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EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS FOR
HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS

MENGMENG LI, JINRONG WANG

Abstract. In this article, we study a class of Hadamard fractional differential
equations and give sufficient conditions on the existence of local and global of

solutions.

1. Introduction

Let 0 ≤ γ < 1, 1 < a < T and G be an open set in R. Denote a Banach
space by Cγ,ln[a, T ] := {µ(x) : (ln x

a )γµ(x) ∈ C[a, T ]} endowed with the norm
‖µ‖Cγ,ln = ‖(ln x

a )γµ(x)‖C . In this article, we study the existence of local and
global solutions to the Hadamard type fractional differential equation

HD
α
a,xy(x) = f(x, y(x)), 0 < α < 1, x ∈ J,

HD
α−1
a,x y(a+) = c, c ∈ R,

(1.1)

where J = [a, a+ h], h > 0 or [a+∞) and the symbol HDα
a,xy(x) is defined by

HD
α
a,xy(x) =

1
Γ(1− α)

(
x
d

dx

) ∫ x

a

(ln
x

τ
)−αy(τ)

dτ

τ
.

We use the notation HD
α−1
a,x y(a+) = limx→a+ J α−1

a,x y(x) and

J α−1
a,x y(x) =

1
Γ(α)

∫ x

1

(ln
x

t
)α−1y(t))

dt

t
.

Following [1, Theorem 3.28], the solution y ∈ C1−γ,ln[a, a+ h] of (1.1) satisfies

y(x) = y0(x) +
1

Γ(α)

∫ x

a

(ln
x

τ
)α−1f(τ, y(τ))

dτ

τ
, x ∈ (a, a+ h] (1.2)

where y0(x) = c
Γ(α) (ln x

a )α−1, if f : (a, a+ h]×G→ R and f(x, y) ∈ Cγ,ln[a, a+ h]
for any y ∈ G.

Inspired by the work in [1, 2, 3], we examine other explicit sufficient conditions
on the nonlinear term f to guarantee the local existence of solutions in Cγ,ln[a, a+h]
and global existence of solutions in Cγ,ln[a,+∞).
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2. Main results

The following equality will be used in the sequel.

Lemma 2.1 ([4, p.296]). Let α, β, γ, p > 0, then∫ x

0

(xα − sα)p(β−1)sp(γ−1)ds =
xθ

α
B
[p(γ − 1) + 1

α
, p(β − 1) + 1

]
, x > 0,

where θ = p[α(β − 1) + γ − 1] + 1 and B[ξ, η] =
∫ 1

0
sξ−1(1− s)η−1ds.

Let B = {y ∈ R : ‖y − y0(x)‖Cγ,ln ≤ b} where b will be chosen latter. Define
D = {(x, y) ∈ R × R : x ∈ J, y ∈ B}. We assume that f : D → R satisfies the
following conditions:

(H1) f(x, y) is Lebesgue measurable with regard to x on J and f(x, y) is contin-
uous with respect to y on B.

(H2) there exists m(·) ∈ Lq(J), q > 1 such that |f(x, y)| ≤ m(x), for arbitrary
x ∈ J, y ∈ B.

Now we use Picard iterative approach to derive the existence of a local solutions to
(1.1).

Theorem 2.2. Assume that (H1)–(H2) hold for J = [a, a + h] and p, q, α satisfy
p(α − 1) + 1 > 0, 1

p + 1
q = 1. Then (1.1) has a solution in Cγ,ln[a, a+ h] for some

h > 0.

