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LOCAL AND GLOBAL LOW-REGULARITY SOLUTIONS TO
GENERALIZED LERAY-ALPHA EQUATIONS

NATHAN PENNINGTON

Abstract. It has recently become common to study approximating equations

for the Navier-Stokes equation. One of these is the Leray-α equation, which

regularizes the Navier-Stokes equation by replacing (in most locations) the
solution u with (1−α2∆)u. Another is the generalized Navier-Stokes equation,

which replaces the Laplacian with a Fourier multiplier with symbol of the form

−|ξ|γ (γ = 2 is the standard Navier-Stokes equation), and recently in [16] Tao
also considered multipliers of the form −|ξ|γ/g(|ξ|), where g is (essentially) a

logarithm. The generalized Leray-α equation combines these two modifications

by incorporating the regularizing term and replacing the Laplacians with more
general Fourier multipliers, including allowing for g terms similar to those used

in [16]. Our goal in this paper is to obtain existence and uniqueness results with

low regularity and/or non-L2 initial data. We will also use energy estimates
to extend some of these local existence results to global existence results.

1. Introduction

The incompressible form of the Navier-Stokes equation is given by
∂tu+ (u · ∇)u = ν∆u−∇p,
u(0, x) = u0(x), div(u) = 0

(1.1)

where u : I × Rn → Rn for some time strip I = [0, T ), ν > 0 is a constant due
to the viscosity of the fluid, p : I × Rn → Rn denotes the fluid pressure, and
u0 : Rn → Rn. The requisite differential operators are defined by ∆ =

∑n
i=1

∂2

∂2
xi

and ∇ = ( ∂
∂xi

, . . . , ∂
∂xn

).
In dimension n = 2, local and global existence of solutions to the Navier-Stokes

equation are well known (see [11]; for a more modern reference, see [17, Chapter
17]). For dimension n ≥ 3, the problem is significantly more complicated. There
is a robust collection of local existence results, including [7], in which Kato proves
the existence of local solutions to the Navier-Stokes equation with initial data in
Ln(Rn); [9], where Kato and Ponce solve the equation with initial data in the
Sobolev space Hn/p−1,p(Rn); and [10], where Koch and Tataru establish local exis-
tence with initial data in the space BMO−1(Rn) (for a more complete accounting
of local existence theory for the Navier-Stokes equation, see [12]). In all of these
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local results, if the initial datum is assumed to be sufficiently small, then the local
solution can be extended to a global solution. However, the issue of global existence
of solutions to the Navier-Stokes equation in dimension n ≥ 3 for arbitrary initial
data is one of the most challenging open problems remaining in analysis.

Because of the intractability of the Navier-Stokes equation, many approximating
equations have been studied. One of these is the Leray-α model, which is

∂t(1− α2∆)u+∇u(1− α2∆)u− ν∆(1− α2∆)u = −∇p,
u(0, x) = u0(x), div u0 = div u = 0,

where we recall that ∇uv = (u · ∇)v. Note that setting α = 0 returns the stan-
dard Navier-Stokes equation. Like the Lagrangian Averaged Navier-Stokes (LANS)
equation (which differs from the Leray-α in the presence of an additional nonlin-
ear term), the system (1.2) compares favorably with numerical data; see [5], in
which the authors compared the Reynolds numbers for the Leray-α equation and
the LANS equation with the Navier-Stokes equation.

Another commonly studied equation is the generalized Navier-Stokes equation,
given by

∂tu+ (u · ∇)u = νLu−∇p,
u(0, x) = u0(x), div(u) = 0

where L is a Fourier multiplier with symbol m(ξ) = −|ξ|γ for γ > 0. Choosing
γ = 2 returns the standard Navier-Stokes equation. In [20], Wu proved (among
other results) the existence of unique local solutions for this equation provided the
data is in the Besov space Bsp,q(Rn) with s = 1 + n/p − γ and 1 < γ ≤ 2. If the
norm of the initial data is sufficiently small, these local solutions can be extended
to global solutions.

It is well known that if γ ≥ n+2
2 , then this equation has a unique global solution.

In [16], Tao strengthened this result, proving global existence with the symbol
m(ξ) = −|ξ|γ/g(|ξ|), with γ ≥ n+2

2 and g a non-decreasing, positive function that
satisfies ∫ ∞

1

ds

sg(s)2
= +∞.

Note that g(|x|) = log1/2(2 + |x|2) satisfies the condition. Similar types of results
involving g terms that are, essentially, logarithms have been proven for the nonlinear
wave equation; see [16] for a more detailed description.

Here we consider a combination of these two models, called the generalized Leray-
α equation, which is

∂t(1− α2L2)u+∇u(1− α2L2)u− νL1(1− α2L2)u = −∇p,
u(0, x) = u0(x), div u0 = div u = 0,

(1.2)

with the operators Li defined by

Liu(x) =
∫
− |ξ|

γi

gi(ξ)
û(ξ)eix·ξdξ,

where gi are radially symmetric, nondecreasing, and bounded below by 1. Note
that if g2 = 1 and γ2 = 0, then L2u(x) = −u(x), so choosing g1 = g2 = 1, γ1 = 2,
and γ2 = 0 returns the Navier-Stokes equation (after absorbing (1 +α2)−1 into the
pressure function p). Choosing g1 = g2 = 1 and γ1 = γ2 = 2 gives the Leray-α
equation, and choosing g2 = γ2 = 1 returns the generalized Navier-Stokes equation.
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In [1], the authors proved the existence of a smooth global solution to the gen-
eralized Leary-α equation with smooth initial data provided γ1 + γ2 ≥ n/2 + 1,
g2 = 1, and g1 is in a category similar to, though inclusive of, the type of g required
in Tao’s argument in [16].

In [22], Yamazaki obtains a unique global solution to equation (1.2) in dimension
three provided (1 − α2L2)u0 is in the Sobolev space Hm,2(R3), where u0 is the
initial data, m > max{5/2, 1 + 2γ1}, and provided γ1 and γ2 satisfy the inequality
2γ1 + γ2 ≥ 5 and that g1 and g2 satisfy∫ ∞

1

ds

sg2
1(s)g2(s)

=∞. (1.3)

The goal of this article is to obtain a much wider array of existence results,
specifically existence results for initial data with low regularity and for initial data
outside the L2 setting. We will also, where applicable, use the energy bound from
[22] to extend these local solutions to global solutions. Our plan is to follow the
general contraction-mapping based procedure outlined by Kato and Ponce in [9] for
the Navier-Stokes equation, with two key modifications.

First, the approach used in [9] relies heavily on operator estimates for the heat
kernel et∆. We will require similar estimates for our solution operator etL1 and some
operator estimates for (1−α2L2), and establishing these estimates is the purpose of
Section 5 and Section 6. This will require some technical restrictions on the choices
of g1 and g2 that will be more fully addressed below. We also note that these
estimates should allow the application of this general technique to other similar
equations, like the MHD equation in [23] and [22], the generalized MHD equation
found in [21] (see [19] for a general study of the generalized MHD equation), the
logarithmically super critical Boussinesq system in [6], and the Navier-Stokes like
equation studied in [13].

The second modification is in how we will deal with the nonlinear term. For
the first set of results, we will use the standard Leibnitz-rule estimate to handle
the nonlinear terms. Our second set of results rely on a product estimate (due
to Chemin in [3]) which will allow us to obtain lower regularity existence but will
(among other costs) require us to work in Besov spaces. The advantages and
disadvantages of each approach will be detailed later in this introduction. The
product estimates themselves are stated as Proposition 2.2 and Proposition 2.3 in
Section 2. We will also need bounds on the terms (1 − L2) and (1 − L2)−1, and
establishing these bounds is the subject of Section 5.

The rest of this paper is organized as follows. The remainder of this introduction
is devoted to stating and contextualizing the main results of the paper. Section
2 reviews the basic construction of Besov spaces and states some foundational
results, including our two product estimates. In Section 3 we carry out the existence
argument using the standard product estimate, and in Section 4 we obtain existence
results using the other product estimate. As stated above, Sections 5 and 6 contain
the proofs of the operator estimates that are central to the arguments used in
Sections 3 and 4.

