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EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS FOR
HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS

MENGMENG LI, JINRONG WANG

ABSTRACT. In this article, we study a class of Hadamard fractional differential
equations and give sufficient conditions on the existence of local and global of
solutions.

1. INTRODUCTION

Let 0 < v < 1,1 <a < T and G be an open set in R. Denote a Banach
space by C,yula,T] := {u(z) : (In2)"u(x) € Cla,T]} endowed with the norm
lulle, . = (0 2)Yu(z)||c. In this article, we study the existence of local and
global solutions to the Hadamard type fractional differential equation

DG y(x) = f(z,y(x), 0<a<l zel,

1.1
WDyt = e, ce k. -y
where J = [a,a + h], h > 0 or [a + c0) and the symbol g Dg ,y(z) is defined by

WD) = s o) [ ey L

We use the notation g Dg,'y(at) = lim,_, .+ T, 'y(z) and
1 v oox dt
a—1 a—1
= — In — t)—.
T o) = gy [ Pty
Following [I, Theorem 3.28], the solution y € Ci_ m[a,a + h] of (1.1)) satisfies
1 v d
Ya) = w(@) + oy [ D) T se ot (12)
where yo(z) = (5 (In 2yt if f: (a,a+h] x G — R and f(z,y) € Cymla,a+ h]
for any y € G.
Inspired by the work in [T}, [2 3], we examine other explicit sufficient conditions

on the nonlinear term f to guarantee the local existence of solutions in C., 1n[a, a+h]
and global existence of solutions in Cy i,[a, +00).
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2. MAIN RESULTS
The following equality will be used in the sequel.
Lemma 2.1 ([, p.296]). Let o, 3,7,p > 0, then

) 0 ply—1) 41
/’@a_s%mﬁngﬂ4ws=f&ﬂﬂl——tinMﬁ—l%+ﬂ’ z >0,
0

(6% (0%
where § = pla(8 —1) +~ — 1]+ 1 and BJ¢, 1] = [, s¢ (1 — )7~ 'ds.

Let B = {y € R: |ly —yo()|lc,,. < b} where b will be chosen latter. Define
D={(z,y) € RxR:z € J,y € B}. We assume that f : D — R satisfies the
following conditions:

(H1) f(z,y) is Lebesgue measurable with regard to z on J and f(x,y) is contin-
uous with respect to y on B.
(H2) there exists m(-) € LY(J), ¢ > 1 such that |f(x,y)| < m(z), for arbitrary
zel],yeB.
Now we use Picard iterative approach to derive the existence of a local solutions to

D).
Theorem 2.2. Assume that (H1)—(H2) hold for J = [a,a + h] and p,q, o satisfy

pla—1)+1>0, % + % = 1. Then (L.1)) has a solution in C, m[a,a+ h] for some
h > 0.

Proof. To achieve our aim, we divide our proof into three steps.

Step 1. Linking our assumptions and using Hélder inequality via p(a —1)+1 >0
and % + % = 1, one can obtain

dt _ ,,,[al~Phple—1)+1

— — 7 ImC)llLefaatn, (21
R S L0 [P WAV CRY

/ "z — ),y ()]

where we use basic inequalities: Inu —Inv < u — v for w > v > 1 and [B, Lemma

2.9,

a'~P(lnz — Ina)Ple—D+1
pla—1)+1

This proves that (Inx — In7)f(7,y(7)) is Lebesgue integrable with respect to 7 €

[a, z] for arbitrary x on J, provided that y(7) is Lebesgue measurable on the interval

la,a + h].

Step 2. For a given M > 0, there exists a h’ > 0 satisfying

/ (Inz — In7)P@Vr=Pdr < (2.2)

a+h'
/ mi(r)dr < MY, (2.3)

b () (p(a—1)+1)

1
m]ﬂa—ﬂﬂ}. For § to be chosen latter,

whenever h = min{h/, T, [
define

0, ifa§x<a+6,0<5<%,

eyt ifat+d<z<a+l

z—L2 T\a— T
)+ w1 [ E)* T (rya (7)) £
fa+l<z<a+h

yn($> =
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We show that y,(z) is continuous on [a, a + %] for all n.