Proof. To achieve our aim, we divide our proof into three steps.
Step 1. Linking our assumptions and using Hölder inequality via p(α− 1) + 1 > 0
and 1

p + 1
q = 1, one can obtain∫ x

a

|(lnx− ln τ)α−1f(τ, y(τ))|dt
τ
≤ 1/p

√
a1−php(α−1)+1

p(α− 1) + 1
‖m(·)‖Lq [a,a+h], (2.1)

where we use basic inequalities: lnu − ln v ≤ u − v for u ≥ v > 1 and [5, Lemma
2.2], ∫ x

a

(lnx− ln τ)p(α−1)τ−pdτ ≤ a1−p(lnx− ln a)p(α−1)+1

p(α− 1) + 1
. (2.2)

This proves that (lnx − ln τ)f(τ, y(τ)) is Lebesgue integrable with respect to τ ∈
[a, x] for arbitrary x on J, provided that y(τ) is Lebesgue measurable on the interval
[a, a+ h].
Step 2. For a given M > 0, there exists a h′ > 0 satisfying∫ a+h′

a

mq(τ)dτ ≤Mq, (2.3)

whenever h = min{h′, T, [ bΓ(α)(p(α−1)+1)
Map−1(lnT−ln a)γ ]

1
p(α−1)+1 }. For δ to be chosen latter,

define

yn(x) =



0, if a ≤ x < a+ δ, 0 < δ < h
n ,

c
Γ(α) (ln x

a )α−1, if a+ δ ≤ x < a+ h
n ,

c
Γ(α) (ln x

a )α−1 + 1
Γ(α)

∫ x− hn
a

(ln x
τ )α−1f(τ, yn(τ))dττ ,

if a+ h
n ≤ x ≤ a+ h.
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We show that yn(x) is continuous on [a, a+ 2h
n ] for all n.

Case 1. For a < a+ δ ≤ x1 < a+ h
n < x2 ≤ a+ h,

|yn(x2)− yn(x1)| ≤ |c|
Γ(α)

∣∣(ln x2

a
)α−1 − (ln

x1

a
)α−1

∣∣
+

1
Γ(α)

∫ x2− hn

a

(ln
x2

τ
)α−1|f(τ, yn(τ))|dτ

τ

:= I1 + I2.

For each ε > 0, there exists 0 < δ1 < [aεΓ(α)δ2−α

2|c|(1−α) ] such that for all x2 − x1 ≤ δ1
and for all n, we derive that

I1 =
|c|

Γ(α)
|χ(

x2

a
)− χ(

x1

a
)| ≤ |c|

Γ(α)
|χ′(ξ)||x2

a
− x1

a
|, ξ ∈ (

x1

a
,
x2

a
)

≤ |c|(1− α)(x2 − x1)
Γ(α)(a+ δ)(ln(a+ δ)− ln a)2−α

<
|c|(1− α)(x2 − x1)

Γ(α)a(ln(a+ δ)− ln a)2−α < ε/2,

where χ(x) = (lnx− ln a)α−1 and χ′(x) = (α− 1)(lnx− ln a)α−2 a
x .

For any ε > 0, there exists 0 < δ2 < [ ε
pΓp(α)(p(α−1)+1)

2pa1−pMp ]
1

p(α−1)+1 such that for all
x2 − h

n − a ≤ x2 − x1 ≤ δ2 and for all n, we use (2.2) and (2.3) to obtain

I2 =
1

Γ(α)

∫ x2− hn

a

(ln
x2

τ
)α−1|f(τ, yn(τ))|dτ

τ

≤ 1
Γ(α)

∫ x2− hn

a

(ln
x2

τ
)α−1m(τ)

dτ

τ

≤ M

Γ(α)
[a1−p(ln(x2 − h

n )− ln a)p(α−1)+1

p(α− 1) + 1
]1/p

≤ M

Γ(α)
[a1−p(x2 − h

n − a)p(α−1)+1

p(α− 1) + 1
]1/p

< ε/2,

where we use that lnu− ln v ≤ u− v, u > v > 1 again in the last inequality.
From above, we can choose δ̄ =min{δ1, δ2, h/n} such that for all x2−x1 ≤ δ̄ and

for all n, such that |yn(x2)− yn(x1)| ≤ I1 + I2 < ε.

