Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 166, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS FOR HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS

MENGMENG LI, JINRONG WANG

Abstract

In this article, we study a class of Hadamard fractional differential equations and give sufficient conditions on the existence of local and global of solutions.

1. Introduction

Let $0 \leq \gamma<1,1<a<T$ and \mathbb{G} be an open set in \mathbb{R}. Denote a Banach space by $C_{\gamma, \ln }[a, T]:=\left\{\mu(x):\left(\ln \frac{x}{a}\right)^{\gamma} \mu(x) \in C[a, T]\right\}$ endowed with the norm $\|\mu\|_{C_{\gamma, \ln }}=\left\|\left(\ln \frac{x}{a}\right)^{\gamma} \mu(x)\right\|_{C}$. In this article, we study the existence of local and global solutions to the Hadamard type fractional differential equation

$$
\begin{gather*}
{ }_{H} D_{a, x}^{\alpha} y(x)=f(x, y(x)), \quad 0<\alpha<1, x \in \mathbb{J} \\
{ }_{H} D_{a, x}^{\alpha-1} y\left(a^{+}\right)=c, \quad c \in \mathbb{R} \tag{1.1}
\end{gather*}
$$

where $\mathbb{J}=[a, a+h], h>0$ or $[a+\infty)$ and the symbol ${ }_{H} D_{a, x}^{\alpha} y(x)$ is defined by

$$
{ }_{H} D_{a, x}^{\alpha} y(x)=\frac{1}{\Gamma(1-\alpha)}\left(x \frac{d}{d x}\right) \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{-\alpha} y(\tau) \frac{d \tau}{\tau} .
$$

We use the notation ${ }_{H} D_{a, x}^{\alpha-1} y\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \mathcal{J}_{a, x}^{\alpha-1} y(x)$ and

$$
\left.\mathcal{J}_{a, x}^{\alpha-1} y(x)=\frac{1}{\Gamma(\alpha)} \int_{1}^{x}\left(\ln \frac{x}{t}\right)^{\alpha-1} y(t)\right) \frac{d t}{t}
$$

Following [1, Theorem 3.28], the solution $y \in C_{1-\gamma, \ln }[a, a+h]$ of 1.1) satisfies

$$
\begin{equation*}
y(x)=y_{0}(x)+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1} f(\tau, y(\tau)) \frac{d \tau}{\tau}, \quad x \in(a, a+h] \tag{1.2}
\end{equation*}
$$

where $y_{0}(x)=\frac{c}{\Gamma(\alpha)}\left(\ln \frac{x}{a}\right)^{\alpha-1}$, if $f:(a, a+h] \times \mathbb{G} \rightarrow \mathbb{R}$ and $f(x, y) \in C_{\gamma, \ln }[a, a+h]$ for any $y \in \mathbb{G}$.

Inspired by the work in [1, 2, 3, we examine other explicit sufficient conditions on the nonlinear term f to guarantee the local existence of solutions in $C_{\gamma, \ln }[a, a+h]$ and global existence of solutions in $C_{\gamma, \ln }[a,+\infty)$.

[^0]
2. Main Results

The following equality will be used in the sequel.
Lemma 2.1 ([4, p.296]). Let $\alpha, \beta, \gamma, p>0$, then

$$
\int_{0}^{x}\left(x^{\alpha}-s^{\alpha}\right)^{p(\beta-1)} s^{p(\gamma-1)} d s=\frac{x^{\theta}}{\alpha} B\left[\frac{p(\gamma-1)+1}{\alpha}, p(\beta-1)+1\right], \quad x>0
$$

where $\theta=p[\alpha(\beta-1)+\gamma-1]+1$ and $B[\xi, \eta]=\int_{0}^{1} s^{\xi-1}(1-s)^{\eta-1} d s$.
Let $\mathbb{B}=\left\{y \in \mathbb{R}:\left\|y-y_{0}(x)\right\|_{C_{\gamma, \text { ln }}} \leq b\right\}$ where b will be chosen latter. Define $\mathbb{D}=\{(x, y) \in R \times R: x \in \mathbb{J}, y \in \mathbb{B}\}$. We assume that $f: \mathbb{D} \rightarrow \mathbb{R}$ satisfies the following conditions:
(H1) $f(x, y)$ is Lebesgue measurable with regard to x on \mathbb{J} and $f(x, y)$ is continuous with respect to y on \mathbb{B}.
(H2) there exists $m(\cdot) \in L^{q}(\mathbb{J}), q>1$ such that $|f(x, y)| \leq m(x)$, for arbitrary $x \in \mathbb{J}, y \in \mathbb{B}$.