Our last task before stating the main results is to establish some notation. First,
we denote Besov spaces by Bsp,q(Rn), with norm denoted by ‖ · ‖Bsp,q = ‖ · ‖s,p,q (a
complete definition of these spaces can be found in Section 2). We define the space

CTa;s,p,q = {f ∈ C((0, T ) : Bsp,q(Rn)) : ‖f‖a;s,p,q <∞},
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where
‖f‖a;s,p,q = sup{ta‖f(t)‖s,p,q : t ∈ (0, T )},

T > 0, a ≥ 0, and C(A : B) is the space of continuous functions from A to B. We
let ĊTa;s,p,q denote the subspace of CTa;s,p,q consisting of f such that

lim
t→0+

taf(t) = 0 (in Bsp,q(Rn)).

Note that while the norm ‖ · ‖a;s,p,q lacks an explicit reference to T , there is an
implicit T dependence. We also say u ∈ BC(A : B) if u ∈ C(A : B) and
supa∈A ‖u(a)‖B <∞.

Now we are ready to state the existence results. As expected in these types
of arguments, the full result gives unique local solutions provided the parameters
satisfy a large collection of inequalities. Here we state special cases of the full
results. Our first Theorem uses the standard product estimate (Proposition 2.2 in
Section 2).

Theorem 1.1. Let γ1 > 1, γ2 > 0, q ≥ 1, p ≥ 2, and let s1, s2 be real numbers
such that s2 > γ2, 0 < s2 − s1 < min{γ1/2, 1} and γ1 ≥ s2 − s1 + 1 + n/p. We
also assume that g1 and g2 are Mikhlin multipliers (see inequality (5.1)). Then
for any divergence free u0 ∈ Bs1p,q(Rn), there exists a unique local solution u to the
generalized Leray-alpha equation (1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2−s1)/γ1. T can be chosen to be a non-increasing function of ‖u0‖Bs1p,q
with T =∞ if ‖u0‖Bs1p,q is sufficiently small.

Before stating our second theorem, we remark that this result also holds if the
Besov spaces are replaced by Sobolev spaces. This is not true of the next theorem,
which is a special case of the more general Theorem 4.1, and relies on our second
product estimate (Proposition 2.3 in Section 2).

Theorem 1.2. Let γ1 > 1, γ2 > 0, q ≥ 1, p ≥ 2, s1, and s2 satisfy

0 < s2 − s1 < γ1/2,

s1 > γ2 − n/p− 1,

γ1 ≥ 2s2 − s1 − γ2 + n/p+ 1,

n/p > γ2/2,

s2 ≥ γ2/2.

We also assume that g1 and g2 are Mikhlin multipliers (see inequality (5.1)). Then
for any divergence free u0 ∈ Bs1p,q(Rn), there exists a unique local solution u to the
generalized Leray-alpha equation (1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2−s1)/γ1. T can be chosen to be a non-increasing function of ‖u0‖Bs1p,q
with T =∞ if ‖u0‖Bs1p,q is sufficiently small.

We remark that in the first theorem, γ2 can be arbitrarily large, but s1 > −1,
while in the second theorem γ2 < 2n/p, but for sufficiently large γ1 and sufficiently
small γ2, s1 > γ2 − n/p − 1 can be less than −1. Thus the non-standard product
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estimate allows us to obtain existence results for initial data with lower regularity,
but requires γ2 to be small and requires the use of Besov spaces.

We also note that if we set γ2 = 0 and g2(|ξ|) = 1 (and thus are back in the case
of the generalized Navier-Stokes equation), then these techniques would recover the
results of Wu in [20] for the generalized Navier-Stokes equation.

As was stated above, these results will hold if the gi are Mikhlin multipliers.
However, there are interesting choices of gi (specifically gi being, essentially, a
logarithm) which are not Mikhlin multipliers. For this case we have analogous, but
slightly weaker, results. In what follows, we let r− indicate a number arbitrarily
close to, but strictly less than, r (and similarly let r+ be a number arbitrarily close
to, but strictly greater than, r).

Theorem 1.3. Let γ1 > 1, γ2 > 0, q ≥ 1, p ≥ 2, and s1, s2 be real numbers such
that s2 > γ2, 0 < s2 − s1 < min{γ−1 /2, 1} and γ−1 ≥ s2 − s1 + 1 + n/p. We also
assume that, for i = 1, 2, |gi(r)| ≤ Crδ for any δ > 0 and |g(k)

i (r)| ≤ Cr−k for
1 ≤ k ≤ n/2 + 1. Then for any divergence free u0 ∈ Bs1p,q(Rn), there exists a unique
local solution u to the generalized Leray-alpha equation (1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2 − s1)/γ−1 for arbitrarily small ε > 0. T can be chosen to be a
non-increasing function of ‖u0‖Bs1p,q with T =∞ if ‖u0‖Bs1p,q is sufficiently small.

Theorem 1.4. Let γ1 > 1, γ2 > 0, q ≥ 1, p ≥ 2, s1 and s2 satisfy

0 < s2 − s1 < γ−1 /2,

s1 > γ−2 − n/p− 1,

γ−1 ≥ 2s2 − s1 − γ−2 + n/p+ 1,

n/p > γ−2 /2,

s2 ≥ γ−2 /2.

We also assume that, for i = 1, 2, |gi(r)| ≤ Crδ for any δ > 0 and |g(k)
i (r)| ≤ Cr−k

for 1 ≤ k ≤ n/2 + 1. Then for any divergence free u0 ∈ Bs1p,q(Rn), there exists a
unique local solution u to the generalized Leray-alpha equation (1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2−s1)/γ−1 . T can be chosen to be a non-increasing function of ‖u0‖Bs1p,q
with T =∞ if ‖u0‖Bs1p,q is sufficiently small.

Incorporating the additional constraints from the energy bound in [22], we can
now state the global existence result.

Corollary 1.5. Let p = 2 and let n = 3. Then, for any of our local existence
results, if we additionally assume that

2γ1 + γ2 ≥ 5,∫ ∞
1

ds

sg2
1(s)g2(s)

=∞,

then the local solutions can be extended to global solutions.
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Note that if g1 and g2 are Mikhlin multipliers, then all of the constraints on g1

and g2 are satisfied. Also, if g1 and g2 are logarithms, then the corollary extends
the appropriate local solutions from Theorem 1.3 and 1.4 to global solutions.

The corollary follows directly from the smoothing effect of the operator etL1 ,
which ensures that, for any t > 0, our local solution u(t, ·) ∈ Br2,q(R3) for any
r ∈ R. This provides the smoothness necessary to use the energy bound from [22]
to obtain a uniform-in-time bound on the Bs12,q(R3) norm of the solution, and then
a standard bootstrapping argument completes the proof of global existence. In
Section 7, we include an argument detailing this smoothing effect for the solution
to Theorem 1.1.

Finally, we remark that extending the local solutions to global solutions for
p 6= 2 and n > 3 will be the subject of future work. Handling n > 3 should
follow by tweaking the argument used in [22]. Obtaining global solutions for p 6= 2
is significantly more complicated, and the argument will follow the interpolation
based argument used by Gallagher and Planchon [4] for the two dimensional Navier-
Stokes equation.

2. Besov spaces

We begin by defining the Besov spaces Bsp,q(Rn). Let ψ0 be an even, radial,
Schwartz function with Fourier transform ψ̂0 that has the following properties:

ψ̂0(x) ≥ 0,

support ψ̂0 ⊂ A0 := {ξ ∈ Rn : 2−1 < |ξ| < 2},∑
j∈Z

ψ̂0(2−jξ) = 1, for all ξ 6= 0.