Case 2. For a+ h
n ≤ x1 < x2 ≤ a+ 2h

n . One has

|yn(x2)− yn(x1)|

≤ S1 +
1

Γ(α)

∫ x1− hn

a

(
(ln

x2

τ
)α−1 − (ln

x1

τ
)α−1

)
|f(τ, yn(τ))|dτ

τ

+
1

Γ(α)

∫ x2− hn

x1− hn
(ln

x2

τ
)α−1|f(τ, yn(τ))|dτ

τ

:= S1 + S2 + S3.
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For each ε > 0, there exists 0 < δ̄1 <
[
aεΓ(α)( hn )2−α

3|c|(1−α)

]
such that for all x2 − x1 ≤ δ̄1,

we have

S1 ≤
|c|(1− α)(x2 − x1)

Γ(α)a(ln(a+ h
n )− ln a)2−α

< ε/3.

For each ε > 0, there exists 0 < δ̄2 <
[
εpΓ(α)p(p(α−1)+1)

3pMpa1−p

] 1
p(α−1)+1

such that for

all x2 − x1 ≤ δ̄2, by using the similar estimation methods of I2 we have

S2 =
1

Γ(α)

∫ x1− hn

a

(
(ln

x2

τ
)α−1 − (ln

x1

τ
)α−1

)
|f(τ, yn(τ))|dτ

τ

≤ 1
Γ(α)

∫ x1− hn

a

(
(ln

x2

τ
)α−1 − (ln

x1

τ
)α−1

)
m(τ)

dτ

τ

≤ M

Γ(α)

[( ∫ x1− hn

a

(ln
x2

τ
)p(α−1)τ−pdτ

)1/p

−
(∫ x1− hn

a

(ln
x1

τ
)p(α−1)τ−pdτ

)1/p]
≤ M

Γ(α)

[ (lnx2 − lnx1)p(α−1)+1

ap−1(p(α− 1) + 1)

]1/p
≤ M

Γ(α)

[ (x2 − x1)p(α−1)+1

ap−1(p(α− 1) + 1)

]1/p
< ε/3.

For each ε > 0, there exists 0 < δ̄3 < [ ε
pΓ(α)p(p(α−1)+1)

3pMpa1−p ]
1

p(α−1)+1 , such that for
all x2 − x1 ≤ δ̄3, by using the similar estimation methods of I2 we have

S3 =
1

Γ(α)

∫ x2− hn

x1− hn
(ln

x2

τ
)α−1|f(τ, yn(τ))|dτ

τ

≤ 1
Γ(α)

∫ x2− hn

x1− hn
(ln

x2

τ
)α−1m(τ)

dτ

τ

≤ M

Γ(α)
[a1−p(x2 − x1)p(α−1)+1

p(α− 1) + 1
]1/p

< ε/3.

From the above, we choose ¯̄δ = min{δ̄1, δ̄2, δ̄3, h/n} such that x2 − x1 ≤ ¯̄δ, then
|yn(x2)− yn(x1)| ≤ S1 + S2 + S3 < ε. Therefore, we choose δ = min{δ̄, ¯̄δ} will lead
to yn(x) is continuous with regard to x on [a, a+ 2h

n ] for all positive integers n. Note
that (lnx− ln a)γ is continuous function, so yn(x)(lnx− ln a)γ is also continuous.

Nevertheless, for all x ∈ [a+ δ, a+ h
n ], one has |yn(x)− c

Γ(α) (ln x
a )α−1| = 0, and

for all x ∈ [a+ h
n , a+ h], using Hölder inequality again,

(ln
x

a
)γ |yn(x)− c

Γ(α)
(ln

x

a
)α−1|

≤ 1
Γ(α)

∫ x− hn

a

(ln
x

a
)γ(ln

x

τ
)α−1|f(τ, yn(τ))|dτ

τ

≤ (ln(a+ h)− ln a)γa1−pMhp(α−1)+1

Γ(α)(p(α− 1) + 1)
≤ b,

(2.4)

which implies that (x, yn(x)) ∈ D for all n. Therefore, {yn(x)}∞n=1 defined on
[a, a+ h] is equicontinuous and uniformly bounded.
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Step 3. By using Arzelò-Ascoli lemma and Step 2, there must exist {ynk(x)}∞k=1 :=
{yk(x)}∞k=1 contained in {yn(x)}∞n=1, such that {yk(x)}∞k=1 is uniformly convergent
to y(x) which is continuous with regard to x on [a, a + h]. Now we only need to
prove that this limit function y(x) is a solution of (1.2).