Now we use Picard iterative approach to derive the existence of a local solutions to (1.1).

Theorem 2.2. Assume that (H1)-(H2) hold for $\mathbb{J}=[a, a+h]$ and p, q, α satisfy $p(\alpha-1)+1>0, \frac{1}{p}+\frac{1}{q}=1$. Then 1.1) has a solution in $C_{\gamma, \ln }[a, a+h]$ for some $h>0$.

Proof. To achieve our aim, we divide our proof into three steps.
Step 1. Linking our assumptions and using Hölder inequality via $p(\alpha-1)+1>0$ and $\frac{1}{p}+\frac{1}{q}=1$, one can obtain

$$
\begin{equation*}
\int_{a}^{x}\left|(\ln x-\ln \tau)^{\alpha-1} f(\tau, y(\tau))\right| \frac{d t}{\tau} \leq \sqrt[1 / p]{\frac{a^{1-p} h^{p(\alpha-1)+1}}{p(\alpha-1)+1}}\|m(\cdot)\|_{L^{q}[a, a+h]} \tag{2.1}
\end{equation*}
$$

where we use basic inequalities: $\ln u-\ln v \leq u-v$ for $u \geq v>1$ and [5, Lemma 2.2],

$$
\begin{equation*}
\int_{a}^{x}(\ln x-\ln \tau)^{p(\alpha-1)} \tau^{-p} d \tau \leq \frac{a^{1-p}(\ln x-\ln a)^{p(\alpha-1)+1}}{p(\alpha-1)+1} \tag{2.2}
\end{equation*}
$$

This proves that $(\ln x-\ln \tau) f(\tau, y(\tau))$ is Lebesgue integrable with respect to $\tau \in$ [a, x] for arbitrary x on \mathbb{J}, provided that $y(\tau)$ is Lebesgue measurable on the interval $[a, a+h]$.
Step 2. For a given $M>0$, there exists a $h^{\prime}>0$ satisfying

$$
\begin{equation*}
\int_{a}^{a+h^{\prime}} m^{q}(\tau) d \tau \leq M^{q} \tag{2.3}
\end{equation*}
$$

whenever $h=\min \left\{h^{\prime}, T,\left[\frac{b \Gamma(\alpha)(p(\alpha-1)+1)}{M a^{p-1}(\ln T-\ln a)^{\gamma}}\right]^{\frac{1}{p(\alpha-1)+1}}\right\}$. For δ to be chosen latter, define

$$
y_{n}(x)=\left\{\begin{array}{l}
0, \quad \text { if } a \leq x<a+\delta, 0<\delta<\frac{h}{n} \\
\frac{c}{\Gamma(\alpha)}\left(\ln \frac{x}{a}\right)^{\alpha-1}, \quad \text { if } a+\delta \leq x<a+\frac{h}{n} \\
\frac{c}{\Gamma(\alpha)}\left(\ln \frac{x}{a}\right)^{\alpha-1}+\frac{1}{\Gamma(\alpha)} \int_{a}^{x-\frac{h}{n}}\left(\ln \frac{x}{\tau}\right)^{\alpha-1} f\left(\tau, y_{n}(\tau)\right) \frac{d \tau}{\tau} \\
\quad \text { if } a+\frac{h}{n} \leq x \leq a+h
\end{array}\right.
$$

We show that $y_{n}(x)$ is continuous on $\left[a, a+\frac{2 h}{n}\right]$ for all n.
Case 1. For $a<a+\delta \leq x_{1}<a+\frac{h}{n}<x_{2} \leq a+h$,

$$
\begin{aligned}
\left|y_{n}\left(x_{2}\right)-y_{n}\left(x_{1}\right)\right| \leq & \frac{|c|}{\Gamma(\alpha)}\left|\left(\ln \frac{x_{2}}{a}\right)^{\alpha-1}-\left(\ln \frac{x_{1}}{a}\right)^{\alpha-1}\right| \\
& +\frac{1}{\Gamma(\alpha)} \int_{a}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
:= & I_{1}+I_{2}
\end{aligned}
$$

