
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 164, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

THE ∞(x)-LAPLACE EQUATION IN RIEMANNIAN
VECTOR FIELDS

THOMAS BIESKE

Abstract. We employ Riemannian jets which are adapted to the Riemannian

geometry to obtain the existence-uniqueness of viscosity solutions to the∞(x)-

Laplace equation in Riemannian vector fields. Due to the differences between
Euclidean jets and Riemannian jets, the Euclidean method of proof is not valid

in this environment.

1. Introduction

Recently, the p(x)-Laplace equation and its limit equation, the ∞(x)-Laplace
equation, have been the focus of much attention as a tool for exploring applications
such as image restoration [4] and electrorheological fluid flow [7]. Linqvist and
Luukari [6] recently proved existence-uniqueness of viscosity solutions to the∞(x)-
Laplace equation in (Euclidean) Rn. However, this proof is not valid in general
Carnot-Carathéodory spaces, such as Riemannian vector fields, because it relies on
two important Euclidean properties, namely that the so-called viscosity penalty
function is the square of the intrinsic distance and that the two first-order jet
elements derived from the penalty function are equal. (These two phenomena are
discussed more below.) The main result of this paper is that the lack of these
phenomena in Riemannian vector fields can be overcome to produce existence-
uniqueness of viscosity solutions in this environment. In particular, we prove the
following theorem:

Theorem 1.1. Let Ω be a bounded domain in Rn with Riemannian vector fields
and let f : ∂Ω → R be a (Riemannian) Lipschitz function. Then the Dirichlet
problem

−∆X,∞(x)u = 0 in Ω
u = f on ∂Ω

has a unique viscosity solution u.

In Section 2, we review the main results and definitions from Riemannian vector
fields. Section 3 is dedicated to existence-uniqueness of viscosity solutions and
Section 4 details further properties of the viscosity solutions.
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2. Riemannian vector fields

2.1. The environment. To create a Riemannian space, we begin with Rn and
replace the Euclidean vector fields {∂x1 , ∂x2 , . . . , ∂xn

} with an arbitrary collection
of orthonormal vector fields or frame

X = {X1, X2, . . . , Xn}

consisting of n linearly independent smooth vector fields with the relation

Xi(x) =
n∑
j=1

aij(x)
∂

∂xj

for some choice of smooth functions aij(x). Denote by A(x) the matrix whose
(i, j)-entry is aij(x). We always assume that det(A(x)) 6= 0 in Rn.

The distance between points x and y, denoted d(x, y), is defined as the infimum of
lengths of curves that join x and y with the additional requirement that the curves’
tangent vectors lie in the span of the Xi’s. Using this distance, Rn with this frame
is a metric space and, unlike an arbitrary Carnot-Carathéodory space, this distance
is locally comparable to Euclidean distance. We will discuss the importance of this
fact below.

The natural gradient is the vector

DXu = (X1(u), X2(u), . . . , Xn(u))

and the natural second derivative is the n×n not necessarily symmetric matrix with
entries Xi(Xj(u)). Because of the lack of symmetry, we introduce the symmetrized
second-order derivative matrix with respect to this frame, given by

(D2
Xu)? =

1
2

(D2
Xu+ (D2

Xu)t).

We can define function spaces Ck and the Sobolev spaces W 1,p, etc with respect
to this frame in the usual way.

We may also define the ∞-Laplace operator

∆X,∞u = 〈(D2
Xu)?DXu,DXu〉.

This operator is the “limit” operator of the p-Laplace operator (for 2 < p < ∞),
which is given by

∆X,pu = ‖DXu‖p−2∆Xu+ (p− 2)‖DXu‖p−4∆X,∞u

= divX(‖DXu‖p−2DXu)

where the divergence is taken with respect to the frame X.
Following [6], we generalize these operators by replacing the constant p with an

appropriate function p(x) ∈ C1∩W 1,∞ and scalar k > 1 to obtain the p(x)-Laplace
operator

∆X,p(x)u = ‖DXu‖kp(x)−2∆Xu+ (kp(x)− 2)‖DXu‖kp(x)−4∆X,∞u

+ ‖DXu‖kp(x)−2〈DXu,DXkp(x)〉 ln ‖DXu‖

= divX(‖DXu‖kp(x)−2DXu).
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The corresponding equation ∆X,p(x)u = 0 is the Euler-Lagrange equation asso-
ciated to the energy functional(∫

Ω

‖DXu‖kp(x)

kp(x)
dx
)1/k

.

Allowing k →∞, one has the tool for analysis of the extremal problem

min
u

max
x
‖DXu‖p(x).