Case 1. Fora<a+§§:v1<a+%<x2§a+h,

|yn (22) — yn(z1)] < 1"|(Co|¢) |(1n %)0‘71 — (In %)0‘71|
el el
= Il +IQ

For each ¢ > 0, there exists 0 < §; < [%] such that for all x5 — 21 < 6

and for all n, we derive that

le| | = B o m w o
() X)X < (o) X O = €€ 20)
|C|(1 - a)(xz — xl)
= I(e)(a+d)(In(a + 6) — Ina)>~
le|(1 — ) (w2 — x1)
I'(a)a(ln(a + §) — Ina)2-«

I =

<e/2,

where x(z) = (Inz — Ina)*~ ! and x'(z) = (o — 1)(Inz — Ina)*~22.
For any € > 0, there exists 0 < d2 < [W]P(QJUH such that for all

zo— 8 —a <2y — 21 <6 and for all n, we use (2:2) and (2.3) to obtain

b [ ()

&
-

h
2T Xo dr
< In —= —
<) @

M at7P(In(zy — h) —1In Cb)p(a_l)+1 1/p

_F(a)[ pla—1)+1
< M [al—p(,@ —n Py, <e/2
~ () pla—1)+1 ’

where we use that Inu —Inv <u —v, u> v > 1 again in the last inequality.
From above, we can choose § =min{dy, d2, h/n} such that for all o —z1 < ¢ and
for all n, such that |y,(z2) — yn(z1)| < I + I < e.

Case 2. Fora+%§m1<m2§a+%. One has

[Yn(22) — yn(21)]

<t [ (@ e ) L
L ey 9T
el L A I

_h
1=y

=51 + S5 + S5.
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For each £ > 0, there exists 0 < 6 < [%} such that for all x5 —z1 < 5_1,

we have
6 < ld(—a)as—a)

< F(a)a(ln(a 4 %) — lna)Q*a < 6/3.

1
For each € > 0, there exists 0 < §y < {%} 7T Such that for

all 2o — 21 < 9, by using the similar estimation methods of Is we have

e [ (@2 02

< / (an%) 2 m(n)

h

_h

M n 1/p T1— 0y T 1/p
< pla=1) —p _ Zlypla=1) —p
< ( K/ ) dT) (/a (1nT) T dT) ]
< [ lnxg — lnxl pla— 1)“]1/10
“Ia)l e~ Ypla—1)+1)

M [ (g —zp)Ple= D+ 41/p
< 3.
~ I'(«a) [ap Hpla—1) —&—1)} <e/

For each € > 0, there exists 0 < &3 < [W]P@ DF1, such that for

all xo — 21 < 5_3, by using the similar estimation methods of Is we have

zp— 2 d

1=

1 T2 To dr
< 1 a—1
= o) /xl—h (n—T) m(T)—T

M a'7P(xy — )Pl DLy

_F(a)[ pla—1)+1 <e/3

From the above, we choose § = min{dy, ds, 3, h/n} such that xo — x; < §, then
[Yn(@2) — yn(z1)| < S1+ S2+ S5 < . Therefore, e choose § = min{§,d} will lead
to Y, () is continuous with regard to x on [a, a+ 22 } for all positive integers n. Note
that (Inz — Ina)? is continuous function, so y,(x )(lnx —1In a)V is also continuous.

Nevertheless, for all x € [a + d,a + %], one has |y, (x) — oy (In£)2=1| = 0, and

for all 2 € [a + 2, a + h], using Hélder inequality again,

()l (e) = 5 O )
1 E g v e Tramt dr
Swa ) WD) (24)

(ln(a h) 1na)7a1 p AL pP(e—1)+1
D(a)(pla—1) +1) <b

which implies that (z,y,(z)) € D for all n. Therefore, {y,(z)}>2, defined on
[a,a + h] is equicontinuous and uniformly bounded.
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Step 3. By using Arzelo-Ascoli lemma and Step 2, there must exist {y,, (z)}32, =
{yx(x)}72 | contained in {y,(x)}5%;, such that {yx(x)}32, is uniformly convergent
to y(x) which is continuous with regard to x on [a,a + h]. Now we only need to
prove that this limit function y(z) is a solution of (L.2).