For each $\varepsilon>0$, there exists $0<\delta_{1}<\left[\frac{a \varepsilon \Gamma(\alpha) \delta^{2-\alpha}}{2|c|(1-\alpha)}\right]$ such that for all $x_{2}-x_{1} \leq \delta_{1}$ and for all n, we derive that

$$
\begin{aligned}
I_{1} & =\frac{|c|}{\Gamma(\alpha)}\left|\chi\left(\frac{x_{2}}{a}\right)-\chi\left(\frac{x_{1}}{a}\right)\right| \leq \frac{|c|}{\Gamma(\alpha)}\left|\chi^{\prime}(\xi)\right|\left|\frac{x_{2}}{a}-\frac{x_{1}}{a}\right|, \xi \in\left(\frac{x_{1}}{a}, \frac{x_{2}}{a}\right) \\
& \leq \frac{|c|(1-\alpha)\left(x_{2}-x_{1}\right)}{\Gamma(\alpha)(a+\delta)(\ln (a+\delta)-\ln a)^{2-\alpha}} \\
& <\frac{|c|(1-\alpha)\left(x_{2}-x_{1}\right)}{\Gamma(\alpha) a(\ln (a+\delta)-\ln a)^{2-\alpha}}<\varepsilon / 2
\end{aligned}
$$

where $\chi(x)=(\ln x-\ln a)^{\alpha-1}$ and $\chi^{\prime}(x)=(\alpha-1)(\ln x-\ln a)^{\alpha-2} \frac{a}{x}$.
For any $\varepsilon>0$, there exists $0<\delta_{2}<\left[\frac{\varepsilon^{p} \Gamma^{p}(\alpha)(p(\alpha-1)+1)}{2^{p} a^{1-p} M^{p}}\right]^{\frac{1}{p(\alpha-1)+1}}$ such that for all $x_{2}-\frac{h}{n}-a \leq x_{2}-x_{1} \leq \delta_{2}$ and for all n, we use 2.2 and 2.3 to obtain

$$
\begin{aligned}
I_{2} & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1} m(\tau) \frac{d \tau}{\tau} \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\frac{a^{1-p}\left(\ln \left(x_{2}-\frac{h}{n}\right)-\ln a\right)^{p(\alpha-1)+1}}{p(\alpha-1)+1}\right]^{1 / p} \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\frac{a^{1-p}\left(x_{2}-\frac{h}{n}-a\right)^{p(\alpha-1)+1}}{p(\alpha-1)+1}\right]^{1 / p}<\varepsilon / 2
\end{aligned}
$$

where we use that $\ln u-\ln v \leq u-v, u>v>1$ again in the last inequality.
From above, we can choose $\bar{\delta}=\min \left\{\delta_{1}, \delta_{2}, h / n\right\}$ such that for all $x_{2}-x_{1} \leq \bar{\delta}$ and for all n, such that $\left|y_{n}\left(x_{2}\right)-y_{n}\left(x_{1}\right)\right| \leq I_{1}+I_{2}<\varepsilon$.
Case 2. For $a+\frac{h}{n} \leq x_{1}<x_{2} \leq a+\frac{2 h}{n}$. One has

$$
\begin{aligned}
& \left|y_{n}\left(x_{2}\right)-y_{n}\left(x_{1}\right)\right| \\
& \leq \\
& \quad S_{1}+\frac{1}{\Gamma(\alpha)} \int_{a}^{x_{1}-\frac{h}{n}}\left(\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}-\left(\ln \frac{x_{1}}{\tau}\right)^{\alpha-1}\right)\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& \quad+\frac{1}{\Gamma(\alpha)} \int_{x_{1}-\frac{h}{n}}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& :=S_{1}+S_{2}+S_{3}
\end{aligned}
$$

For each $\varepsilon>0$, there exists $0<\overline{\delta_{1}}<\left[\frac{a \varepsilon \Gamma(\alpha)\left(\frac{h}{n}\right)^{2-\alpha}}{3|c|(1-\alpha)}\right]$ such that for all $x_{2}-x_{1} \leq \overline{\delta_{1}}$, we have

$$
S_{1} \leq \frac{|c|(1-\alpha)\left(x_{2}-x_{1}\right)}{\Gamma(\alpha) a\left(\ln \left(a+\frac{h}{n}\right)-\ln a\right)^{2-\alpha}}<\varepsilon / 3
$$

