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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO NONLINEAR RADIAL p-LAPLACIAN EQUATIONS

SYRINE MASMOUDI, SAMIA ZERMANI

Abstract. This article concerns the existence, uniqueness and boundary be-

havior of positive solutions to the nonlinear problem

1

A
(AΦp(u′))′ + a1(x)uα1 + a2(x)uα2 = 0, in (0, 1),

lim
x→0

AΦp(u′)(x) = 0, u(1) = 0,

where p > 1, α1, α2 ∈ (1 − p, p − 1), Φp(t) = t|t|p−2, t ∈ R, A is a positive

differentiable function and a1, a2 are two positive measurable functions in (0, 1)
satisfying some assumptions related to Karamata regular variation theory.

1. Introduction

In recent years, the existence of positive solutions for elliptic problems involving
the p-Laplacian has found considerable interest and different approaches have been
developed. This is due to their signification in various areas of pure and applied
mathematics including geological sciences, fluid dynamics, electrostatics, cosmology
(see [1, 2, 6, 10, 12]), as well as in relation to inequalities of Poincaré, Writinger,
Sobolev type and isoperimetric inequalities (see [3, 8, 9, 13, 15]). Motivations for
studying radial solutions can be found in [4, 5, 11, 13, 19] and references therein.

Mâagli et al [15] considered the quasilinear elliptic problem

−∆pu := −div(|∇u|p−2∇u) = q(x)uα in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a C2 bounded domain of Rn (n ≥ 2), p > 1, the exponent α ∈ (−1, p−1)
and q ∈ C(Ω) is a positive function having singular behavior near the boundary
∂Ω. More precisely, let d(x) be the Euclidean distance of x ∈ Ω to ∂Ω then
q(x) = d(x)−βL(d(x)), with 0 < β < p and L belongs to a functional class K called
Karamata class and defined on (0, η], (η > diam(Ω)) by

K :=
{
t→ L(t) := c exp

(∫ η

t

z(s)
s
ds
)

: c > 0 and z ∈ C([0, η]), z(0) = 0
}
.

For the convenience of the readers, we briefly describe the result proved in [15].
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Theorem 1.1 ([15]). Let L ∈ K ∩ C2((0, η]) such that
∫ η
0
t

1−β
p−1L(t)

1
p−1 dt < ∞.

Then problem (1.1) has a unique positive and continuous solution u satisfying, for
x ∈ (0, 1),

u(x) ≈



(∫ d(x)
0

s−1L(s)
1
p−1 ds

) p−1
p−1−α

if β = p,

d(x)
p−β
p−1−αL(d(x))

1
p−1−α if 1 + α ≤ β < p,

d(x)
( ∫ η

d(x)
s−1L(s)ds

) 1
p−1−α

if β = 1 + α,

d(x) if β < 1 + α.

(1.2)

Here and throughout this paper, the notation f(x) ≈ g(x), x ∈ S for f and g
nonnegative functions defined on a set S, means that there exists c > 0 such that
1
cg(x) ≤ f(x) ≤ cg(x), for each x ∈ S.

If Ω is the unit ball, similar result was shown in [4] for radial solution of problem
(1.1) which becomes in the radial form

1
A

(AΦp(u′))′ + q(x)uα = 0, in (0, 1),

lim
x→0

AΦp(u′)(x) = 0, u(1) = 0,
(1.3)

where Φp(t) = t|t|p−2, t ∈ R and A(t) = tn−1. Indeed, by using Karamata variation
theory, the authors in [4] established existence and asymptotic behavior of a unique
positive continuous solution to (1.3) for α < p− 1 and for a large class of functions
A including the example A(t) = tn−1. More precisely, they proved Theorem 1.3
below under the following assumptions:

(H0) A is a continuous function in [0, 1), positive and differentiable in (0, 1) such
that

A(x) ≈ xλ(1− x)µ,

where λ ≥ 0 and µ < p− 1.
(H1) q is a positive measurable function on (0, 1) such that

q(x) ≈ (1− x)−βL(1− x)

with β ≤ p and L ∈ K defined on (0, η] (η > 1) such that∫ η

0

t
1−β
p−1L(t)

1
p−1 dt <∞.

Remark 1.2. We need to verify condition
∫ η
0
t

1−β
p−1L(t)

1
p−1 dt < ∞ in hypothesis

(H1), only for β = p. This is due to Karamata’s theorem which we recall in Lemma
2.2 below.