For each ¢ > 0, there exists K7 > 0, such that for all £ > K7, and « € [a,a + h],

we have
Na+1)e

() — o) < gL @5)
Note that
(Inz —Ina)”|yx(z) — y(z)|
< oo [ 2y a0 D ) F ) T
I'a) a T T
L WD )T
=S4 + S5s. ’
Using one obtains,
Si= a7 [, 057 D)~ )|
< QU= [ D)) = Fry(r) i — )
(In(a + h) —Ina)7h® Ma+1)e
- al'(«) 2(In(a + h) — Ina) he <&/2
Also there exists
0 < Ky — h[ap’lspl"(a)p(p(a -1+ 1)] p(%})ﬂ,

22 MP(In(a + h) — lna)Py
such that for all £ > Kj,

1 / :““§>”<1“§>“*1|f<nyk<f>>

dr
Sy = |—
-

(o)
< Qe[ e vrrar)

() A
(In(a +h) —lna)"M (BLypla=1)+1 1/p
- I(«) (apfllgp(oz -1+ 1)) <e/2

Hence, taking K = max{K;, K>} and for all k& > K, one arrives at ||yx(z) —
y(z)|lc, . < e Consequently, y(z) satisfies (1.2)) which means that there at least
exists a solution of (1.1]). O

Next, we give an existence and uniqueness theorem, using the assumption

(H3) there exists a u(-) € LI(J), % =1- %, p > 1 such that |f(z,y) — f(z,2)| <

w(x)|ly — z| for x € J and y, z € B,

Theorem 2.3. Let 0 < v < min{a — 1+ %, ﬁ}, p > 1. Assume that (H1)—(H3)
are satisfied for J = [a,a + h]. Then (L.1) has a unique solution in Cyin(a,a + h]
for some h > 0.
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Proof. There exits h* > 0, such that for all x € [a,a + h*],

/: pi(r)dr < /aa+h pi(T)dr < g. (2.6)

Let ), = {y € Cymla,a+ h] : |y(z) — yo()l|c, . <b, = € [a,a+ h]}, where h

is the smaller one between h* and h obtained in Theorem Note ¥}, endowed
with || - ||, .. is a Banach space. Define

7 1ln

1 * Tiqo1 dr
Y(y) = yo(w) + @/a (In ;) f(T,y(T))7, YV € [a,a + h).

Firstly, assume that a < x1 < x5 < a+h, then according to the proof in Step 2 of
Theorem we obtain that (y) is continuous with regard to = on [a,a+ h]. Note
that (Inz — Ina)? is continuous function, so 1 (y)(Inaz — Ina)” is also continuous.
Secondly, it following that ¥(y) € ¥, with y € ¥y. Thirdly, the condition
Ogygmin{a—1+%,@},p>1impliesthatp(a—l—*y)—kl>0,0§’y< %.
For any y1,ys € ¥y, then using Holder inequality, and Lemma we have

(Inz —Ina)?|Y(y2) — ¥ (y1)l

< W /:ﬂn %)“-mmwlm - y2(7)‘d7T

(n(a+h) —Ina)? (* .\ 1, T — dr
< B2t [ e D) Ll el
(ln(a + h) —In a)'ygalfp Inz—Ina . o 1/p
< L ppla=1)—py _
< o) ( 0 (2 — 7@ Demdt) s~ gallc,
(In(a + h) —Ina)Yga' =P T a1 1p
= T(a) ((ln S B[l —py,pla—1)+ 1])
X ly1 — y2||cwln
o B i 1
Sal pr(j) (hp(a 1 ’Y)+1B[§,p(a_1)_,’_1])1/p||y1 _yQHC'wln
R e 1 1/p
e p[W(B[i,p(a—l)—i-l]) [l = sellc

where we use that

1 1 )
o= lopy> o=t <tz (0<t<1
T A e <tr(0<t<1),
1
B[l —py,pla—1)+1] = / tPY(1 — t)p(oeﬂ)dt
0