For each $\varepsilon>0$, there exists $0<\overline{\delta_{2}}<\left[\frac{\varepsilon^{p} \Gamma(\alpha)^{p}(p(\alpha-1)+1)}{3^{p} M^{p} a^{1-p}}\right]^{\frac{1}{p(\alpha-1)+1}}$ such that for all $x_{2}-x_{1} \leq \overline{\delta_{2}}$, by using the similar estimation methods of I_{2} we have

$$
\begin{aligned}
S_{2} & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x_{1}-\frac{h}{n}}\left(\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}-\left(\ln \frac{x_{1}}{\tau}\right)^{\alpha-1}\right)\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x_{1}-\frac{h}{n}}\left(\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}-\left(\ln \frac{x_{1}}{\tau}\right)^{\alpha-1}\right) m(\tau) \frac{d \tau}{\tau} \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\left(\int_{a}^{x_{1}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{p(\alpha-1)} \tau^{-p} d \tau\right)^{1 / p}-\left(\int_{a}^{x_{1}-\frac{h}{n}}\left(\ln \frac{x_{1}}{\tau}\right)^{p(\alpha-1)} \tau^{-p} d \tau\right)^{1 / p}\right] \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\frac{\left(\ln x_{2}-\ln x_{1}\right)^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)}\right]^{1 / p} \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\frac{\left(x_{2}-x_{1}\right)^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)}\right]^{1 / p}<\varepsilon / 3
\end{aligned}
$$

For each $\varepsilon>0$, there exists $0<\overline{\delta_{3}}<\left[\frac{\varepsilon^{p} \Gamma(\alpha)^{p}(p(\alpha-1)+1)}{3^{p} M^{p} a^{1-p}}\right]^{\frac{1}{p(\alpha-1)+1}}$, such that for all $x_{2}-x_{1} \leq \bar{\delta}_{3}$, by using the similar estimation methods of I_{2} we have

$$
\begin{aligned}
S_{3} & =\frac{1}{\Gamma(\alpha)} \int_{x_{1}-\frac{h}{n}}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{x_{1}-\frac{h}{n}}^{x_{2}-\frac{h}{n}}\left(\ln \frac{x_{2}}{\tau}\right)^{\alpha-1} m(\tau) \frac{d \tau}{\tau} \\
& \leq \frac{M}{\Gamma(\alpha)}\left[\frac{a^{1-p}\left(x_{2}-x_{1}\right)^{p(\alpha-1)+1}}{p(\alpha-1)+1}\right]^{1 / p}<\varepsilon / 3 .
\end{aligned}
$$

From the above, we choose $\overline{\bar{\delta}}=\min \left\{\bar{\delta}_{1}, \bar{\delta}_{2}, \bar{\delta}_{3}, h / n\right\}$ such that $x_{2}-x_{1} \leq \overline{\bar{\delta}}$, then $\left|y_{n}\left(x_{2}\right)-y_{n}\left(x_{1}\right)\right| \leq S_{1}+S_{2}+S_{3}<\varepsilon$. Therefore, we choose $\delta=\min \{\bar{\delta}, \bar{\delta}\}$ will lead to $y_{n}(x)$ is continuous with regard to x on $\left[a, a+\frac{2 h}{n}\right]$ for all positive integers n. Note that $(\ln x-\ln a)^{\gamma}$ is continuous function, so $y_{n}(x)(\ln x-\ln a)^{\gamma}$ is also continuous.

Nevertheless, for all $x \in\left[a+\delta, a+\frac{h}{n}\right]$, one has $\left|y_{n}(x)-\frac{c}{\Gamma(\alpha)}\left(\ln \frac{x}{a}\right)^{\alpha-1}\right|=0$, and for all $x \in\left[a+\frac{h}{n}, a+h\right]$, using Hölder inequality again,

$$
\begin{align*}
& \left(\ln \frac{x}{a}\right)^{\gamma}\left|y_{n}(x)-\frac{c}{\Gamma(\alpha)}\left(\ln \frac{x}{a}\right)^{\alpha-1}\right| \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x-\frac{h}{n}}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{n}(\tau)\right)\right| \frac{d \tau}{\tau} \tag{2.4}\\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} a^{1-p} M h^{p(\alpha-1)+1}}{\Gamma(\alpha)(p(\alpha-1)+1)} \leq b,
\end{align*}
$$

which implies that $\left(x, y_{n}(x)\right) \in \mathbb{D}$ for all n. Therefore, $\left\{y_{n}(x)\right\}_{n=1}^{\infty}$ defined on $[a, a+h]$ is equicontinuous and uniformly bounded.