Theorem 1.3 ([4]). Assume (H0)–(H1) hold. Then problem (1.3) has a unique
positive and continuous solution u satisfying, for x ∈ (0, 1),

u(x) ≈ (1− x)min ( p−β
p−1−α ,

p−1−µ
p−1 )ΨL,β,α(x), (1.4)
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where ΨL,β,α is the function defined on (0, 1) by

ΨL,β,α(x) :=



(∫ 1−x
0

s−1L(s)
1
p−1 ds

) p−1
p−1−α

if β = p,

L(1− x)
1

p−1−α if (µ+1)(p−1−α)+αp
p−1 < β < p,( ∫ η

1−x s
−1L(s)ds

) 1
p−1−α

if β = (µ+1)(p−1−α)+αp
p−1 ,

1 if β < (µ+1)(p−1−α)+αp
p−1 .

(1.5)

For the special case when A(t) = tn−1 the estimates (1.2) and (1.4) are the same.
In this article, we study the boundary-value problem

1
A

(AΦp(u′))′ + a1(x)uα1 + a2(x)uα2 = 0, in (0, 1),

lim
x→0

AΦp(u′)(x) = 0, u(1) = 0,
(1.6)

where α1, α2 ∈ (1 − p, p − 1) and A satisfies (H0). Our purpose is to establish an
existence and a uniqueness of a continuous solution to (1.6) and to give estimates
on such solution, where appear the combined effects of singular and sublinear terms
in the nonlinearity.

The pure elliptic semilinear problem corresponding to (1.6) is

∆u+ a1(x)uα1 + a2(x)uα2 = 0, in Ω,
u = 0, on ∂Ω,

(1.7)

which has been studied by several authors on smooth domains, see for example
[7, 14, 16, 17, 20] and references therein.

Let us introduce our conditions on the functions ai:
(H2) For i ∈ {1, 2}, ai is a positive measurable function and satisfies for each

x ∈ (0, 1)
ai(x) ≈ (1− x)−βiLi(1− x),

where βi ≤ p and Li ∈ K defined on (0, η], (η > 1) such that∫ η

0

t
1−βi
p−1 Li(t)

1
p−1 dt <∞.

As it turns out, estimates (1.4) depend closely on min ( p−β
p−1−α ,

p−1−µ
p−1 ). Also, as

it will be seen, the numbers

δ1 = min (
p− β1

p− 1− α1
,
p− 1− µ
p− 1

),

δ2 = min (
p− β2

p− 1− α2
,
p− 1− µ
p− 1

)

play a crucial role in the combined effects of singular and sublinear nonlinearities
in problem (1.6) and lead to a competition. However, without loss of generality,
we can suppose that p−β1

p−1−α1
≤ p−β2

p−1−α2
and we introduce the function θ defined on

(0, 1) by

θ(x) :=

{
(1− x)δ1ΨL1,β1,α1(x) if δ1 < δ2,

(1− x)δ1(ΨL1,β1,α1(x) + ΨL2,β2,α2(x)) if δ1 = δ2,
(1.8)

where for i ∈ {1, 2}, ΨLi,βi,αi is the function defined by (1.5).
Now, we are ready to state our main result.
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Theorem 1.4. Assume (H0) and (H2) hold and suppose that α1, α2 ∈ (1−p, p−1).
Then problem (1.6) has a unique positive and continuous solution u satisfying, for
each x ∈ (0, 1),

u(x) ≈ θ(x), (1.9)

where θ is the function defined by (1.8).

The outline of this article is as follows. In Section 2, we give some already
known results on functions in K useful for our study and we give estimates of some
potential functions. In Section 3, we prove our main result.

2. Preliminary results

Our arguments combine a method of fixed point theorem with Karamata regular
variation theory. So, we are quoting some properties of functions in K useful for
our study.

2.1. The Karamata class K. It is obvious to see that a function L is in K if and
only if L is a positive function in C1((0, η]) such that

lim
t→0

tL′(t)
L(t)

= 0.

A standard function belonging to the class K is given by

L(t) :=
p∏
k=1

(logk(
ω

t
))λk ,

where p ∈ N∗, (λ1, λ2, . . . , λp) ∈ Rp, ω is a positive real number sufficiently large
and logk(x) = log o log o . . . .o log(x) (k times).