Letting k →∞, we have ∆X,p(x)u→ ∆X,∞(x)u where

∆X,∞(x)u = ∆X,∞u+ ‖DXu‖2〈DXu,DX ln p(x)〉 ln ‖DXu‖.

2.2. Viscosity solutions. Because we will be considering viscosity solutions, we
will recall the main definitions and properties. We begin with the Riemannian jets
J2,+

X and J2,−
X . (See [1, 3] for a more complete analysis of such jets.)

Definition 2.1. Let u be an upper semi-continuous function. Consider the set

K2,+
X u(x) =

{
ϕ ∈ C2 in a neighborhood of x, ϕ(x) = u(x),

ϕ(y) ≥ u(y), y 6= x in a neighborhood of x
}
.

Each function ϕ ∈ K2,+
X u(x) determines a vector-matrix pair (η,X) via the relations

η =
(
X1ϕ(x), X2ϕ(x), . . . , Xnϕ(x)

)
Xij =

1
2
(
Xi(Xj(ϕ))(x) +Xj(Xi(ϕ))(x)

)
.

We then define the second order superjet of u at x by

J2,+
X u(x) = {(η,X) : ϕ ∈ K2,+u(x)},

the second order subjet of u at x by

J2,−
X u(x) = −J2,+

X (−u)(x)

and the set-theoretic closure

J
2,+

X u(x) =
{

(η,X) : ∃{xn, ηn, Xn}n∈N with (ηn, Xn) ∈ J2,+
X u(xn)

and (xn, u(xn), ηn, Xn)→ (x, u(x), η,X)
}
.

We then use these Riemannian jets to define viscosity ∞(x)-harmonic functions
as follows:

Definition 2.2. A lower semi-continuous function v is viscosity ∞(x)-superhar-
monic in a bounded domain Ω if v 6≡ ∞ in each component of Ω and for all x0 ∈ Ω,
whenever (ξ,Y) ∈ J2,−

X v(x0), we have

−
(
〈Yξ, ξ〉+ ‖ξ‖2〈ξ,DX ln p(x)〉 ln ‖ξ‖

)
≥ 0.

An upper semi-continuous function u is viscosity ∞(x)-subharmonic in a bounded
domain Ω if u 6≡ −∞ in each component of Ω and for all x0 ∈ Ω, whenever
(η,X ) ∈ J2,+

X u(x0), we have

−
(
〈Xη, η〉+ ‖η‖2〈η,DX ln p(x)〉 ln ‖η‖

)
≤ 0.
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A function is viscosity∞(x)-harmonic if it is both viscosity∞(x)-subharmonic and
viscosity ∞(x)-superharmonic.

Similarly, we have the following definition concerning ∆X,p(x)u.

Definition 2.3. A lower semi-continuous function v is viscosity p(x)-superharmonic
in a bounded domain Ω if v 6≡ ∞ in each component of Ω and for all x0 ∈ Ω, when-
ever (ξ,Y) ∈ J2,−

X v(x0), we have

−
(
‖ξ‖kp(x)−2 traceY + (kp(x)− 2)‖ξ‖kp(x)−4〈Yξ, ξ〉

+ ‖ξ‖kp(x)−2〈ξ,DXkp(x)〉 ln ‖ξ‖
)
≥ 0.

An upper semi-continuous function u is viscosity p(x)-subharmonic in a bounded
domain Ω if u 6≡ −∞ in each component of Ω and for all x0 ∈ Ω, whenever
(η,X ) ∈ J2,+

X u(x0), we have

−
(
‖η‖kp(x)−2 traceX + (kp(x)− 2)‖η‖kp(x)−4〈Xη, η〉

+ ‖η‖kp(x)−2〈η,DXkp(x)〉 ln ‖η‖
)
≤ 0.

A function is viscosity p(x)-harmonic if it is both viscosity p(x)-subharmonic and
viscosity p(x)-superharmonic.

Remark 2.4. In the above definitions, we may replace the right-hand side of each
inequality by an arbitrary function. In that case, we use the term viscosity ∞(x)-
subsolution, etc.

Our main tool is the Riemannian Maximum Principle [1], which we include for
completeness.

Theorem 2.5 (Riemannian Maximum Principle). Let u be upper semicontinuous
in a bounded domain Ω ⊂ Rn. Let v be lower semicontinuous in Ω. Suppose that
for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u−v has a positive interior
local maximum

sup
Ω

(u− v) > 0

then we have: For τ > 0 we can find points xτ , yτ ∈ Rn such that
(i)

lim
τ→∞

τψ(xτ , yτ ) = 0,

where ψ(x, y) = |x − y|α, for a fixed α ≥ 2. (That is, ψ is a power of the
Euclidean distance.)