Step 3. By using Arzelò-Ascoli lemma and Step 2, there must exist $\left\{y_{n_{k}}(x)\right\}_{k=1}^{\infty}:=$ $\left\{y_{k}(x)\right\}_{k=1}^{\infty}$ contained in $\left\{y_{n}(x)\right\}_{n=1}^{\infty}$, such that $\left\{y_{k}(x)\right\}_{k=1}^{\infty}$ is uniformly convergent to $y(x)$ which is continuous with regard to x on $[a, a+h]$. Now we only need to prove that this limit function $y(x)$ is a solution of 1.2 .

For each $\varepsilon>0$, there exists $K_{1}>0$, such that for all $k>K_{1}$, and $x \in[a, a+h]$, we have

$$
\begin{equation*}
\left|f\left(x, y_{k}(x)\right)-f(x, y(x))\right|<\frac{\Gamma(\alpha+1) \varepsilon}{2(\ln (a+h)-\ln a)^{\gamma} h^{\alpha}} \tag{2.5}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& (\ln x-\ln a)^{\gamma}\left|y_{k}(x)-y(x)\right| \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{k}(\tau)\right)-f(\tau, y(\tau))\right| \frac{d \tau}{\tau} \\
& \quad+\frac{1}{\Gamma(\alpha)} \int_{x-\frac{h}{k}}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{k}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& :=S_{4}+S_{5}
\end{aligned}
$$

Using 2.5 one obtains,

$$
\begin{aligned}
S_{4} & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{k}(\tau)\right)-f(\tau, y(\tau))\right| \frac{d \tau}{\tau} \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma}}{\Gamma(\alpha)} \int_{x}^{a}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{k}(\tau)\right)-f(\tau, y(\tau))\right| d(\ln x-\ln \tau) \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} h^{\alpha}}{a \Gamma(\alpha)} \frac{\Gamma(\alpha+1) \varepsilon}{2(\ln (a+h)-\ln a)^{\gamma} h^{\alpha}}<\varepsilon / 2 .
\end{aligned}
$$

Also there exists

$$
0<K_{2}=h\left[\frac{a^{p-1} \varepsilon^{p} \Gamma(\alpha)^{p}(p(\alpha-1)+1)}{2^{p} M^{p}(\ln (a+h)-\ln a)^{p \gamma}}\right]^{\frac{-1}{p(\alpha-1)+1}}
$$

such that for all $k>K_{2}$,

$$
\begin{aligned}
S_{5} & =\frac{1}{\Gamma(\alpha)} \int_{x-\frac{h}{k}}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left|f\left(\tau, y_{k}(\tau)\right)\right| \frac{d \tau}{\tau} \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} M}{\Gamma(\alpha)}\left(\int_{x-\frac{h}{k}}^{x}\left(\ln \frac{x}{\tau}\right)^{p(\alpha-1)} \tau^{-p} d t\right)^{1 / p} \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} M}{\Gamma(\alpha)}\left(\frac{\left(\frac{h}{k}\right)^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)}\right)^{1 / p}<\varepsilon / 2
\end{aligned}
$$

Hence, taking $K=\max \left\{K_{1}, K_{2}\right\}$ and for all $k>K$, one arrives at $\| y_{k}(x)-$ $y(x) \|_{C_{\gamma, \ln }}<\varepsilon$. Consequently, $y(x)$ satisfies 1.2 which means that there at least exists a solution of 1.1).

Next, we give an existence and uniqueness theorem, using the assumption
(H3) there exists a $\mu(\cdot) \in L^{q}(\mathbb{J}), \frac{1}{q}=1-\frac{1}{p}, p>1$ such that $|f(x, y)-f(x, z)| \leq$ $\mu(x)|y-z|$ for $x \in \mathbb{J}$ and $y, z \in \mathbb{B}$,
Theorem 2.3. Let $0 \leq \gamma \leq \min \left\{\alpha-1+\frac{1}{p}, \frac{1}{2 p}\right\}, p>1$. Assume that (H1)-(H3) are satisfied for $\mathbb{J}=[a, a+h]$. Then (1.1) has a unique solution in $C_{\gamma, \ln }[a, a+h]$ for some $h>0$.