We then define ψ̂j(ξ) = ψ̂0(2−jξ) (from Fourier inversion, this also means
ψj(x) = 2jnψ0(2jx)), and remark that ψ̂j is supported in Aj := {ξ ∈ Rn : 2j−1 <
|ξ| < 2j+1}. We also define Ψ by

Ψ̂(ξ) = 1−
∞∑
k=0

ψ̂k(ξ). (2.1)

We define the Littlewood Paley operators ∆j and Sj by

∆jf = ψj ∗ f, Sjf =
j∑

k=−∞

∆kf,

and record some properties of these operators. Applying the Fourier Transform and
recalling that ψ̂j is supported on 2j−1 ≤ |ξ| ≤ 2j+1, it follows that

∆j∆kf = 0, |j − k| ≥ 2,

∆j(Sk−3f∆kg) = 0 |j − k| ≥ 4,
(2.2)

and, if |i− k| ≤ 2, then

∆j(∆kf∆ig) = 0 j > k + 4. (2.3)
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For s ∈ R and 1 ≤ p, q ≤ ∞ we define the space B̃sp,q(Rn) to be the set of
distributions such that

‖u‖B̃sp,q =
( ∞∑
j=0

(2js‖∆ju‖Lp)q
)1/q

<∞,

with the usual modification when q = ∞. Finally, we define the Besov spaces
Bsp,q(Rn) by the norm

‖f‖Bsp,q = ‖Ψ ∗ f‖p + ‖f‖B̃sp,q ,

for s > 0. For s > 0, we define B−sp′,q′ to be the dual of the space Bsp,q, where p′, q′

are the Holder-conjugates to p, q.
These Littlewood-Paley operators are also used to define Bony’s paraproduct.

We have

fg =
∑
k

Sk−3f∆kg +
∑
k

Sk−3g∆kf +
∑
k

∆kf

2∑
l=−2

∆k+lg. (2.4)

The estimates (2.2) and (2.3) imply that

∆j(fg) =
3∑

k=−3

∆j(Sj+k−3f∆j+kg) +
3∑

k=−3

∆j(Sj+k−3g∆j+kf)

+
∑
k>j−4

∆j

(
∆kf

2∑
l=−2

∆k+lg
)
.

(2.5)

Now we turn our attention to establishing some basic Besov space estimates.
First, we let 1 ≤ q1 ≤ q2 ≤ ∞, β1 ≤ β2, 1 ≤ p1 ≤ p2 ≤ ∞, α > 0, and set
p̃ = np/(n − αp) with α < n/p. Then we have the following Besov embedding
results:

‖f‖
B
β1
p,q2
≤ C‖f‖

B
β2
p,q1

, (2.6a)

‖f‖
B
β1
p̃,q1

≤ C‖f‖
B
β1+α
p1,q1

, (2.6b)

‖f‖Hβ1,2 = ‖f‖
B
β1
2,2
. (2.6c)

The following result is straightforward, but will be used often.

Proposition 2.1. Let 1 ≤ p <∞, 0 < α < n/p and set p̃ = np/(n− αp). Then

‖f‖Lp̃ ≤ C‖f‖Bα+
p,q
, (2.7)

for any 1 ≤ q ≤ ∞.

For any ε > 0, we have

‖f‖Lp̃ ≤ ‖f‖Bεp̃,q ≤ ‖f‖Bα+ε
p,q

, (2.8)

where we used the definition of Besov spaces for the first inequality and (2.6b) for
the second.

Next we record our two Leibnitz-rule type estimate. The first is the standard
estimate, which can be found in (among many other places) [2, Lemma 2.2]. See
also [18, Proposition 1.1].
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Proposition 2.2. Let s > 0 and q ∈ [1,∞]. Then

‖fg‖Bsp,q ≤ C
(
‖f‖Lp1‖g‖Bsp2,q + ‖f‖Bsq1,q‖g‖Lq2

)
,

where 1/p = 1/p1 + 1/p2 = 1/q1 + 1/q2 and pi, qi ∈ [1,∞] for i = 1, 2.

Our second product estimate is less common. The estimate originated in [3];
another proof can be found in [14].

Proposition 2.3. Let f ∈ Bs1p1,q(R
n) and let g ∈ Bs2p2,q(R

n). Then, for any p such
that 1/p ≤ 1/p1 + 1/p2 and with s = s1 + s2 − n(1/p1 + 1/p2 − 1/p), we have

‖fg‖Bsp,q ≤ C‖f‖Bs1p1,q‖g‖Bs2p2,q ,

provided s1 < n/p1, s2 < n/p2, and s1 + s2 > 0.

3. Local existence by Proposition 2.2

Theorem 1.1 and Theorem 1.3 are both proven using the standard product es-
timate (Proposition 2.2). These theorems are both special cases of more general
theorems, and the primary task of this section is to prove the theorem which implies
Theorem 1.3. There is a similar result associated with Theorem 1.1, and it will be
discussed at the end of the section.

Theorem 3.1. Let γ1 > 1, γ2 > 0, q ≥ 1, and p ≥ 2. Assume g1 and g2 satisfy
|gi(r)| ≤ C(1 + r)δ for any δ > 0 and |g(k)

i (r)| ≤ Cr−k for 1 ≤ k ≤ n/2 + 1. Let
u0 ∈ Bs1p,q(Rn) be divergence-free. Then there exists a unique local solution u to the
generalized Leray-alpha equation (1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2 − s1)/(γ1 − ε) for any sufficiently small ε > 0 if there exists k > 0
such that the parameters satisfy (3.11). T can be chosen to be a non-increasing
function of ‖u0‖Bs1p,q with T =∞ if ‖u0‖Bs1p,q is sufficiently small.

We begin by re-writing equation (1.2) as

∂tu+ P (1− α2L2)−1 div(u⊗ (1− α2L2)u)− νL1u = 0,

u(0, x) = u0(x), div u0 = div u = 0,
(3.1)

where P is the Hodge projection onto divergence free vector fields and an application
of the divergence free condition shows ∇u(1−α2L2)u = div(u⊗(1−α2L2)u), where
v ⊗ w is the matrix with ij entry equal to the product of the ith coordinate of v
and the jth coordinate of w.

Setting α = 1 and ν = 1 for notational simplicity and applying Duhamel’s
principle, we obtain that u is a solution to the equation if and only if u is a fixed
point of the map Φ given by

Φ(u) = etL1u0 +
∫ t

0

e(t−s)L1(W (u(s)))ds,

where W (u, v) = −P (1−L2)−1 div(u(s)⊗ (1−L2)v(s)). To simplify notation, we
will also set W (u, u) = W (u). Our goal is to show that Φ is a contraction in the
space

XT,M =
{
f ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ Ċa;s2,p,qand



EJDE-2015/170 GENERALIZED LERAY-ALPHA EQUATIONS 9

sup
t
‖f(t)− etL1u0‖Bs1p,q + sup

t
ta‖u(t)‖Bs2p,q < M

}
,

where a = (s2 − s1)/(γ−1 ), for 0 < T ≤ 1 and M > 0 to be chosen later.
Following the arguments outlined in [9] and [15], Φ will be a contraction if we

can show that
sup
t
ta‖etL1u0‖Bs2p,q < M/3,

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q < M/3,

sup
t
ta‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs2p,q < M/3,

(3.2)

for u ∈ XT,M .
For the first of these terms, we let ϕ be in the Schwartz space. Then using

Proposition 6.1 and Proposition 6.9 we have

sup
t
ta‖etL1(u0 − ϕ+ ϕ)‖Bs2p,q

≤ sup
t
ta‖etL1(u0 − ϕ)‖Bs2p,q + sup

t
ta‖etL1ϕ‖Bs2p,q

≤ sup
t
tat−a‖u0 − ϕ‖Bs1p,q + sup

t
ta‖ϕ‖Bs2p,q

≤ ‖u0 − ϕ‖Bs1p,q + T a‖ϕ‖Bs2p,q .

Since the Schwartz space is dense in Bs1p,q(Rn), we can choose ϕ so that the first
term is arbitrarily small. Then we choose T to be small enough so that the sum is
bounded by M/3.