(ii) There exists a point x̂ ∈ Ω such that xτ → x̂ (and so does yτ by (i)) and

sup
Ω

(u− v) = u(x̂)− v(x̂) > 0,

(iii) there exist symmetric matrices Xτ ,Yτ and vectors η+
τ , η−τ so that

(a) (η+
τ ,Xτ ) ∈ J2,+

X u(xτ ),
(b) (η−τ ,Yτ ) ∈ J2,−

X v(yτ ),
(c) η+

τ − η−τ = o(1) as τ →∞, and
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(d) Xτ ≤ Yτ + o(1) as τ →∞.

We will also use the following corollary.

Corollary 2.6 ([3, Corollary 2.1]). Let u and v be as in Theorem 2.5, and in
addition, let one of u or v be locally Lipschitz. Let α = 2. Then, for the vectors η+

τ

and η−τ and the matrices Xτ and Yτ as in the theorem, we have

‖η+
τ ‖2 − ‖η−τ ‖2 = o(1),

〈Xτη+
τ , η

+
τ 〉 − 〈Yτη−τ , η−τ 〉 = o(1).

This corollary is a consequence of the facts that the Riemannian distance is
comparable to the Euclidean distance and that the choice of penalty function ψ(x, y)
is the square of the Euclidean distance. Note, however, that even though the vectors
η+
τ and η−τ are not necessarily equal, we can still produce key estimates.

3. Existence-uniqueness of ∞(x)-harmonic functions

Let Ω be a bounded domain in Rn and f : ∂Ω→ R be a (Riemannian) Lipschitz
function.

We will first establish the existence of ∞(x)-harmonic functions using Jensen’s
auxiliary equations [5]:

min{‖DXu‖2 − ε,−∆X,∞(x)u} = 0 and max{ε− ‖DXu‖2,−∆X,∞(x)u} = 0

for a real parameter ε > 0. The procedure for existence of viscosity solutions to
these equations (and viscosity ∞(x)-harmonic functions) is identical to [2, Section
4] and [6, Section 2], up to the obvious modifications. For completeness, we state
the steps as one theorem and omit the proofs.

Theorem 3.1 ([6, 2]). We have the following results:
(1) Let ε ∈ R. If uk is a continuous potential-theoretic weak sub- (super-)

solution with uk ∈W 1,kp(x)(Ω) to:

−∆X,kp(x)uk = εkp(x)−1 in Ω
u = f on ∂Ω

then it is a viscosity sub-(super-)solution.
(2) Letting k →∞, we have uk → u∞ uniformly (possibly up to a subsequence)

in Ω with u∞ ∈W 1,∞(Ω) ∩ C(Ω).
(3) The function u∞ is a viscosity solution to

min{‖DXu∞‖2 − ε,−∆X,∞(x)u∞} = 0 when ε > 0

max{ε− ‖DXu∞‖2,−∆X,∞(x)u∞} = 0 when ε < 0
−∆X,∞(x)u∞ = 0 when ε = 0.

In light of [2, Lemma 5.6] and [6, Lemma 2.2], the main result, Theorem 1.1,
follows from showing the uniqueness of viscosity solutions to the Jensen auxiliary
equations. We will establish this result, and point out where we digress from the
Euclidean proof.

Theorem 3.2. Let v = u∞ be the viscosity solution from Theorem 3.1 to

min{‖DXu‖2 − ε,−∆X,∞(x)u} = 0 (3.1)

in a bounded domain Ω. If u is an upper semi-continuous viscosity subsolution to
Equation (3.1) in Ω so that u ≤ v on ∂Ω, then u ≤ v in Ω.
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Proof. Following [6, Lemma 3.1] and [2, Theorem 5.3], we may assume without loss
of generality that v is a strict viscosity supersolution. Suppose

sup
Ω

(u− v) > 0

and let ψ(x, y) = |x − y|2 be the square of the Euclidean distance between the
points x and y. By the Riemannian Maximum Principle (Theorem 2.5), there are
points xτ and yτ in Ω (for sufficiently large τ) with the property that there are
vectors η+

τ , η
−
τ and symmetric matrices Xτ ,Yτ so that

(η+
τ ,Xτ ) ∈ J2,+

X u(xτ ) and (η−τ ,Yτ ) ∈ J2,−
v(yτ ).