Proof. There exits $h^{*}>0$, such that for all $x \in\left[a, a+h^{*}\right]$,

$$
\begin{equation*}
\int_{a}^{x} \mu^{q}(\tau) d \tau \leq \int_{a}^{a+h^{*}} \mu^{q}(\tau) d \tau<g^{q} \tag{2.6}
\end{equation*}
$$

Let $\Psi_{h}=\left\{y \in C_{\gamma, \ln }[a, a+h]:\left\|y(x)-y_{0}(x)\right\|_{C_{\gamma, \ln }} \leq b, x \in[a, a+h]\right\}$, where h is the smaller one between h^{*} and h obtained in Theorem 2.2. Note Ψ_{h} endowed with $\|\cdot\|_{C_{r \text { ln }}}$ is a Banach space. Define

$$
\psi(y)=y_{0}(x)+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1} f(\tau, y(\tau)) \frac{d \tau}{\tau}, \quad \forall x \in[a, a+h]
$$

Firstly, assume that $a \leq x_{1}<x_{2} \leq a+h$, then according to the proof in Step 2 of Theorem 2.2 , we obtain that $\psi(y)$ is continuous with regard to x on $[a, a+h]$. Note that $(\ln x-\ln a)^{\gamma}$ is continuous function, so $\psi(y)(\ln x-\ln a)^{\gamma}$ is also continuous. Secondly, it following (2.4) that $\psi(y) \in \Psi_{h}$ with $y \in \Psi_{h}$. Thirdly, the condition $0 \leq \gamma \leq \min \left\{\alpha-1+\frac{1}{p}, \frac{1}{2 p}\right\}, p>1$ implies that $p(\alpha-1-\gamma)+1>0,0 \leq \gamma<\frac{1}{2 p}$. For any $y_{1}, y_{2} \in \Psi_{h}$, then using Hölder inequality, 2.6 and Lemma 2.1. we have

$$
\begin{aligned}
&(\ln x-\ln a)^{\gamma}\left|\psi\left(y_{2}\right)-\psi\left(y_{1}\right)\right| \\
& \leq \frac{(\ln x-\ln a)^{\gamma}}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1} \mu(\tau)\left|y_{1}(\tau)-y_{2}(\tau)\right| \frac{d \tau}{\tau} \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma}}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}\left(\ln \frac{\tau}{a}\right)^{-\gamma} \mu(\tau) \frac{d \tau}{\tau}\left\|y_{1}-y_{2}\right\|_{C_{r} \ln } \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} g a^{1-p}}{\Gamma(\alpha)}\left(\int_{0}^{\ln x-\ln a}\left(\ln \frac{x}{a}-t\right)^{p(\alpha-1)} t^{-p \gamma} d t\right)^{1 / p}\left\|y_{1}-y_{2}\right\|_{C_{\gamma \ln }} \\
& \leq \frac{(\ln (a+h)-\ln a)^{\gamma} g a^{1-p}}{\Gamma(\alpha)}\left(\left(\ln \frac{x}{a}\right)^{p(\alpha-1-\gamma)+1} B[1-p \gamma, p(\alpha-1)+1]\right)^{1 / p} \\
& \quad \times\left\|y_{1}-y_{2}\right\|_{C_{\gamma \ln }} \\
& \leq a^{1-p} \frac{h^{\gamma} g}{\Gamma(\alpha)}\left(h^{p(\alpha-1-\gamma)+1} B\left[\frac{1}{2}, p(\alpha-1)+1\right]\right)^{1 / p}\left\|y_{1}-y_{2}\right\|_{C_{\gamma \ln }} \\
&= a^{1-p}\left[\frac{h^{\alpha-1+\frac{1}{p}} g}{\Gamma(\alpha)}\left(B\left[\frac{1}{2}, p(\alpha-1)+1\right]\right)^{1 / p}\right]\left\|y_{1}-y_{2}\right\|_{C_{\gamma \ln }}
\end{aligned}
$$

where we use that

$$
\begin{aligned}
& \gamma<\frac{1}{2 p} \Rightarrow 1-p \gamma>\frac{1}{2} \Rightarrow t^{1-p r} \leq t^{\frac{1}{2}}(0 \leq t \leq 1) \\
& B[1-p \gamma, p(\alpha-1)+1]=\int_{0}^{1} t^{-p \gamma}(1-t)^{p(\alpha-1)} d t \\
& \leq \int_{0}^{1} t^{-\frac{1}{2}}(1-t)^{p(\alpha-1)} d t=B\left[\frac{1}{2}, p(\alpha-1)+1\right]
\end{aligned}
$$