Lemma 2.1 ([18]).
(i) Let L ∈ K and ε > 0. Then limt→0 t

εL(t) = 0.
(ii) Let L1, L2 ∈ K, p ∈ R. Then L1 + L2 ∈ K, L1L2 ∈ K and Lp1 ∈ K.

Lemma 2.2 (Karamata’s Theorem). Let L ∈ K be defined on (0, η] and σ ∈ R.
(i) If σ > −1, then

∫ η
0
tσL(t)dt converges and∫ t

0

sσL(s)ds ∼ t1+σL(t)
σ + 1

as t→ 0+.

(ii) If σ < −1, then
∫ η
0
tσL(t)dt diverges and∫ η

t

sσL(s)ds ∼ − t
1+σL(t)
σ + 1

as t→ 0+.

Lemma 2.3 ([7]). Let L ∈ K be defined on (0, η]. Then

t→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η
0
L(t)
t dt converges, then

t→
∫ t

0

L(s)
s

ds ∈ K.
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Lemma 2.4 ([7]). For i ∈ {1, 2}, let ηi < 1 and Li ∈ K. For t ∈ (0, η), put

J(t) =
(∫ η

t

L1(s)
s

ds
) 1

1−η1 +
(∫ η

t

L2(s)
s

ds
) 1

1−η2
.

Then, for t ∈ (0, η), we have∫ η

t

(Jη1L1 + Jη2L2)(s)
s

ds ≈ J(t).

Lemma 2.5 ([7]). For i ∈ {1, 2}, let ηi < 1 and Li ∈ K such that
∫ η
0
Li(s)
s ds <∞.

For t ∈ (0, η), put

I(t) =
(∫ t

0

L1(s)
s

ds
) 1

1−η1 +
(∫ t

0

L2(s)
s

ds
) 1

1−η2
.

Then, for t ∈ (0, η), we have∫ t

0

(Iη1L1 + Iη2L2)(s)
s

ds ≈ I(t).

2.2. Potential estimates. For a nonnegative measurable function f in (0, 1), let

Gpf(x) :=
∫ 1

x

(
1

A(t)

∫ t

0

A(s)f(s)ds)
1
p−1 dt.

We point out that if f is a nonnegative measurable function such that the mapping
x→ A(x)f(x) is integrable in [0, 1], then Gpf is the solution of the problem

1
A

(AΦp(u′))′ + f = 0, in (0, 1),

lim
x→0

AΦp(u′)(x) = 0, u(1) = 0.
(2.1)

In what follows, we aim to prove Proposition 2.8. To this end, we need the following
two lemmas which are proved in [4] and [7].

Lemma 2.6 ([4]). Assume (H0) and (H1) hold. Then for x ∈ (0, 1), we have

Gp(q)(x) ≈ (1− x)min ( p−βp−1 ,
p−1−µ
p−1 )



∫ 1−x
0

L(s)
1
p−1

s ds if β = p,

L(1− x)
1
p−1 if µ+ 1 < β < p,

(
∫ η
1−x

L(s)
s ds)

1
p−1 if β = µ+ 1,

1 if β < µ+ 1.

Lemma 2.7 ([7]). For s, t > 0, η1 < 1 and η2 < 1, we have

2−max(1−η1,1−η2)(t+ s) ≤ t1−η1(t+ s)η1 + s1−η2(t+ s)η2 ≤ 2(t+ s).

Proposition 2.8. Assume (H0) and (H2) hold. Let θ be the function given by
(1.8). Then for x ∈ (0, 1),

Gp(a1θ
α1 + a2θ

α2)(x) ≈ θ(x).

Proof. For t ∈ (0, 1), let

K(t) :=
(
L

1
p−1−α1
1 + L

1
p−1−α2
2

)
(t),

N(t) :=
(∫ η

t

L1(s)
s

ds
) 1
p−1−α1 +

(∫ η

t

L2(s)
s

ds
) 1
p−1−α2

,
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M(t) :=
(∫ t

0

(L1(s))
1
p−1

s
ds
) p−1
p−1−α1 +

(∫ t

0

(L2(s))
1
p−1

s
ds
) p−1
p−1−α2

.