For each ε > 0, there exists K1 > 0, such that for all k > K1, and x ∈ [a, a+ h],
we have

|f(x, yk(x))− f(x, y(x))| < Γ(α+ 1)ε
2(ln(a+ h)− ln a)γhα

. (2.5)

Note that

(lnx− ln a)γ |yk(x)− y(x)|

≤ 1
Γ(α)

∫ x

a

(ln
x

a
)γ(ln

x

τ
)α−1|f(τ, yk(τ))− f(τ, y(τ))|dτ

τ

+
1

Γ(α)

∫ x

x−hk
(ln

x

a
)γ(ln

x

τ
)α−1|f(τ, yk(τ))|dτ

τ

:= S4 + S5.

Using (2.5) one obtains,

S4 =
1

Γ(α)

∫ x

a

(ln
x

a
)γ(ln

x

τ
)α−1|f(τ, yk(τ))− f(τ, y(τ))|dτ

τ

≤ (ln(a+ h)− ln a)γ

Γ(α)

∫ a

x

(ln
x

τ
)α−1|f(τ, yk(τ))− f(τ, y(τ))|d(lnx− ln τ)

≤ (ln(a+ h)− ln a)γhα

aΓ(α)
Γ(α+ 1)ε

2(ln(a+ h)− ln a)γhα
< ε/2.

Also there exists

0 < K2 = h
[ap−1εpΓ(α)p(p(α− 1) + 1)

2pMp(ln(a+ h)− ln a)pγ
] −1
p(α−1)+1 ,

such that for all k > K2,

S5 =
1

Γ(α)

∫ x

x−hk
(ln

x

a
)γ(ln

x

τ
)α−1|f(τ, yk(τ))|dτ

τ

≤ (ln(a+ h)− ln a)γM
Γ(α)

(∫ x

x−hk
(ln

x

τ
)p(α−1)τ−pdt

)1/p

≤ (ln(a+ h)− ln a)γM
Γ(α)

( (hk )p(α−1)+1

ap−1(p(α− 1) + 1)

)1/p

< ε/2.

Hence, taking K = max{K1,K2} and for all k > K, one arrives at ‖yk(x) −
y(x)‖Cγ,ln < ε. Consequently, y(x) satisfies (1.2) which means that there at least
exists a solution of (1.1). �

Next, we give an existence and uniqueness theorem, using the assumption
(H3) there exists a µ(·) ∈ Lq(J), 1

q = 1− 1
p , p > 1 such that |f(x, y)− f(x, z)| ≤

µ(x)|y − z| for x ∈ J and y, z ∈ B,

Theorem 2.3. Let 0 ≤ γ ≤ min{α − 1 + 1
p ,

1
2p}, p > 1. Assume that (H1)–(H3)

are satisfied for J = [a, a + h]. Then (1.1) has a unique solution in Cγ,ln[a, a + h]
for some h > 0.
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Proof. There exits h∗ > 0, such that for all x ∈ [a, a+ h∗],∫ x

a

µq(τ)dτ ≤
∫ a+h∗

a

µq(τ)dτ < gq. (2.6)

Let Ψh = {y ∈ Cγ,ln[a, a+ h] : ‖y(x)− y0(x)‖Cγ,ln ≤ b, x ∈ [a, a+ h]}, where h
is the smaller one between h∗ and h obtained in Theorem 2.2. Note Ψh endowed
with ‖ · ‖Cr ln is a Banach space. Define

ψ(y) = y0(x) +
1

Γ(α)

∫ x

a

(ln
x

τ
)α−1f(τ, y(τ))

dτ

τ
, ∀x ∈ [a, a+ h].