Obviously, one can choose

$$
h \leq\left(\frac{\Gamma(\alpha)}{g\left(B\left[\frac{1}{2}, p(\alpha-1)+1\right]\right)^{1 / p}}\right)^{\frac{p}{p(\alpha-1)+1}}
$$

then

$$
\frac{h^{\alpha-1+\frac{1}{p}} g}{\Gamma(\alpha)}\left(B\left[\frac{1}{2}, p(\alpha-1)+1\right]\right)^{1 / p} \leq 1
$$

Therefore,

$$
\left\|\psi\left(y_{2}\right)-\psi\left(y_{1}\right)\right\|_{C_{\gamma \ln }} \leq a^{1-p}\left\|y_{1}-y_{2}\right\|_{C_{\gamma \ln }}
$$

Obviously, $a^{1-p}<1$ due to $a, p>1$, applying the Banach Contractive Mapping Principle, one concludes that there exists a unique $y^{*}(x) \in \Psi_{h}$, such that (1.2). The proof is compete.

Next, we give the existence of a global solution, using the assumption
(H2') there exist $\omega, \nu>0$ such that $|f(x, y)| \leq \omega+\nu|y|$ for $x \in(a,+\infty)$ and $y \in \mathbb{R}$.

Theorem 2.4. Assume that (H1), (H2'), (H3) hold for $\mathbb{J}=(a,+\infty)$. Further, choose $\gamma=1-\alpha \leq \min \left\{\alpha-1+\frac{1}{p}, \frac{1}{2 p}\right\}$, $p>1$. Then 1.1) has a unique solution in $C_{\gamma, \ln }[a,+\infty)$.

Proof. It follows (H2') that f is locally bounded in the domain \mathbb{D}. By Theorem 2.3 . 1.1) has a unique solution in $C_{\gamma, \ln }[a, a+h]$. Next, we present proof by contradiction. Assume that the solution $y(x)$ admits a maximal existence interval, denoted by $(a, T) \subset(a,+\infty)$. To achieve our aim, it is sufficient to verify that $\|y\|_{C_{\gamma, \text { ln }}}$ is bounded. In fact,

$$
\begin{aligned}
& (\ln x-\ln a)^{\gamma}|y(x)| \\
& \leq \frac{|c|}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}|f(\tau, y(\tau))| \frac{d \tau}{\tau} \\
& \leq \frac{|c|}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{a}\right)^{\gamma}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}(\omega+\nu|y(\tau)|) \frac{d \tau}{\tau} \\
& \leq \\
& \leq \frac{|c|}{\Gamma(\alpha)}+\frac{\omega(\ln T-\ln a)^{1-\alpha}(T-a)^{\alpha}}{\Gamma(a+1)} \\
& \quad+\frac{\nu}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}(\ln x-\ln a)^{\gamma}|y(\tau)| \frac{d \tau}{\tau} \\
& \leq \\
& \quad \frac{|c|}{\Gamma(\alpha)}+\frac{\omega(T-a)}{\Gamma(\alpha+1)}+\frac{\nu}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{\tau}\right)^{\alpha-1}(\ln x-\ln a)^{\gamma}|y(\tau)| \frac{d \tau}{\tau}
\end{aligned}
$$

By applying the generalized Gronwall inequality from [3, Corollary 3.4], one can conclude that there exists $l:=\mathbb{E}_{\alpha}\left(\nu(\ln T)^{\alpha}\right)>0\left(\mathbb{E}_{\alpha}\right.$ denotes Mittag-Leffler function) such that

$$
(\ln x-\ln a)^{\gamma}|y(x)| \leq l\left(\frac{|c|}{\Gamma(\alpha)}+\frac{\omega(T-a)}{\Gamma(\alpha+1)}\right):=\rho<+\infty .
$$

This implies that $\|y\|_{C_{\gamma, \text { ln }}}<b$ on $[a, T)$ when b is chosen as a larger number than

$$
\begin{equation*}
b=\rho+\frac{|c|}{\Gamma(\alpha)} . \tag{2.7}
\end{equation*}
$$

This contradicts the assumption that (a, T) is the maximal existence interval. The proof is complete.