Since δ1 < δ2 is equivalent to p−β1
p−1−α1

< p−β2
p−1−α2

and (µ+1)(p−1−α1)+pα1
p−1 < β1 < p,

we can write

θ(x) =



(∫ 1−x
0

L1(s)
1
p−1

s ds
) p−1
p−1−α1 if β1 = p, β2 < p,

(1− x)
p−β1

p−1−α1 L1(1− x)
1

p−1−α1

if p−β1
p−1−α1

< p−β2
p−1−α2

, (µ+1)(p−1−α1)+pα1
p−1 < β1 < p,

(1− x)
p−β1

p−1−α1K(1− x)
if p−β1
p−1−α1

= p−β2
p−1−α2

, (µ+1)(p−1−α1)+pα1
p−1 < β1 < p,

(1− x)
p−1−µ
p−1 N(1− x)

if β1 = (µ+1)(p−1−α1)+pα1
p−1 , β2 = (µ+1)(p−1−α2)+pα2

p−1 ,

(1− x)
p−1−µ
p−1 (

∫ η
1−x

L1(s)
s ds)

1
p−1−α1

if β1 = (µ+1)(p−1−α1)+pα1
p−1 , β2 <

(µ+1)(p−1−α2)+pα2
p−1 ,

(1− x)
p−1−µ
p−1 if β1 <

(µ+1)(p−1−α1)+pα1
p−1 ,

M(1− x) if β1 = β2 = p.

The main idea is to prove that the function a1θ
α1 +a2θ

α2 satisfies (H1) and then
to apply Lemma 2.6.

Throughout the proof, we use Lemma 2.1 and Lemma 2.3 to verify that some
functions are in K. We distinguish the following cases.
Case 1. β1 = p and β2 < p. Using (H2) we have

a1(x)θα1(x)+a2(x)θα2(x) ≈ (1−x)−pL1(1−x)θα1(x)+(1−x)−β2L2(1−x)θα2(x).

Since θ(x) = (
∫ 1−x
0

s−1L1(s)
1
p−1 ds)

p−1
p−1−α1 <∞, by Lemmas 2.1 and 2.3, the func-

tion x→ Li(1− x)θαi(x) ∈ K, for i ∈ {1, 2}.
Now, using β2 < p we deduce by Lemma 2.1(i) that

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)−pL1(1− x)θα1(x).

Moreover, by calculus we have∫ η

0

(L1(t)θα1(1− t))
1
p−1

t
dt =

∫ η

0

L1(t)
1
p−1

t
(
∫ t

0

L1(s)
1
p−1

s
ds)

α1
p−1−α1 dt

=
p− 1− α1

p− 1
(
∫ η

0

L1(t)
1
p−1

t
dt)

p−1
p−1−α1 <∞ .

So applying Lemma 2.6, for β = p and L(t) = L1(t)θα1(1− t), we obtain

Gp(a1θ
α1 + a2θ

α2)(x) ≈
(∫ 1−x

0

L1(s)
1
p−1

s
ds
) p−1
p−1−α1 = θ(x).

Case 2. p−β1
p−1−α1

< p−β2
p−1−α2

and (µ+1)(p−1−α1)+pα1
p−1 < β1 < p. Using (H2) we have

a1(x)θα1(x) ≈ (1− x)
pα1+β1(1−p)
p−1−α1 L1(1− x)

p−1
p−1−α1
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and
a2(x)θα2(x) ≈ (1− x)α2

p−β1
p−1−α1

−β2(L2L
α2

p−1−α1
1 )(1− x).

Now, since p−β1
p−1−α1

< p−β2
p−1−α2

, we have

(p− β1)(1 +
α1 − α2

p− 1− α1
) < p− β2,

and so
pα1 + β1(1− p)
p− 1− α1

< α2
p− β1

p− 1− α1
− β2.

We deduce by Lemma 2.1(i) that

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)
pα1+β1(1−p)
p−1−α1 L1(1− x)

p−1
p−1−α1 .

Moreover, since (µ+1)(p−1−α1)+pα1
p−1 < β1 < p, we deduce by a simple calculus that

−pα1 + β1(p− 1)
p− 1− α1

∈ (µ+ 1, p).

So applying Lemma 2.6, for β = −pα1+β1(p−1)
p−1−α1

and L(t) = (L1(t))
p−1

p−1−α1 we obtain
that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−β1

p−1−α1 L1(1− x)
1

p−1−α1 = θ(x).