Turning to the second inequality, applying Minkowski’s inequality and Proposi-
tion 6.9, we have

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q

≤ sup
t

∫ t

0

‖e(t−s)L1W (u(s))‖Bs1p,qds

≤ sup
t

∫ t

0

|t− s|−(s1−r+n/p∗−n/p)/(γ−1 )‖W (u(s))‖Br
p∗,q

ds,

(3.3)

where p∗ ≤ p will be specified later. Using Proposition 5.3, then Proposition 2.2,
and finally Propositions 2.1 and 5.2, we have

‖W (u(s))‖Br
p∗,q
≤ C‖u⊗ (1− L2)u‖

B
r+1−γ−2
p∗,q

≤ C‖u‖Lp1 ‖(1− L2)u‖
B
r+1−γ−2
p2,q

+ C‖u‖
B
r+1−γ−2
q1,q

‖(1− L2)u‖Lq2

≤ C‖u‖Lp1‖u‖
B
r+1+γ2−γ

−
2

p2,q

+ C‖u‖
B
r+1−γ−2
q1,q

‖(1− L2)u‖B0+
q2,q

≤ C‖u‖Lp1‖u‖
B
r+1+γ2−γ

−
2

p2,q

+ C‖u‖
B
r+1−γ−2
q1,q

‖u‖
B
γ
+
2
q2,q

,

(3.4)
where 1/p∗ = 1/p1 + 1/p2 = 1/q1 + 1/q2, provided r + 1 − γ−2 > 0. To complete
the argument, we need to bound this by ‖u‖2

B
s2
p,q

. To facilitate this, we define ε by

setting γ2 − γ−2 = ε, choose r + 1 + ε = s2 (which forces s2 > γ2), and q2 = p2 = p
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(which forces p1 = q1). Applying these choices and using the Besov embedding
(2.6a), inequality (3.4) becomes

‖W (u(s))‖Br
p∗,q
≤ C‖u‖Lp1 ‖u‖Bs2p2,q + C‖u‖

B
s2−γ2
q1,q

‖u‖
B
γ
+
2
q2,q

≤ C‖u‖Bs2p,q
(
‖u‖Lp1 + ‖u‖

B
s2−γ2
p1,q

)
.

(3.5)

Finally, choosing p1 = np/(n − kp) for some k < n/p and k ≤ γ2 < s2, we use
Proposition 2.1 to obtain

‖W (u(s))‖Br
p∗,q
≤ C‖u‖Bs2p,q

(
‖u‖Lp1 + ‖u‖

B
s2−γ2
p1,q

)
leqC‖u‖Bs2p,q

(
‖u‖Bk+p,q + ‖u‖

B
s2−γ2+k
p,q

)
≤ C‖u‖2

B
s2
p,q
,

(3.6)

provided
1/p∗ − 1/p = 1/p1 = (n− kp)/np,

s2 > γ2, s2 = r + 1 + ε,

k ≤ γ2, kp < n.

(3.7)

Returning to the estimate begun in (3.3), using (3.6), we have

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q

≤ C sup
t

∫ t

0

|t− s|−(s1−r+n/p∗−n/p)/(γ−1 )s−2as2a‖u(s)‖2
B
s2
p,q
ds

≤ C sup
t
‖u‖2a;s2,p,qt

−(s1−r+n/p∗−n/p)/(γ−1 )−2(s2−s1)/(γ−1 )+1

≤ CM2T−(s1−r+n/p∗−n/p)/(γ−1 )−2(s2−s1)/(γ−1 )+1 < M/3,

provided

0 ≤ (s1 − r + n/p∗ − n/p)/(γ−1 ) < 1

1 > 2(s2 − s1)/(γ−1 )

0 ≤ −(s1 − r + n/p∗ − n/p)/(γ−1 )− 2(s2 − s1)/(γ−1 ) + 1.

(3.8)

The first inequality in this list ensures that the |t−s| term is integrable as s goes to
t, the second inequality does the same for the s−2a term as s goes to 0, and the last
inequality makes the power on the post-integration t positive. The last inequality
follows by recalling that T ≤ 1 and by choosing a sufficiently small M .

For the last term in (3.2), a similar argument gives

sup
t
ta‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs2p,q

≤ sup
t
ta
∫ t

0

|t− s|−(s2−r+n/p∗−n/p)/(γ−1 )‖W (u(s))‖Br
p∗,q

ds

≤ sup
t
ta
∫ t

0

|t− s|−(s2−r+n/p∗−n/p)/(γ−1 )s−2as2a‖u(s)‖2
B
s2
p,q
ds

≤ C‖u‖2a;s2,p,q sup
t
tat−(s2−r+n/p∗−n/p)/(γ−1 )−2(s2−s1)/(γ−1 )+1

≤ CM2T−(s2−r)/(γ−1 )−(s2−s1)/(γ−1 )+1 < M/3,
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provided

0 ≤ (s2 − r + n/p∗ − n/p)/(γ−1 ) < 1,

1 > 2(s2 − s1)/(γ−1 ),

0 ≤ −(s2 − r + n/p∗ − n/p)/(γ−1 )− (s2 − s1)/(γ−1 ) + 1.

(3.9)

Combining (3.8), and (3.9) (and removing redundancies) gives

s1 > r,

(γ−1 )/2 > s2 − s1,

0 ≤ s2 − r + n/p∗ − n/p < (γ−1 ),

(γ−1 ) ≥ 2s2 − r + n/p∗ − n/p− s1.

(3.10)

Incorporating (3.7), and observing that, since s2 > s1, the last inequality in (3.10)
implies the third inequality, we obtain

s2 > γ2 ≥ k,
kp < n,

s2 − s1 < min{(γ−1 )/2, 1},
γ−1 ≥ s2 − s1 + 1 + n/p+ ε− k.

(3.11)

This completes Theorem 3.1. Replacing γ−1 with γ1 and setting ε = 0 recovers
the result for the case where the gi are Mikhlin multipliers. In that case, note that
for γ1 = 2 and γ2 = 0, this recovers, up to a slight modification in the argument,
the result from [9] for the Navier-Stokes equation.

In comparison with the existence result for the next section, this existence result
requires a larger initial regularity, but imposes no restrictions on the value of γ2

(beyond the requirement that γ2 > 0). To get Theorem 1.1 or Theorem 1.3, choose k
to be an arbitrarily small positive number, which removes k from the last inequality
and forces γ2 > 0.

4. Local existence using Proposition 2.3

In this section we prove the following local existence result, which implies The-
orem 1.2. We address Theorem 1.4 at the end of the section.

Theorem 4.1. Let γ1 > 1, γ2 > 0, q ≥ 1, p ≥ 2, and assume g1 and g2 satisfy
the Mikhlin condition (see inequality (5.1)). Let u0 ∈ Bs1p,q(Rn) be divergence-free.
Then there exists a unique local solution u to the generalized Leray-alpha equation
(1.2), with

u ∈ BC([0, T ) : Bs1p,q(Rn)) ∩ ĊTa;s2,p,q,

where a = (s2 − s1)/γ1, if there exists r, r1 and r2 such that all the parameters
satisfy (4.12). T can be chosen to be a non-increasing function of ‖u0‖Bs1p,q with
T =∞ if ‖u0‖Bs1p,q is sufficiently small.
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With the same set-up as the previous section, our goal is to show that

sup
t
ta‖etL1u0‖Bs2p,q < M/3,

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q < M/3,

sup
t
ta‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs2p,q < M/3.

(4.1)

The first inequality follows exactly as it did in the previous section, and for the
second, using Minkowski’s inequality and Proposition 6.8, we have

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q

≤ sup
t

∫ t

0

‖e(t−s)L1W (u(s))‖Bs1p,qds

≤ sup
t

∫ t

0

|t− s|−(s1−r)/γ1‖W (u(s))‖Brp,qds,

(4.2)

where r ≤ s1 and will be specified later. Using Proposition 2.3, then Proposition
5.3, and finally Proposition 5.2, we have

‖W (u(s))‖Brp,q ≤ ‖u⊗ (1− L2)u‖
B
r+1−γ2
p,q

≤ ‖u‖Br1p,q‖(1− L2)u‖Br2p,q
≤ ‖u‖Br1p,q‖u‖Br2+γ2

p,q
≤ ‖u‖2

B
s2
p,q
,

(4.3)

provided

r + 1− γ2 ≤ r1 + r2 − n/p,
r1 + r2 > 0,

r1, r2 < n/p,

s2 ≥ max{r1, r2 + γ2}.