Since u is a viscosity subsolution and v a strict viscosity supersolution, we have,
for some µ > 0,

0 ≥ min{‖η+
τ ‖2 − ε,−〈Xτη+

τ , η
+
τ 〉 − ‖η+

τ ‖2〈η+
τ , DX ln p(xτ )〉 ln ‖η+

τ ‖},
0 < µ ≤ min{‖η−τ ‖2 − ε,−〈Yτη−τ , η−τ 〉 − ‖η−τ ‖2〈η−τ , DX ln p(yτ )〉 ln ‖η−τ ‖}.

Subtracting these equations, we obtain

0 < µ ≤ max
{
‖η−τ ‖2 − ‖η+

τ ‖2, 〈Xτη+
τ , η

+
τ 〉 − 〈Yτη−τ , η−τ 〉

+ ‖η+
τ ‖2〈η+

τ , DX ln p(xτ )〉 ln ‖η+
τ ‖

− ‖η−τ ‖2〈η−τ , DX ln p(yτ )〉 ln ‖η−τ ‖
}
.

(3.2)

Here is where the proof diverges from the Euclidean case. In the Euclidean case,
the vectors η+

τ and η−τ are equal, rapidly leading to a contradiction in Equation
(3.2) as τ → ∞. However, in the Riemannian environment, these vectors are not,
in general, equal. So, we will have to estimate the right-hand side more carefully.

Since v is locally Lipschitz, can invoke Corollary 2.6 to obtain

‖η−τ ‖2 − ‖η+
τ ‖2 → 0 and 〈Xτη+

τ , η
+
τ 〉 − 〈Yτη−τ , η−τ 〉 → 0

as τ →∞.
Thus, we are left to consider

‖η+
τ ‖2〈η+

τ , DX ln p(xτ )〉 ln ‖η+
τ ‖ − ‖η−τ ‖2〈η−τ , DX ln p(yτ )〉 ln ‖η−τ ‖.

We begin by expressing the sum as

‖η+
τ ‖2〈η+

τ , DX ln p(xτ )〉 ln ‖η+
τ ‖ − ‖η−τ ‖2〈η−τ , DX ln p(yτ )〉 ln ‖η−τ ‖

= ‖η+
τ ‖2〈η+

τ , DX ln p(xτ )〉
(

ln ‖η+
τ ‖ − ln ‖η−τ ‖

)
+
(
‖η+
τ ‖2 − ‖η−τ ‖2

)
〈η+
τ , DX ln p(xτ )〉 ln ‖η−τ ‖

+ ‖η−τ ‖2
(
〈η+
τ , DX ln p(xτ )〉 − 〈η−τ , DX ln p(xτ )〉

)
ln ‖η−τ ‖

+ ‖η−τ ‖2
(
〈η−τ , DX ln p(xτ )〉 − 〈η−τ , DX ln p(yτ )〉

)
ln ‖η−τ ‖

= I + II + III + IV.

To estimate each term, we need the following Lemma.

Lemma 3.3. For some constant K > 0, the vector η−τ satisfies
√
ε < ‖η−τ ‖ < K.
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In addition, for that same K, and sufficiently large τ , the vector η+
τ satisfies

1
2
√
ε < ‖η+

τ ‖ < K.

As a consequence, there is a constant L so that∣∣ ln ‖η−τ ‖∣∣ < L <∞.

Proof. Since v is a strict supersolution to Equation (3.1), we have 0 < ε < ‖η−τ ‖2.
Next, since v is locally Lipschitz, the proof of Corollary 2.6 shows there is a constant
C so that

τψ(xτ , yτ )1/2 < C.

By the proof of the Riemannian Maximum Principle (Theorem 2.5),

η−τ = −τA(yτ )Dy(ψ(xτ , yτ ))

where Dy denotes Euclidean differentiation in the y-variable and A(yτ ) is the coeffi-
cient matrix of the frame at yτ in terms of the standard Euclidean vectors (Section
2.1). Because ψ(xτ , yτ ) = |xτ − yτ |2 and yτ ∈ Ω, a bounded domain, we conclude
that for some finite constant C1,

‖η−τ ‖ ≤ C1.

Similarly,
η+
τ = τA(xτ )Dx(ψ(xτ , yτ ))

so that for some finite constant C2,

‖η+
τ ‖ ≤ C2.