Case 3. p−β1
p−1−α1

= p−β2
p−1−α2

and (µ+1)(p−1−α1)+pα1
p−1 < β1 < p. Using (H2) we have

a1(x)θα1(x) ≈ (1− x)
pα1+β1(1−p)
p−1−α1 (L1K

α1)(1− x)

and
a2(x)θα2(x) ≈ (1− x)α2

p−β1
p−1−α1

−β2(L2K
α2)(1− x).

Now, p−β1
p−1−α1

= p−β2
p−1−α2

is equivalent to

(p− β1)(1 +
α1 − α2

p− 1− α1
) = p− β2;

that is,
pα1 + β1(1− p)
p− 1− α1

= α2
p− β1

p− 1− α1
− β2.

Then

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)
pα1+β1(1−p)
p−1−α1 (L1K

α1 + L2K
α2)(1− x).

Furthermore, the function x → (L1K
α1 + L2K

α2)(1 − x) ∈ K. Now using that
(µ+1)(p−1−α1)+pα1

p−1 < β1 < p, we deduce that

−pα1 + β1(p− 1)
p− 1− α1

∈ (µ+ 1, p).

So applying Lemma 2.6, for β = −pα1+β1(p−1)
p−1−α1

and L = L1K
α1 +L2K

α2 , we obtain
that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−β1

p−1−α1 (L1K
α1 + L2K

α2)
1
p−1 (1− x).

Hence, since αi
p−1 < 1 for i ∈ {1, 2} and

(s+ t)
1
p−1 ≈ s

1
p−1 + t

1
p−1 , for s, t > 0, (2.2)
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applying Lemma 2.7 for t = L1(x)
1

p−1−α1 , s = L2(x)
1

p−1−α2 and ηi = αi
p−1 , (i ∈

{1, 2}), we obtain that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−β1

p−1−α1K(1− x) = θ(x).

Case 4. β1 = (µ+1)(p−1−α1)+pα1
p−1 and β2 = (µ+1)(p−1−α2)+pα2

p−1 . Using (H2) we have

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)−(1+µ)(L1N
α1 + L2N

α2)(1− x).

Furthermore, the function x→ (L1N
α1 +L2N

α2)(1−x) ∈ K. So applying Lemma
2.6 for β = 1 + µ and L = L1N

α1 + L2N
α2 , we obtain that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−1−µ
p−1

(∫ η

1−x

(L1N
α1 + L2N

α2)(t)
t

dt
) 1
p−1

.

Since

Np−1(t) ≈
(∫ η

t

L1(s)
s

ds
) p−1
p−1−α1 +

(∫ η

t

L2(s)
s

ds
) p−1
p−1−α2

,

it follows that Np−1 ≈ J , where J is the function given in Lemma 2.4, for ηi =
αi
p−1 , i ∈ {1, 2}. So, we have

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−1−µ
p−1

(∫ η

1−x

(L1J
η1 + L2J

η2)(t)
t

dt
) 1
p−1

.

Hence, since ηi < 1 for i ∈ {1, 2}, by Lemma 2.4, it follows that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−1−µ
p−1 J

1
p−1 (1− x)

≈ (1− x)
p−1−µ
p−1 N(1− x) = θ(x).

Case 5. β1 = (µ+1)(p−1−α1)+pα1
p−1 and β2 < (µ+1)(p−1−α2)+pα2

p−1 . Let b(1 − x) =( ∫ η
1−x

L1(s)
s ds

) 1
p−1−α1 . Using (H2), we have

a1(x)θα1(x) + a2(x)θα2(x)

≈ (1− x)−(1+µ)(L1b
α1)(1− x) + (1− x)−β2+α2

p−1−µ
p−1 (L2b

α2)(1− x).

Now, since for i ∈ {1, 2}, the function x → (Libαi)(1 − x) ∈ K and −(1 + µ) <
−β2 + α2

p−1−µ
p−1 , it follows from Lemma 2.1(i) that

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)−(1+µ)(L1b
α1)(1− x).

Applying again Lemma 2.6, for β = 1 + µ and L = L1b
α1 , we obtain

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−1−µ
p−1

(∫ η

1−x

(L1b
α1)(s)
s

ds
) 1
p−1−α1 ≈ θ(x).

Case 6. β1 <
(µ+1)(p−1−α1)+pα1

p−1 . Using (H2), we have

a1(x)θα1(x) ≈ (1− x)−β1+α1
p−1−µ
p−1 L1(1− x).