(4.4)

Returning to equation (4.2), we have

sup
t
‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs1p,q

≤ sup
t

∫ t

0

|t− s|−(s1−r)/γ1s−2as2a‖u(s)‖2
B
s2
p,q
ds

≤ C sup
t
‖u‖2a;s2,p,qt

−(s1−r)/γ1−2(s2−s1)/γ1+1

≤ CM2T−(s1−r)/γ1−2(s2−s1)/γ1+1 < M/3,

(4.5)

provided

0 ≤ (s1 − r)/γ1 < 1,

1 > 2(s2 − s1)/γ1,

0 ≤ −(s1 − r)/γ1 − 2(s2 − s1)/γ1 + 1.
(4.6)
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Estimating the last term of (3.2) in a similar fashion, we have

sup
t
ta‖
∫ t

0

e(t−s)L1W (u(s))ds‖Bs2p,q

≤ sup
t
ta
∫ t

0

|t− s|−(s2−r)/γ1‖W (u(s))‖Brp,qds

≤ sup
t
ta
∫ t

0

|t− s|−(s2−r)/γ1s−2as2a‖u(s)‖2
B
s2
p,q
ds

≤ C‖u‖2a;s2,p,q sup
t
tat−(s2−r)/γ1−2(s2−s1)/γ1+1

≤ CM2T−(s2−r)/γ1−(s2−s1)/γ1+1 < M/3,

(4.7)

provided
0 ≤ (s2 − r)/γ1 < 1,

1 > 2(s2 − s1)/γ1,

0 ≤ −(s2 − r)/γ1 − (s2 − s1)/γ1 + 1.
(4.8)

Our final task is to unify the conditions on the parameters. The sets of inequal-
ities from equations (4.6) and (4.8) can be simplified to

0 < s2 − s1 < γ1/2,
s1 ≥ r > s2 − γ1,

γ1 ≥ (s2 − s1) + (s2 − r).
(4.9)

Incorporating the inequalities from (4.4), we have

0 < s2 − s1 < γ1/2,
s1 ≥ r > s2 − γ1,

γ1 ≥ (s2 − s1) + (s2 − r),
r + 1− γ2 ≤ r1 + r2 − n/p,

r1 + r2 > 0,

r1, r2 < n/p,

s2 ≥ max{r1, r2 + γ2},

(4.10)

and this completes the proof of Theorem 4.1. To obtain the results in Theorem 1.2,
we fix the values of the parameters r1, r2, and r in the following way. First, since
our primary interest is in minimizing s1 and s2, we see from the last inequality that
this is helped by minimizing max{r1, r2 +γ2}, subject to the constraints r1 +r2 > 0
and r1, r2 < n/p. This is accomplished by choosing r2 = −γ2/2 and r1 = γ2/2 +R,
where R is some positive number. Choosing the fourth inequality in the list (4.10)
to be an equality, the list (4.10) becomes

0 < s2 − s1 < γ1/2,
s1 ≥ r > s2 − γ1,

γ1 ≥ (s2 − s1) + (s2 − r),
r = −1 + γ2 +R− n/p,

n/p > γ2/2 +R,

s2 ≥ γ2/2 +R.

(4.11)
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Using the fourth line to eliminate r from the other inequalities, and then removing
extraneous inequalities, we finally get

0 < s2 − s1 < γ1/2,

s1 ≥ γ2 +R− n/p− 1,

γ1 ≥ 2s2 − s1 − γ2 −R+ n/p+ 1,

n/p > γ2/2 +R,

s2 ≥ γ2/2 +R.

(4.12)

Eliminating the free parameter R weakens this to
0 < s2 − s1 < γ1/2,

s1 > γ2 − n/p− 1,

γ1 ≥ 2s2 − s1 − γ2 + n/p+ 1,

n/p > γ2/2,

s2 ≥ γ2/2,

(4.13)

which finishes Theorem 1.2. The analog of Theorem 1.2 for logarithmic g is obtained
by replacing γ1 and γ2 with γ−1 and γ−2 .

5. Operator estimates for Lgγ
In this section, we define the Fourier multiplier Lgγ by

Lgγu(x) =
∫
− |ξ|

γ

g(|ξ|)
û(ξ)eix·ξdξ,

where γ ∈ R and g : R → R is radial, nondecreasing, and bounded below by
1. Note that if we define G to be the Fourier multiplier with symbol 1/g, then
Lgγ = −G(−∆)γ/2. The goal here is to prove operator estimates for Lgγ , and we
begin by stating the Mikhlin multiplier theorem, which will be referenced often in
this section.

Theorem 5.1 (Mikhlin multiplier theorem). Let M be an operator with symbol
m : Rn → Rn. If |x|k|∇km(x)| is bounded for all 0 ≤ k ≤ n/2 + 1, then M is an
Lp(Rn) multiplier for all 1 < p <∞.

The multipliers we are working with will be radial. In this context, the Mikhlin
conditions is

|m(k)(r)| ≤ Cr−k, (5.1)
for 0 ≤ k ≤ n/2 + 1. Now we are ready to prove our fist result.

Proposition 5.2. Let 1 < p < ∞ and let |g(k)(r)| ≤ Cr−k for 1 ≤ k ≤ n/2 + 1.
Then Lgγ : Bs1+γ

p,q (Rn)→ Bs1p,q(Rn), with

‖Lgγf‖Bs1p,q ≤ C‖f‖Bs1+γ
p,q

.

Proof. Without loss of generality, we assume s1 = 0. Then we have

‖(1− Lgγ)−1f‖B0
p,q

= ‖(1− Lgγ)−1(1−∆)γ/2(1−∆)−γ/2f‖B0
p,q

= ‖(1−∆)γ/2(1− Lgγ)−1f‖B−γp,q .

We finish the proof by showing that the operator (1 −∆)γ(1 − Lgγ)−1, with sym-

bol (1+r2)γ/2

(1+rγ/g(r)) , is a Mikhlin multiplier. Note that the symbol can be written as
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g(r)(1+r2)γ/2

(g(r)+rγ) , and since g is already known to be a Mikhlin multiplier, this is equiv-

alent to showing that the symbol (1+r2)γ/2

(g(r)+rγ) satisfies the Mikhlin condition, which
follows from a straightforward (though lengthy) computation. �

If g is a logarithm, then g is not a Mikhlin multiplier, since g is not bounded.
However, g would satisfy g(r) ≤ C(1 + r)δ for any δ > 0 and |g(k)(r)| ≤ Cr−k for
all 1 ≤ k. These observations inform the next proposition.

Proposition 5.3. Let 1 < p <∞, let g(r) ≤ C(1 + r)δ for any δ > 0, and assume
|g(k)(r)| ≤ Cr−k for all 1 ≤ k ≤ n/2 + 1. Then (1 − Lgγ)−1 : Bs1−(γ−ε)

p,q (Rn) →
Bs1p,q(Rn) for any small ε > 0, with

‖(1− Lgγ)−1f‖Bs1p,q ≤ C‖f‖Bs1−(γ−ε)
p,q

.

Proof. As in the previous proposition, this follows by showing that the symbol
(1+r2)(γ−ε)/2

1+rγ/g(r) is a Mikhlin multiplier. First, we re-write this as g(r)
(1+r2)ε/2

(1+r2)γ/2

g(r)+rγ .
That each of these terms individually satisfies the Mikhlin condition follows directly
from the assumptions on g. �

We remark that the ε loss between these two results is due to the necessity of
controlling the growth of the g(r) term.