By part iii(c) of the Riemannian Maximum Principle (Theorem 2.5), for sufficiently
large τ , 0 < 1

2

√
ε < ‖η+

τ ‖. The Lemma then follows. �

Term I: The absolute value of the first term is controlled by

‖η+
τ ‖3‖DX ln p(xτ )‖L∞

∣∣ ln ‖η+
τ ‖ − ln ‖η−τ ‖

∣∣.
Using Lemma 3.3 and the fact that 1 < p(x) ∈ C1(Ω) ∩W 1,∞(Ω), we have that
this is, in turn, controlled by

C
(

ln ‖η+
τ ‖ − ln ‖η−τ ‖

)
for some finite constant C. Suppose that∣∣∣ ln ‖η+

τ ‖ − ln ‖η−τ ‖
∣∣∣ =

∣∣∣ ln(‖η+
τ ‖

‖η−τ ‖

)∣∣∣ = ln
(‖η+

τ ‖
‖η−τ ‖

)
.

Then ∣∣∣ ln ‖η+
τ ‖ − ln ‖η−τ ‖

∣∣∣ ≤ ln
(

1 +
‖η+
τ − η−τ ‖
‖η−τ ‖

)
.

Lemma 3.3 and the Riemannian Maximum Principle then imply as τ →∞,∣∣∣ ln ‖η+
τ ‖ − ln ‖η−τ ‖

∣∣∣→ 0.

If instead,∣∣∣ ln ‖η+
τ ‖ − ln ‖η−τ ‖

∣∣∣ =
∣∣∣ ln(‖η+

τ ‖
‖η−τ ‖

)∣∣∣ = − ln
(‖η+

τ ‖
‖η−τ ‖

)
= ln

(‖η−τ ‖
‖η+
τ ‖

)
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then a symmetric argument gives∣∣∣ ln ‖η+
τ ‖ − ln ‖η−τ ‖

∣∣∣→ 0

as τ →∞, so that

‖η+
τ ‖2〈η+

τ , DX ln p(xτ )〉
(

ln ‖η+
τ ‖ − ln ‖η−τ ‖

)
→ 0

as τ →∞.
Term II: By Corollary 2.6, ‖η+

τ ‖2 − ‖η−τ ‖2 → 0 as τ →∞. Using Lemma 3.3, we
have ∣∣∣〈η+

τ , DX ln p(xτ )〉 ln ‖η−τ ‖
∣∣∣ ≤ C‖DX ln p(xτ )‖L∞ .

As in Term I, this term is bounded and so as τ →∞(
‖η+
τ ‖2 − ‖η−τ ‖2

)
〈η+
τ , DX ln p(xτ )〉 ln ‖η−τ ‖ → 0.

Term III: As in the previous terms, the absolute value of this term is controlled
by C‖η+

τ − η−τ ‖. By the Riemannian Maximum Principle, we then have as τ →∞,

‖η−τ ‖2
(
〈η+
τ , DX ln p(xτ )〉 − 〈η−τ , DX ln p(xτ )〉

)
ln ‖η−τ ‖ → 0.

Term IV: By the Riemannian Maximum Principle, both xτ and yτ converge to
a point x̂. By the regularity of p(x), we have the absolute value of Term IV is
controlled by

C
(
DX ln p(xτ )−DX ln p(yτ )

)
→ 0

as τ →∞. �

An analogous argument produces the following Corollary.

Corollary 3.4. Let v = u∞ be the viscosity solution from Theorem 3.1 to

max{ε− ‖DXu‖2,−∆X,∞(x)u} = 0 (3.3)

in a bounded domain Ω. If u is an lower semi-continuous viscosity supersolution to
Equation (3.3) in Ω so that u ≥ v on ∂Ω, then u ≥ v in Ω.

4. A Harnack inequality

We include a Harnack inequality for completeness. First, we have the following
lemma whose proof is identical to [6, Lemma 4.1] and omitted.

Lemma 4.1. Let u be a positive viscosity∞(x)-harmonic function and ζ a positive,
compactly supported smooth function. Then

sup
x∈Ω

∣∣∣DXζ(x)DX lnu(x)
∣∣∣p(x)

≤ sup
x∈Ω

∣∣∣DXζ(x) + ζ(x) ln
( ζ(x)
u(x)

)
DX ln p(x)

∣∣∣p(x)

.

As in [6, Section 4], we have the following Harnack inequality as a consequence.

Theorem 4.2. Let u be a positive viscosity ∞(x)-harmonic function. Let Br be a
ball of radius r > 0 contained in the bounded domain Ω. Let B2r be the concentric
ball of twice the radius also contained in Ω. Then

sup
x∈Br

u(x) ≤ C
(

inf
x∈Br

u(x) + r
)

for some constant C depending on supx∈B2r
u(x).
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