Firstly, assume that a ≤ x1 < x2 ≤ a+h, then according to the proof in Step 2 of
Theorem 2.2, we obtain that ψ(y) is continuous with regard to x on [a, a+h]. Note
that (lnx − ln a)γ is continuous function, so ψ(y)(lnx − ln a)γ is also continuous.
Secondly, it following (2.4) that ψ(y) ∈ Ψh with y ∈ Ψh. Thirdly, the condition
0 ≤ γ ≤ min{α− 1 + 1

p ,
1
2p}, p > 1 implies that p(α− 1− γ) + 1 > 0, 0 ≤ γ < 1

2p .
For any y1, y2 ∈ Ψh, then using Hölder inequality, (2.6) and Lemma 2.1, we have

(lnx− ln a)γ |ψ(y2)− ψ(y1)|

≤ (lnx− ln a)γ

Γ(α)

∫ x

a

(ln
x

τ
)α−1µ(τ)|y1(τ)− y2(τ)|dτ

τ

≤ (ln(a+ h)− ln a)γ

Γ(α)

∫ x

a

(ln
x

τ
)α−1(ln

τ

a
)−γµ(τ)

dτ

τ
‖y1 − y2‖Cr ln

≤ (ln(a+ h)− ln a)γga1−p

Γ(α)

(∫ ln x−ln a

0

(ln
x

a
− t)p(α−1)t−pγdt

)1/p

‖y1 − y2‖Cγ ln

≤ (ln(a+ h)− ln a)γga1−p

Γ(α)

(
(ln

x

a
)p(α−1−γ)+1B[1− pγ, p(α− 1) + 1]

)1/p

× ‖y1 − y2‖Cγ ln

≤ a1−p h
γg

Γ(α)
(hp(α−1−γ)+1B[

1
2
, p(α− 1) + 1])1/p‖y1 − y2‖Cγ ln

= a1−p
[hα−1+ 1

p g

Γ(α)

(
B[

1
2
, p(α− 1) + 1]

)1/p]
‖y1 − y2‖Cγ ln ,

where we use that

γ <
1
2p
⇒ 1− pγ > 1

2
⇒ t1−pr ≤ t 1

2 (0 ≤ t ≤ 1),

B[1− pγ, p(α− 1) + 1] =
∫ 1

0

t−pγ(1− t)p(α−1)dt

≤
∫ 1

0

t−
1
2 (1− t)p(α−1)dt = B[

1
2
, p(α− 1) + 1].

Obviously, one can choose

h ≤
( Γ(α)
g(B[ 1

2 , p(α− 1) + 1])1/p

) p
p(α−1)+1

,

then
hα−1+ 1

p g

Γ(α)

(
B[

1
2
, p(α− 1) + 1]

)1/p

≤ 1.
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Therefore,
‖ψ(y2)− ψ(y1)‖Cγ ln ≤ a1−p‖y1 − y2‖Cγ ln .

Obviously, a1−p < 1 due to a, p > 1, applying the Banach Contractive Mapping
Principle, one concludes that there exists a unique y∗(x) ∈ Ψh, such that (1.2).
The proof is compete. �

Next, we give the existence of a global solution, using the assumption
(H2’) there exist ω, ν > 0 such that |f(x, y)| ≤ ω + ν|y| for x ∈ (a,+∞) and

y ∈ R.

Theorem 2.4. Assume that (H1), (H2’), (H3) hold for J = (a,+∞). Further,
choose γ = 1 − α ≤ min{α − 1 + 1

p ,
1
2p}, p > 1. Then (1.1) has a unique solution

in Cγ,ln[a,+∞).