Applying Lemma 2.6 for β = β1 − α1
p−1−µ
p−1 < 1 + µ and L = L1, we deduce that

Gp(a1θ
α1)(x) ≈ (1− x)

p−1−µ
p−1 .
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Moreover, since p−1−µ
p−1 < p−β1

p−1−α1
≤ p−β2

p−1−α2
, it follows that β2 <

(µ+1)(p−1−α2)+pα2
p−1 .

So, in the same manner we obtain

Gp(a2θ
α2)(x) ≈ (1− x)

p−1−µ
p−1 .

Then, we conclude that

Gp(a1θ
α1 + a2θ

α2)(x) ≈ (1− x)
p−1−µ
p−1 = θ(x).

Case 7. β1 = β2 = p. Using (H2), we have

a1(x)θα1(x) + a2(x)θα2(x) ≈ (1− x)−p(L1M
α1 + L2M

α2)(1− x).

Furthermore, the function x→ (L1M
α1 +L2M

α2)(1−x) ∈ K. Now, since αi
p−1 < 1

and
∫ η
0

(Li(s))
1
p−1

s ds <∞, for i ∈ {1, 2}, applying (2.2) and Lemma 2.5 for ηi = αi
p−1 ,

we obtain∫ η

0

(L1M
α1 + L2M

α2)
1
p−1 (t)

t
dt ≈

∫ η

0

(L
1
p−1
1 M

α1
p−1 + L

1
p−1
2 M

α2
p−1 )(t)

t
dt

≈M(η) <∞.

So applying Lemma 2.6 for β = p and L = L1M
α1 + L2M

α2 , by (2.2) we deduce
that

Gp(a1θ
α1 + a2θ

α2)(x) ≈
∫ 1−x

0

((L1M
α1)

1
p−1 + (L2M

α2)
1
p−1 )(t)

t
dt.

Then, using again Lemma 2.5 we conclude that

Gp(a1θ
α1 + a2θ

α2)(x) ≈M(1− x) = θ(x).

�

Proposition 2.9. Assume (H0)–(H1) hold. Then the family of functions

Fq = {x→ Gpf(x); f ∈ B((0, 1)), |f | ≤ q}

is uniformly bounded and equicontinuous in [0, 1]. Consequently Fq is relatively
compact in C([0, 1]).

Proof. Let f be a measurable function such that |f(x)| ≤ q(x), x ∈ (0, 1). By
Proposition 2.6, we have

|Gpf(x)| ≤ Gpq(x) ≈ (1− x)min ( p−βp−1 ,
p−1−µ
p−1 )ΨL,β,0(x).

From Lemma 2.1 and Lemma 2.3, the function x→ (1−x)min ( p−βp−1 ,
p−1−µ
p−1 )ΨL,β,0(x)

is continuous on [0, 1) and tends to zero as x → 1. Then, we prove that Fq is
uniformly bounded and limx→1Gp(f)(x) = 0, uniformly on f .

Moreover, let x, x′ ∈ [0, 1] such that x < x′. Then

|Gpf(x)−Gpf(x′)| ≤
∫ x′

x

( 1
A(t)

∫ t

0

A(s)q(s)ds
) 1
p−1

dt.

Since Gpq(0) <∞, it follows by the dominated convergence theorem, the equicon-
tinuity of Fq in [0, 1]. Hence, by Ascoli’s theorem, we deduce that Fq is relatively
compact in C([0, 1]). �
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3. Proof of main result

3.1. Existence and boundary behavior. Assume (H0) and (H2) hold. Let θ be
the function given by (1.8). By Proposition 2.8, there exists a constant m ≥ 1 such
that for each x ∈ [0, 1),

1
m
θ(x) ≤ Gp(a1θ

α1 + a2θ
α2)(x) ≤ mθ(x). (3.1)

Now, we look at the existence of positive solution of problem (1.6) satisfying u(x) ≈
θ(x). We will use a fixed-point argument. We consider the set

Γ := {u ∈ C([0, 1]) :
1
c0
θ ≤ u ≤ c0θ},

where c0 = m
p−1

p−1−max(|α1|,|α2|) . Obviously, the set Γ is not empty. We consider the
integral operator T on Γ defined by

Tu(x) := Gp(a1u
α1 + a2u

α2)(x), x ∈ [0, 1].