1
; 1
< / t2 (1=t Nt = B[5,pla—1) +1].
0

Obviously, one can choose

)

() )ﬁ

"= (g(B[%m(a —1)+1)ie

then
1

rq 1 1/P
W(B[?p(a 1)+ 1}) <1.

ha71+
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Therefore,

[9(y2) = ¥yl < a' Pllyr = gelle, -
Obviously, a'~ < 1 due to a,p > 1, applying the Banach Contractive Mapping
Principle, one concludes that there exists a unique y*(z) € ¥y, such that (1.2).
The proof is compete. O

Next, we give the existence of a global solution, using the assumption

(H2’) there exist w,v > 0 such that |f(z,y)] < w4+ v]y| for z € (a,+00) and
y € R.

Theorem 2.4. Assume that (Hl) (H2’), (H3) hold for J] = (a,+00). Further,
choose y =1 —a < min{a — 1+ 1 > 2p} p > 1. Then ) has a unique solution
in Cy mla,+00).

Proof. 1t follows (H2’) that f is locally bounded in the domain D. By Theorem
has a unique solution in C i[a, a+h]. Next, we present proof by contradiction.
Assume that the solution y(z) admits a maximal existence interval, denoted by
(a,T) C (a,400). To achieve our aim, it is sufficient to verify that ||y||c. .. is
bounded. In fact,

~,In

(lnx —Ina)"|y(z

)|
< fe e L ) ”ja Yy T
|C| L M mEyrm e ) e
< H i [ D e )
|c| w(lnT —Ina)'=(T — a)®
= T(a) T(a+1)
+ F(Va)/u(lni)o‘_l(lnx—lna)”y(7)|a:-

|c] w(T —a) v /  Xa dr
< In=)*""(Inz — Ina)” —.
_F(a)+I‘(a+1) +]."(a) ; (DT) (e —lna)ly(r)| T
By applying the generalized Gronwall inequality from [3, Corollary 3.4], one
can conclude that there exists [ := E,(v(InT)%) > 0 (E, denotes Mittag-Leffler

function) such that

(Inz —Ina)|y(z)] <I(

This implies that |ly|lc

el |, w(T~a)
I'a) T(a+1)

< bon [a,T) when b is chosen as a larger number than

):=p < +oo.

~,In
]
b= —-—. 2.7
P F Ty (2.7)
This contradicts the assumption that (a,T) is the maximal existence interval. The
proof is complete. O

To finish this article, we give an example that illustrates our theoretical results.
Consider

4yl .

3/4 2 2

gD y(x) =z + sinz, z€J=(ee’] or (e +00),

o (@) 1+ 1yl ( ] ( ) (2.8)

HDe_,al:/4y(e+) =1,
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where a =3/4, T =e?,y=1/4,a=¢e,c=1,and p=q = 2.

Define f(z,y) = 2% + lﬂz\lz‘jl sina, u(z) = 4 and w = e? + 4 and v = 0. Thus
|f(z,y) — fz,2)] < pla)ly — §| and; |f(z,y)| < w. Then l := E,(0) = 1 (see [0}
Lemma 2]) and b = 1“(32/4) 4 L JIC?%(/Z)%) (see ([2.7)).

Let i/ = h* =e. Set M? = f%(e4 +4)%dz = e(e* + 4)? (see (2.3)) and ¢ =

e
f:e 16dz = 16e (see (2.6))). Moreover, one can find y = 1 — o = min{a— 1+ %, ﬁ .
e According to Theorem (2.8) admits a unique solution y € C1 j,(e, e + h]

where

)

bl (o) (pla— 1) + 1)} CEsyEss

h = min {h’,T7 [ Va1

') Ceayent
ooz}

(rc + ST G/M) 2 ¢ D@y 4
{ere, [T 2\/é(ei7£r>e)e ] ’[4\/5 B[%,%]} 3

e According to Theorem (2.8) has a unique solution y € C1 1, (e, +00).
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