Proof. It follows (H2’) that f is locally bounded in the domain D. By Theorem 2.3,
(1.1) has a unique solution in Cγ,ln[a, a+h]. Next, we present proof by contradiction.
Assume that the solution y(x) admits a maximal existence interval, denoted by
(a, T ) ⊂ (a,+∞). To achieve our aim, it is sufficient to verify that ‖y‖Cγ,ln is
bounded. In fact,

(lnx− ln a)γ |y(x)|

≤ |c|
Γ(α)

+
1

Γ(α)

∫ x

a

(ln
x

a
)γ(ln

x

τ
)α−1|f(τ, y(τ))|dτ

τ

≤ |c|
Γ(α)

+
1

Γ(α)

∫ x

a

(ln
x

a
)γ(ln

x

τ
)α−1(ω + ν|y(τ)|)dτ

τ

≤ |c|
Γ(α)

+
ω(lnT − ln a)1−α(T − a)α

Γ(a+ 1)

+
ν

Γ(α)

∫ x

a

(ln
x

τ
)α−1(lnx− ln a)γ |y(τ)|dτ

τ

≤ |c|
Γ(α)

+
ω(T − a)
Γ(α+ 1)

+
ν

Γ(α)

∫ x

a

(ln
x

τ
)α−1(lnx− ln a)γ |y(τ)|dτ

τ
.

By applying the generalized Gronwall inequality from [3, Corollary 3.4], one
can conclude that there exists l := Eα(ν(lnT )α) > 0 (Eα denotes Mittag-Leffler
function) such that

(lnx− ln a)γ |y(x)| ≤ l( |c|
Γ(α)

+
ω(T − a)
Γ(α+ 1)

) := ρ < +∞.

This implies that ‖y‖Cγ,ln < b on [a, T ) when b is chosen as a larger number than

b = ρ+
|c|

Γ(α)
. (2.7)

This contradicts the assumption that (a, T ) is the maximal existence interval. The
proof is complete. �

To finish this article, we give an example that illustrates our theoretical results.
Consider

HD
3/4
e,x y(x) = x2 +

4|y|
1 + |y|

sinx, x ∈ J = (e, e2] or (e,+∞),

HD
−1/4
e,x y(e+) = 1,

(2.8)



8 M. LI, J. WANG EJDE-2015/166

where α = 3/4, T = e2, γ = 1/4, a = e, c = 1, and p = q = 2.
Define f(x, y) = x2 + 4|y|

1+|y| sinx, µ(x) = 4 and ω = e2 + 4 and ν = 0. Thus
|f(x, y) − f(x, z)| ≤ µ(x)|y − z| and |f(x, y)| ≤ ω. Then l := Eα(0) = 1 (see [6,
Lemma 2]) and b = 2

Γ(3/4) + (e2+4)(e2−e)
Γ(7/4) (see (2.7)).

Let h′ = h∗ = e. Set M2 =
∫ 2e

e
(e4 + 4)2dx = e(e4 + 4)2 (see (2.3)) and g2 =∫ 2e

e
16dx = 16e (see (2.6)). Moreover, one can find γ = 1−α = min{α−1 + 1

p ,
1
2p}.

• According to Theorem 2.3, (2.8) admits a unique solution y ∈ C 1
4 ,ln

(e, e + h]
where

h = min
{
h′, T,

[bΓ(α)(p(α− 1) + 1)
Map−1

] 1
p(α−1)+1

,( Γ(α)
g(B[ 1

2 , p(α− 1) + 1])1/p

) p
p(α−1)+1

}

=
{
e, e2,

[ ( 2
Γ(3/4) + (e2+4)(e2−e)

Γ(7/4) )Γ(3/4)

2
√
e(e4 + e)e

]2
,
[ Γ(3/4)

4
√
e
√
B[ 1

2 ,
1
2 ]

]4}
.

• According to Theorem 2.4, (2.8) has a unique solution y ∈ C 1
4 ,ln

(e,+∞).
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