6. Operator estimates for etL

As in the previous section, we define the Fourier multiplier Lgγ by

Lgγu(x) =
∫
− |ξ|

γ

g(|ξ|)
û(ξ)eix·ξdξ,

where γ ∈ R and g : R → R is nondecreasing and bounded below by 1. We define
the operator etL

g
γ to be the Fourier multiplier with symbol e−t|ξ|

γ/g(|ξ|). The goal
of this section is to establish operator bounds for etL

g
γ in the case where γ > 1,

and following the general outline of the same task for et∆, we need to first establish
Lp − Lq boundedness for the operator. Also note that, throughout the section, we
will assume 0 < t < 1.

We start with the special case of p = q.

Proposition 6.1. Let 1 < p < ∞ and γ > 1. Assume |g(r)| ≤ C(1 + r)δ for any
δ > 0 and assume

|g(k)(r)| ≤ Cr−k (6.1)

holds for 1 ≤ k ≤ n/2 + 1. Then

etL
g
γ : Lp(Rn)→ Lp(Rn),

and we have the bound
‖etL

g
γf‖Lp ≤ C‖f‖Lp . (6.2)

Proof. We will show that e−r
γ/g(r) satisfies the Mikhlin condition, and then the re-

sult follows by the Mikhlin multiplier theorem. First, we observe that the multiplier
is clearly bounded. Then∣∣ d

dr
e−r

γ/g(r)
∣∣ ≤ C(rγ−1

g(r)
+
rγg′(r)
g(r)2

)
e−r

γ/g(r) ≤ Crγ−1e−Cr
γ−δ
≤ Cr−1,



16 N. PENNINGTON EJDE-2015/170

where in the last inequality we used that γ > 1 and we have chosen δ to be a small
positive number. Similar calculations hold for the remaining derivatives. �

Now we consider the case where p 6= q.

Proposition 6.2. Let 1 ≤ p < q ≤ ∞, and assume γ > 1. Then

etL
g
γ : Lp(Rn)→ Lq(Rn),

and we have the bound

‖etL
g
γf‖Lq ≤ Ct−(n/p−n/q)/γ‖f‖Lp , (6.3)

provided

sup
t∈(0,1)

∫ ∞
0

rn−1|∂(n)
r (e−r

γ/g(rt−1/γ))|dr <∞. (6.4)

Proof. For notational convenience, we will suppress the subscript γ and the super-
script g on the operator for the duration of the proof. Setting etLf = etLδ∗f , where
the Fourier Transform of etLδ(x) is equal to e−t|ξ|

γ/g(|x|), and applying Young’s in-
equality, we obtain that

‖etLf‖Lq ≤ ‖etLδ‖Lr‖f‖Lp ,

where 1 + 1/q = 1/r + 1/p. Formally, we have that

etLδ(ξ) = C

∫
Rn
e−t|x|

γ/g(|x|)eix·ξdx.

Making the variable change x→ t−1/γx, we obtain

etLδ(ξ) = Ct−n/γ
∫

Rn
e−|x|

γ/g(t−1/γ |x|)eit
−1/γx·ξdx.

Taking the Lr(Rn) norm gives

‖etLδ‖Lr = Ct−n/γ
(∫

Rn

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)eit
−1/γx·ξdx

∣∣∣rdξ)1/r

.

Making the variable change ξ → t−1/γξ, this finally becomes

‖etLδ‖Lr = Ct−n/γ+n/(rγ)
(∫

Rn

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)eix·ξdx
∣∣∣rdξ)1/r

.

Since 1− 1/r = 1/p− 1/q, it only remains to obtain a t-independent bound for
the integral. First, we have∫

Rn

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)eix·ξdx
∣∣∣rdξ

≤
∫
|ξ|<1

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)eix·ξdx
∣∣∣rdξ

+
∫
|ξ|>1

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)eix·ξdx
∣∣∣rdξ

≤ C
∫
|ξ|>1

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|)dx
∣∣∣r

+
∫
|ξ|>1

∣∣∣ ∫
Rn
e−|x|

γ/g(t−1/γ |x|) ∂x1∂x2 . . . ∂xn
ξ1ξ2 . . . ξn

eix·ξdx
∣∣∣rdξ



EJDE-2015/170 GENERALIZED LERAY-ALPHA EQUATIONS 17

≤ C +
∫
|ξ|>1

1
|ξ1|r|ξ2|r . . . |ξn|r

∣∣∣ ∫
Rn
∂x1∂x2 . . . ∂xn(e−|x|

γ/g(t−1/γ |x|))eix·ξdx
∣∣∣rdξ

≤ C + C
(∫

Rn

∣∣∣∂x1∂x2 . . . ∂xn(e−|x|
γ/g(t−1/γ |x|))

∣∣∣dx)r,
where the last inequality follows from observing that since p < q, r > 1, and
therefore the integral in each ξ coordinate is finite.

To compute the final integral, we convert to polar coordinates, and remark that
since e−|x|

γ/g(t−1/γ |x|) is radial, we can disregard the radial portion of each coordi-
nate derivative’s expression in polar form, and we have∫

Rn

∣∣∣∂x1∂x2 . . . ∂xn(e−|x|
γ/g(t−1/γ |x|))

∣∣∣dx ≤ C ∫ ∞
0

rn−1
∣∣∣∂(n)
r (e−r

γ/g(rt−1/γ))
∣∣∣dr,

which is (6.4), and thus completes the proposition. �

Our next task is to establish sufficiency criteria for (6.4).

Proposition 6.3. If
|g(k)(r)| ≤ Cr−k, (6.5)

for all 0 ≤ k ≤ n, then (6.4) holds.

Proof. We begin with the special case where g is a constant function, and without
loss of generality assume g(r) = 1. Then (6.4) becomes∫ ∞

0

rn−1
∣∣∂(n)
r (e−r

γ

)
∣∣ dr.

Computing the derivatives through repeated use of the product rule will yield the
addition of 2n−1 terms of the form rαe−r

γ

. The decay provided by the exponential
term makes each of these integrable for large r. For the region where r is small, the
most singular term is of the form rn−1rn(γ−n)e−r

γ

, which is integrable for small
r because γ > 1, and this finishes the argument for the special case where g is
constant.

If γ > 1 and g is not constant, the proof is similar, but more combinatorially
intense. To see this, we first consider the case where n = 1. Then we have∫ ∞

0

∣∣∂r(e−rγ/g(rt−1/γ))
∣∣ dr

=
∫ ∞

0

( Crγ−1

g(rt−1/γ)
+ C

rγg′(rt−1/γ)t−1/γ

(g(rt−1/γ))2

)
e−r

γ/g(rt−1/γ)dr.

Using our assumption on g, we have∫ ∞
0

( Crγ−1

g(rt−1/γ)
+ C

rγg′(rt−1/γ)t−1/γ

(g(rt−1/γ))2

)
e−r

γ/g(rt−1/γ)dr.

≤ C
∫ ∞

0

( Crγ−1

g(rt−1/γ)
+ C

rγt−1/γ

rt−1/γ(g(rt−1/γ))2

)
e−r

γ/g(rt−1/γ)dr.

Finally, since g is bounded below by one and is bounded above by assumption, we
have∫ ∞

0

( Crγ−1

g(rt−1/γ)
+ C

rγt−1/γ

rt−1/γ(g(rt−1/γ))2

)
e−r

γ/g(rt−1/γ)dr ≤ C
∫ ∞

0

rγ−1e−Cr
γ

dr,
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which reduces the problem to the constant g case. In general, when computing the
derivatives, either the derivatives fall on the rγ term (and then since g is bounded
below, we are back in constant g case) or the derivatives act on the g(rt−1/γ) term.
In that case, because of (6.5), the derivatives of g introduce exactly as much decay
in r as occurs when differentiating rγ , and the t dependent terms cancel out, so
this case also reduces to a term from the constant g case. �

Recall from the introduction that we ultimately seek results for g of the form
g(r) = ln(a+ r), where ln(a) > 1. Since such a g is unbounded, it does not satisfy
the requirements of the previous proposition. The following result adapts that
argument to this particular case.