First, we observe that TΓ ⊂ Γ. Indeed, let u ∈ Γ, then for i ∈ {1, 2}, we have

c
−|αi|
0 ai(x)θαi(x) ≤ ai(x)uαi(x) ≤ c|αi|0 ai(x)θαi(x), x ∈ [0, 1).

This and (3.1) imply

1

mc
max(|α1|,|α2|)

p−1
o

θ(x) ≤ Tu(x) ≤ mc
max(|α1|,|α2|)

p−1
o θ(x).

Since mc
max(|α1|,|α2|)

p−1
o = c0 and TΓ ⊂ C([0, 1]), it follows that T leaves invariant the

convex Γ.
Next, let q = c

|α1|
0 a1θ

α1+c|α2|
0 a2θ

α2 . By the proof of Proposition 2.8, the function
q satisfies (H1). Since TΓ is a closed set of Fq, it follows by Proposition 2.9, that
TΓ is relatively compact in C([0, 1]).

Now, we shall prove the continuity of operator T in Γ. Let (un) be a sequence
in Γ converging uniformly to u in Γ. Then, by applying the dominated convergence
theorem, we conclude that for each x ∈ [0, 1], Tun(x) → Tu(x) as n → +∞.
Consequently, as TΓ is relatively compact in C([0, 1]), we deduce that the pointwise
convergence implies the uniform convergence. Namely, ‖Tun − Tu‖∞ → 0 as n→
+∞.

Therefore, T is a compact operator from Γ into itself. So the Schauder fixed-point
theorem implies the existence of u ∈ Γ such that

u = Gp(a1u
α1 + a2u

α2)(x), x ∈ [0, 1].

We conclude that u is a positive continuous solution of problem (1.6) which satisfies
(1.9).

3.2. Uniqueness. Let u and v be two solutions of (1.6) in Γ. Then, there exists a
constant M > 1 such that

1
M
≤ u

v
≤M.

This implies that the set

J = {t ∈ (1,∞) :
1
t
u ≤ v ≤ tu}
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is not empty. Now, put c := inf J . We aim to show that c = 1. Suppose that c > 1
and let α = max(|α1|, |α2|), then we have

− 1
A

(AΦp(v′))′ +
1
A

(AΦp(c
−α
p−1u′))′

= a1(x)(vα1 − c−αuα1) + a2(x)(vα2 − c−αuα2) ≥ 0, in (0, 1),

lim
x→0

(AΦp(v′)−AΦp(c
−α
p−1u′))(x) = 0,

u(1) = v(1) = 0.

This implies that the function

ψ(x) := AΦp(c
−α
p−1u′)−AΦp(v′)(x)

is nondecreasing on (0, 1) with limx→0 ψ(x) = 0. Hence from the monotonicity
of Φp, we obtain that the function c

−α
p−1u − v is nondecreasing on (0, 1) satisfying

(c
−α
p−1u − v)(1) = 0. This implies that c

−α
p−1u ≤ v. On the other hand, we deduce

by symmetry that v ≤ c
α
p−1u. Then, we have c

α
p−1 ∈ J . Now, since α ∈ (0, p− 1),

it follows that c
α
p−1 < c and this yields to a contradiction with the definition of c.

Hence, c = 1 and so u = v.

Example 3.1. Let 1−p < α1 < 0 < α2 < p−1 and β1, β2 < p such that p−β1
p−1−α1

≤
p−β2

p−1−α2
. Let a1, a2 be continuous functions on (0, 1) such that ai(x) ≈ (1− x)−βi ,

for i ∈ {1, 2}. Then problem (1.6) has a unique continuous solution u satisfying for
x ∈ (0, 1),

u(x) ≈



(1− x)
p−β1

p−1−α1 if (µ+1)(p−1−α1)+pα1
p−1 < β1 < p,

(1− x)
p−1−µ
p−1 (log( η

1−x ))
1

p−1−α2

if β1 = (µ+1)(p−1−α1)+pα1
p−1 , β2 = (µ+1)(p−1−α2)+pα2

p−1 ,

(1− x)
p−1−µ
p−1 (log( η

1−x ))
1

p−1−α1

if β1 = (µ+1)(p−1−α1)+pα1
p−1 , β2 <

(µ+1)(p−1−α2)+pα2
p−1 ,

(1− x)
p−1−µ
p−1 if β1 <

(µ+1)(p−1−α1)+pα1
p−1 .
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[14] H. Mâagli; Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Non-
linear Anal. 74 (2011), 2941-2947.
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