
√

2. Therefore f(x) does not satisfy
the assumptions of Corollary 2.5. In fact, f(t) is decreasing, for t ≥ 1.

We conclude this note by mentioning a representative consequence of Corollary
2.5.

Corollary 2.12. Let h : Na+1 × R → R be a nonnegative, continuous function.
Then any solution of the Caputo nabla fractional difference equation

∇νa∗y(t) = h(t, y(t)), t ∈ Na+1, 1 < ν < 2 (2.12)

satisfying ∇y(a) = A ≥ 0 is increasing on Na−1.
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