Proposition 6.4. Let g(r) ≤ C(1 + r)δ for any δ > 0, and assume that

|g(k)(r)| ≤ C|r|−k,

for 1 ≤ k ≤ n. Then

‖etL
g
γf‖Lq ≤ Ct−(n/p−n/q)/(γ−ε)‖f‖Lp , (6.6)

for any small ε > 0, provided 0 < t < 1.

Before beginning the proof, we note that if g(r) = ln(a+ r), and ln(a) ≥ 1, then
g satisfies the hypothesis of the proposition.

Proof. First, we observe that when controlling the derivatives, we only required
that g be bounded below and that the derivatives of g have sufficient decay. Since
that portion of the argument did not require g to be bounded, we can apply that
argument here, and we have that

‖etL
g
γf‖Lq ≤ Ct−(n/p−n/q)/γ‖f‖Lp

∫ ∞
0

rαe−r
γ/g(rt−1/γ)dr, (6.7)

for some α > −1. Since α > −1, we have∫ ∞
0

rαe−r
γ/g(rt−1/γ)dr ≤

∫ 1

0

rαe−r
γ/g(rt−1/γ)dr +

∫ ∞
1

rαe−r
γ/g(rt−1/γ)dr

≤ C +
∫ ∞

1

rαe−r
γ/(1+rt−1/γ)δdr

≤ C +
∫ ∞

1

rαe−Cr
γ−δtδ/γdr,

where we used the assumption on g and δ is small positive number to be specified
later. Making the variable change r → rtδ/(γ(γ−δ)), we finally obtain∫ ∞

1

rαe−Cr
γ/g(rt−1/γ)dr ≤ C+ t−δα/γ(γ−δ)

∫ ∞
1

rαe−Cr
γ−δ

dr ≤ C(1+ t−δα/γ(γ−δ)),

provided γ − δ > 1. Plugging back into (6.7), we have

‖etL
g
γf‖Lq ≤ Ct−(n/p−n/q)/γ−δα/γ(γ−δ)‖f‖Lp .

Choosing a sufficiently small δ finishes the proposition. �

Before moving on, we remark that, as in the previous section, adapting to the
logarithmic g comes at a cost of additional singularity in the time variable.
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Now that we have established Lp−Lq boundedness for etL
g
γ , we turn our attention

to incorporating changes in regularity. We will rely heavily on the following, which
is [17, Proposition 7.2 Chapter 13].

Proposition 6.5. Let etA be a holomorphic semigroup on a Banach space X.
Then, for t > 0,

‖AetAf‖X ≤
C

t
‖f‖X ,

for 0 < t ≤ 1.

For our purposes, A = Lgγ and X = Lp(Rn). To use this proposition, we need
to know that etL

g
γ is a holomorphic semigroup, and following the proof of [17,

Proposition 7.1 Chapter 13], we see that we only need etL
g
γ to be uniformly bounded

from Lp(Rn) into itself, which is the content of Proposition 6.1. Now we are ready
to prove the following result.

Proposition 6.6. Let 1 < p < ∞, s1 ≤ s2 and assume g satisfies the Mikhlin
condition (see inequality (5.1)). Then etL

g
γ : Bs1p,q(Rn)→ Bs2p,q(Rn) and

‖etL
g
γf‖Bs2p,q ≤ t

−(s2−s1)/γ‖f‖Bs1p,q . (6.8)

Proof. We first establish this result in the case s2 = γ and s1 = 0. We have

‖etL
g
γf‖Bγp,q = ‖etL

g
γ (Ψ ∗ f)‖Lp +

( ∞∑
j=0

2jqγ‖etL
g
γ∆jf‖qLp

)1/q

≤ C‖Ψ ∗ f‖Lp +
( ∞∑
j=0

‖(−∆)γ/2
(
Lgγ
)−1LgγetL

g
γ∆jf‖qLp

)1/q

≤ C‖Ψ ∗ f‖Lp + Ct−1
( ∞∑
j=0

‖LgγetL
g
γ∆jf‖qLp

)1/q

≤ Ct−1‖f‖B0
p,q
,

where we used (essentially) Proposition 5.3 in the first inequality, Proposition 6.5
in the second, and the fact that t ≤ 1 for the last inequality. Standard interpolation
and duality arguments extend this result to the general case of s1 ≤ s2. �

We again state the parallel result for the special case where g is, essentially, a
logarithm.

Proposition 6.7. Let 1 < p < ∞, s1 ≤ s2, let g(r) ≤ Crε for any ε > 0 and let
|g(k)(r)| ≤ C|r|−k for all 1 ≤ k ≤ n/2 + 1. Then etL

g
γ : Bs1p,q(Rn)→ Bs2p,q(Rn) and

‖etL
g
γf‖Bs2p,q ≤ t

−(s2−s1)/(γ−ε)‖f‖Bs1p,q , (6.9)

for any ε > 0.

Proof. As in the previous proposition, we let s2 = γ−ε and set s1 = 0, and the rest
of the argument will follow as before provided we show that the Fourier multiplier
with symbol

m(ξ) =
|ξ|γ−εg(ξ)
|ξ|γ

,

and with support in the annulus |ξ| ≥ 1/2, is bounded on Lp(Rn). As this follows
from the assumptions on g, the proof is complete. �



20 N. PENNINGTON EJDE-2015/170

The following is direct combination of Proposition 6.3 and Proposition 6.6.

Proposition 6.8. Let 1 < p < ∞, s1 ≤ s2, p1 ≤ p2 and let g satisfy the Mikhlin
condition. Then etL

g
γ : Bs1p1,q(R

n)→ Bs2p2,q(R
n) and

‖etL
g
γf‖Bs2p2,q ≤ t

−(s2−s1+n/p1−n/p2)/γ‖f‖Bs1p1,q . (6.10)

We also record the analogous result for our special case.

Proposition 6.9. Let 1 < p <∞, s1 ≤ s2, p1 ≤ p2, g(r) ≤ Crε for any ε > 0, and
let |g(k)(r)| ≤ C|r|−k for all 1 ≤ k ≤ n/2 + 1. Then etL

g
γ : Bs1p1,q(R

n)→ Bs2p2,q(R
n)

and
‖etL

g
γf‖Bs2p2,q ≤ t

−(s2−s1+n/p1−n/p2)/(γ−ε)‖f‖Bs1p1,q , (6.11)

for any small ε > 0.

We remark that these results also apply to Sobolev spaces (see [14, Section 2]
for an example of a similar process applied to the standard heat kernel).

7. Higher regularity for the local existence result

As was mentioned in the introduction, the solutions to the generalized Leray-
alpha equations constructed here are smooth for all t > 0 at which the solution
exists. In this section we prove that the solutions to Theorem 1.1 have this addi-
tional regularity and quantify the blow-up that occurs in these higher regularity
norms as t → 0. We use an induction argument inspired by the results in [8] for
the Navier-Stokes equation. We remark that similar results can be proven for the
other theorems in this paper, but require different (and in some cases much more
involved) arguments.

Proposition 7.1. Let u0 ∈ Bs1p,q(Rn) be divergence-free. Let u be a solution to the
generalized Leray-alpha equation (1.2) given by Theorem 1.1. Then for all r ≥ s1

we have that u ∈ ĊT(r−s1)/γ1;r,p,q.

Before starting the proof, recall from Theorem 1.1 that s1 > 0 and that

γ1 > 1, γ2 > 0, s2 > γ2,

s2 − s1 < min{γ1/2, 1},
γ1 ≥ s2 − s1 + n/p+ 1.

(7.1)

Proof. We start with the solution u given by Theorem 1.1. Then let δ > 0 be
arbitrary and let v = tδu. We note that v(0) = v0 = 0. Then

∂tv = δtδ−1u+ tδ∂tu

= δt−1v + tδP (L1u− (1− L2)−1 div(u⊗ (1− L2)u))

= δt−1v + L1v − t−δP (1− L2)−1 div(v ⊗ (1− L2)v)).