To finish this article, we give an example that illustrates our theoretical results. Consider

$$
\begin{gather*}
{ }_{H} D_{e, x}^{3 / 4} y(x)=x^{2}+\frac{4|y|}{1+|y|} \sin x, \quad x \in \mathbb{J}=\left(e, e^{2}\right] \text { or }(e,+\infty), \tag{2.8}\\
H_{H} D_{e, x}^{-1 / 4} y\left(e^{+}\right)=1,
\end{gather*}
$$

where $\alpha=3 / 4, T=e^{2}, \gamma=1 / 4, a=e, c=1$, and $p=q=2$.
Define $f(x, y)=x^{2}+\frac{4|y|}{1+|y|} \sin x, \mu(x)=4$ and $\omega=e^{2}+4$ and $\nu=0$. Thus $|f(x, y)-f(x, z)| \leq \mu(x)|y-z|$ and $|f(x, y)| \leq \omega$. Then $l:=\mathbb{E}_{\alpha}(0)=1$ (see [6, Lemma 2]) and $b=\frac{2}{\Gamma(3 / 4)}+\frac{\left(e^{2}+4\right)\left(e^{2}-e\right)}{\Gamma(7 / 4)}$ (see 2.7).

Let $h^{\prime}=h^{*}=e$. Set $M^{2}=\int_{e}^{2 e}\left(e^{4}+4\right)^{2} d x=e\left(e^{4}+4\right)^{2}($ see 2.3) $)$ and $g^{2}=$ $\int_{e}^{2 e} 16 d x=16 e$ (see 2.6). Moreover, one can find $\gamma=1-\alpha=\min \left\{\alpha-1+\frac{1}{p}, \frac{1}{2 p}\right\}$.

- According to Theorem 2.3, 2.8) admits a unique solution $y \in C_{\frac{1}{4}, \ln }(e, e+h]$ where

$$
\begin{aligned}
h= & \min \left\{h^{\prime}, T,\left[\frac{b \Gamma(\alpha)(p(\alpha-1)+1)}{M a^{p-1}}\right]^{\frac{1}{p(\alpha-1)+1}},\right. \\
& \left.\left(\frac{\Gamma(\alpha)}{g\left(B\left[\frac{1}{2}, p(\alpha-1)+1\right]\right)^{1 / p}}\right)^{\frac{p}{p(\alpha-1)+1}}\right\} \\
= & \left\{e, e^{2},\left[\frac{\left(\frac{2}{\Gamma(3 / 4)}+\frac{\left(e^{2}+4\right)\left(e^{2}-e\right)}{\Gamma(7 / 4)}\right) \Gamma(3 / 4)}{2 \sqrt{e}\left(e^{4}+e\right) e}\right]^{2},\left[\frac{\Gamma(3 / 4)}{4 \sqrt{e} \sqrt{B\left[\frac{1}{2}, \frac{1}{2}\right]}}\right]^{4}\right\} .
\end{aligned}
$$

- According to Theorem 2.4, 2.8 has a unique solution $y \in C_{\frac{1}{4}, \ln }(e,+\infty)$.

Acknowledgments. This work is supported by the National Natural Science Foundation of China (11201091) and by the Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240).

References

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and applications of fractional differential equations, Mathematics Studies, vol. 204, North-Holland, Elsevier Science B. V., Amsterdam, 2006.
[2] W. Lin; Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332(2007), 709-726.
[3] J. Wang, Y. Zhou, M. Medveď; Existence and stability of fractional differential equations with Hadamard derivative, Topol. Meth. Nonlinear Anal., 41(2013), 113-133.
[4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev; Integrals and series, elementary functions, vol. 1, Nauka, Moscow, 1981 (in Russian).
[5] Q. Ma, J. Wang, R. Wang, X. Ke; Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Lett., 36(2014), 7-13.
[6] J. Wang, M. Fečkan, Y. Zhou; Presentation of solutions of impulsive fractional Langevin equations and existence results, Eur. Phys. J. Special Topics., 222(2013), 1855-1872.

Mengmeng Li
Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China
E-mail address: Lmm0424@126.com
Jinrong Wang (corresponding author)
Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China
E-mail address: sci.jrwang@gzu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 26A33, 34A12.
 Key words and phrases. Hadamard fractional differential equation; local solution; global solution.
 (C) 2015 Texas State University - San Marcos.

 Submitted February 2, 2015. Published June 17, 2015.