Applying Duhamel’s principle, we obtain

v = etL1v0 + δ

∫ t

0

e(t−s)L1s−1v(s)ds+
∫ t

0

e(t−s)L1s−δW (v(s))ds

= δ

∫ t

0

e(t−s)L1s−1v(s)ds+
∫ t

0

e(t−s)L1s−δW (v(s))ds,
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where we recall W (f, g) = −P (1−L2)−1 div(f(s)⊗(1−L2)g(s)) (and for notational
convenience set W (f, f) = W (f)) and in the last line used that v0 = 0. Using
v = tδu, we obtain

u = δt−δ
∫ t

0

e(t−s)L1sδ−1u(s)ds+ t−δ
∫ t

0

e(t−s)L1sδW (u(s))ds.

The key idea here is that we can choose δ to be large enough to cancel any singu-
larities that occur at s = 0. Now we are ready to set up the induction. We have
by Theorem 1.1 that the local solution u is in ĊT(s2−s1)/γ1;s2,p,q

, where s2 > γ2. For
induction, we assume this solution u is also in ĊT(k−s1)/γ1;k,p,q for some k ≥ s2, and
seek to show that u is in ĊTa∗;k+h,p,q, where a∗ = (k + h − s1)/γ1 and h is a fixed
number between 0 and 1 which will be chosen later.

An application of Proposition 6.8 gives

‖u‖Bk+hp,q

≤ t−δ
(
δ

∫ t

0

‖e(t−s)L1sδ−1u(s)‖Bk+hp,q
ds+

∫ t

0

‖e(t−s)L1sδW (u(s))‖Bk+hp,q
ds
)

≤ Ct−δδ
∫ t

0

|t− s|−h/γ1sδ−1‖u(s)‖Bkp,q

+ t−δ
∫ t

0

|t− s|−b1/γ1sδ‖W (u(s))‖Bk−1
p̃,q

ds,

(7.2)

where b1 = h+ 1 + n/p̃− n/p.
For the first term in the right hand side of (7.2), we have

t−δ
∫ t

0

|t− s|−h/γ1sδ−1‖u(s)‖Bkp,qds

≤ t−δ‖u‖(k−s1)/γ1;k,p,q

∫ t

0

|t− s|−h/γ1sδ−1−(k−s1)/γ1ds

≤ C‖u‖(k−s1)/γ1;k,p,qt
−δt−h/γ1tδ−1−(k−s1)/γ1+1

≤ Ct−(k+h−s1)/γ1‖u‖(k−s1)/γ1;k,p,q

(7.3)

This calculation implicitly assumes that the exponents of |t−s| and s in the integral
are both strictly greater than negative 1. For |t− s|, this holds provided h/γ1 < 1.
For s, it works for a sufficiently large choice of δ. We note that without modifying
the PDE to include these tδ terms, we would need (k − s1)/γ1 to be less than 1,
which does not hold for large k.

For the second piece, we start by bounding ‖W (u)‖Bk−1
p̃,q

. Using Proposition 5.3,
Proposition 2.2, and finally Proposition 5.2 and Proposition 2.1, we obtain

‖W (u(s))‖Bk−1
p̃,q
≤ ‖u⊗ (1− L2)u‖

B
k−γ2
p̃,q

≤ ‖u‖Lp1 ‖(1− L2)u‖
B
k−γ2
p,q

+ ‖u‖
B
k−γ2
p,q
‖(1− L2)u‖Lp3

≤ ‖u‖
B
r
+
1
p,q

‖u‖Bkp,q + ‖u‖
B
k−γ2
p,q
‖u‖

B
γ2+r+2
p,q

(7.4)

where
1/p̃ = 1/p1 + 1/p = 1/p+ 1/p2,

pi =
np

n− rip
, i = 1, 2

(7.5)
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and
ri < n/p, i = 1, 2,

r1 < s2 ≤ k,
r2 < s2 − γ2 ≤ k − γ2.

(7.6)

Using (7.4) in the last term in (7.2), we obtain

t−δ
∫ t

0

|t− s|−b1/γ1sδ‖W (u)‖Bk−1
p̃,q

ds ≤ I1 + I2, (7.7)

where

I1 = t−δ
∫ t

0

|t− s|−b1/γ1sδ‖u(s)‖
B
r
+
1
p,q

‖u(s)‖Bkp,qds,

I2 = t−δ
∫ t

0

|t− s|−b1/γ1sδ‖u(s)‖
B
k−γ2
p,q
‖u(s)‖

B
γ2+r+2
p,q

ds.

Working on I1, and setting a1 = (r+
1 − s1)/γ1 a2 = (k − s1)/γ1, and recalling that

b1 = h+ 1 + n/p̃− n/p, we have

I1 ≤ Ct−δ‖u‖a1;r+1 ,p,q
‖u‖a2;k,p,q

∫ t

0

|t− s|−b1/γ1sδ−a1−a2ds

≤ Ct−δ‖u‖a1;r+1 p,q
‖u‖a2;k,p,qt

−b1/γ1+δ−a1−a2+1

≤ Ct−(h+1+k+r+1 +n/p̃−n/p−2s1)/γ1+1

provided b1 < γ1. For the last inequality, we recall that ‖u‖a2;k,p,q is bounded (by
the induction hypothesis) and since r1 < k (by (7.6)), we have by interpolation
that ‖u‖a1;r+1 ,p,q

is also bounded. Incorporating the relevant constraints from (7.5)
and (7.6) gives

I1 ≤ Ct−(h+1+k+r+1 +n/p̃−n/p−2s1)/γ1+1

≤ Ct−(h+k−s1)/γ1−(1+n/p−s1+ε)/γ1+1,
(7.8)

with the constraint h + 1 + n/p − r+
1 < γ1 and where ε = r+ − r1. By the last

inequality in (7.1), we know that γ1−1−n/p > 0, so the constraint will be satisfied
if we choose h to be small enough so that r+

1 > h. Note that r1 < min{s2, n/p}, so
this choice only depends on s2, n, and p.

Also from (7.1), we have

1− (1 + n/p− s1 + ε)/γ1 = 1− (1 + n/p− s1 + s2)/γ1 + (s2 − ε)/γ1 ≥ s2/γ.

Applying this to (7.8), we finally get

I1 ≤ Ct−(h+k−s1)/γ1+(s2−ε)/γ1 . (7.9)

A similar calculation for I2 yields

I2 ≤ C‖u‖a3;k−γ2,p,q‖u‖a4;γ2+r+2 ,p,q
t−(h+k−s1)/γ1+s2/γ1

≤ Ct−(h+k−s1)/γ1+(s2−ε)/γ1 ,
(7.10)

where we recall that r+
2 < s2 − γ2 < k − γ2 and we have set

a3 = (k − γ2 + r+
2 − s1)/γ1, a4 = (γ2 + r3 − s1)/γ1.

This also requires setting r+
2 > h, which now means the choice of h also depends

on γ2.
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Using (7.9) and (7.10) in (7.7), we have

t−δ
∫ t

0

|t− s|−b1/γ1sδ‖W (u)‖Bk−1
p̃,q

ds ≤ Ct−(h+k−s1)/γ1+(s2−ε)/γ1 , (7.11)

and using (7.3) and (7.11) in (7.2) gives

‖u(t)‖Bk+hp,q
≤ Cδt−(k+h−s1)/γ1‖u‖(k−s1)/γ1;k,p,q + Ct−(h+k−s1)/γ1+(s2−ε)/γ1 ,

Multiplying both sides by t(k+h−s1)/γ1 and taking the supremem over t, we finally
get

‖u‖(k+h−s1)/γ1;k+h,p,q ≤ Cδ‖u‖(k−s1)/γ1;k,p,q + C sup
t≤T

ts2/γ1 ,

which completes the induction argument. We remark that δ is chosen after begin-
ning the induction step (and thus can be absorbed into the constant), while the
appropriate value of h is fixed by the known parameters n, p, s1, s2, and γ2. �
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