Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 173, pp. 1-16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

COMPACTNESS OF THE DIFFERENCE BETWEEN THE POROUS THERMOELASTIC SEMIGROUP AND ITS DECOUPLED SEMIGROUP

EL MUSTAPHA AIT BENHASSI, JAMAL EDDINE BENYAICH, HAMMADI BOUSLOUS, LAHCEN MANIAR

Abstract

Under suitable assumptions, we prove the compactness of the difference between the porous thermoelastic semigroup and its decoupled one. This will be achieved by proving the norm continuity of this difference and the compactness of the difference between the resolvents of their generators. Applications to porous thermoelastic systems are given.

1. Introduction

An increasing interest to determine the decay behavior of solutions of several porous elastic and thermoelastic problems has been discovered recently. The theory of porous elastic material was established first by Cowin and Nunziato [5, 6, 7]. In a recent paper the authors of [25] proved a slow decay of solution of porous elastic system with boundary Dirichlet conditions in one dimensional case. After, Casas and Quintanilla [8], proved the exponential decay of a porous thermoelastic system. This problem has recently been the focus of interest of Glowinsky and Lada [13, 14, 15]. In this work, we consider the abstract porous thermoelastic model

$$
\begin{gather*}
\ddot{w}_{1}(t)+A_{1} w_{1}(t)+C_{1} w_{2}(t)+C_{2} \theta(t)=0, \quad t \geq 0 \tag{1.1}\\
\ddot{w}_{2}(t)+A_{2} w_{2}(t)-C_{1}^{*} w_{1}(t)-C_{3} \theta(t)+D D^{*} \dot{w}_{2}(t)=0, \quad t \geq 0 \tag{1.2}\\
\dot{\theta}(t)+A_{3} \theta(t)-C_{2}^{*} \dot{w}_{1}(t)+C_{3}^{*} \dot{w}_{2}(t)=0, \quad t \geq 0 \tag{1.3}\\
w_{1}(0)=w_{1}^{0}, \quad \dot{w}_{1}(0)=w_{1}^{1}, \quad w_{2}(0)=w_{2}^{0}, \quad \dot{w}_{2}(0)=w_{2}^{1}, \quad \theta(0)=\theta^{0}, \tag{1.4}
\end{gather*}
$$

with its decoupled system

$$
\begin{align*}
& \quad \ddot{w}_{1}(t)+A_{1} w_{1}(t)+C_{1} w_{2}(t)+C_{2} A_{3}^{-1} C_{2}^{*} \dot{w}_{1}(t)-C_{2} A_{3}^{-1} C_{3}^{*} \dot{w}_{2}(t) \tag{1.5}\\
& =0, \quad t \geq 0 \\
& \ddot{w}_{2}(t)+A_{2} w_{2}(t)-C_{1}^{*} w_{1}(t)-C_{3} A_{3}^{-1} C_{2}^{*} \dot{w}_{1}(t)+\left(C_{3} A_{3}^{-1} C_{3}^{*}+D D^{*}\right) \dot{w}_{2}(t) \tag{1.6}\\
& =0, \quad t \geq 0, \\
& \quad \dot{\theta}(t)=-A_{3} \theta(t)+C_{2}^{*} \dot{w}_{1}(t)-C_{3}^{*} \dot{w}_{2}(t), \quad t \geq 0 \tag{1.7}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
w_{1}(0)=w_{1}^{0}, \quad \dot{w}_{1}(0)=w_{1}^{1}, \quad w_{2}(0)=w_{2}^{0}, \quad \dot{w}_{2}(0)=w_{2}^{1}, \quad \theta(0)=\theta^{0} \tag{1.8}
\end{equation*}
$$

\]

The corresponding porous elastic system is given by the first and second equations in the decoupled system (1.5)-1.8),

$$
\begin{align*}
& \quad \ddot{w}_{1}(t)+A_{1} w_{1}(t)+C_{1} w_{2}(t)+C_{2} A_{3}^{-1} C_{2}^{*} \dot{w}_{1}(t)-C_{2} A_{3}^{-1} C_{3}^{*} \dot{w}_{2}(t) \tag{1.9}\\
& =0, \quad t \geq 0, \\
& \ddot{w}_{2}(t)+A_{2} w_{2}(t)-C_{1}^{*} w_{1}(t)-C_{3} A_{3}^{-1} C_{2}^{*} \dot{w}_{1}(t)+\left(C_{3} A_{3}^{-1} C_{3}^{*}+D D^{*}\right) \dot{w}_{2}(t) \tag{1.10}\\
& =0, \quad t \geq 0, \\
& \quad w_{1}(0)=w_{1}^{0}, \quad \dot{w}_{1}(0)=w_{1}^{1}, \quad w_{2}(0)=w_{2}^{0}, \quad \dot{w}_{2}(0)=w_{2}^{1} . \tag{1.11}
\end{align*}
$$

In this article, we first show the existence of solution of problems determined by systems (1.1)-(1.4), (1.5)- 1.8 and $(1.9)-(1.11)$ using the Lumer-Phillips theorem from the theory of semigroups [9, Corollary 3.20]]. Second we address the problem of compactness of difference between the porous-thermoelasticity C_{0}-semigroup $(\mathcal{T}(t))_{t \geq 0}$ generated by the system $\left.\sqrt{1.1}\right)-\sqrt{1.4}$ and the C_{0}-semigroup $\left(\mathcal{T}_{d}(t)\right)_{t \geq 0}$ generated by its decoupled system (1.5)-(1.8). As in [1], we prove the norm continuity of $t \longmapsto \mathcal{T}(t)-\mathcal{T}_{d}(t)$ for $t>0$, and we show the compactness of the difference $R(\lambda, \mathcal{A})-R\left(\lambda, \mathcal{A}_{d}\right)$ for every λ in $\rho(\mathcal{A}) \cap \rho\left(\mathcal{A}_{d}\right)$, where \mathcal{A} and \mathcal{A}_{d} are the generators of $(\mathcal{T}(t))_{t \geq 0}$ and $\left(\mathcal{T}_{d}(t)\right)_{t \geq 0}$, respectively. These two results together with [20, Theorem 2.3] lead to the compactness of the difference $\mathcal{T}(t)-\mathcal{T}_{d}(t)$. This yields that the essential spectrums $\sigma_{e}(\mathcal{T}(t))$, and $\sigma_{e}\left(\mathcal{T}_{d}(t)\right)$ coincide. In the case where the operators A_{3}^{-1} and $A_{1}^{-1 / 2} C_{1} A_{2}^{-1}$ are compact, following a similar argument as in [11], we prove that $\sigma_{e}(\mathcal{S}(t))=\sigma_{e}\left(\mathcal{T}_{d}(t)\right)$, where $(\mathcal{S}(t))_{t \geq 0}$ is the C_{0}-semigroup generated by the system 1.9 - 1.11 .

Consequently one can derive stability results on the first semigroup from the ones of the third semigroup. Finally two applications to a porous thermoelastic system are given. In the first application where $A_{i}^{-1}, i=1,2$ are compact but A_{3}^{-1} is not compact, we show that only the two essential spectrums $\sigma_{e}(\mathcal{T}(t))$, and $\sigma_{e}\left(\mathcal{T}_{d}(t)\right)$ coincide. The second application is similar to the one given by Glowinsky and Lada in [15], where the exponential stability of porous thermoelastic system is derived from the corresponding decoupled system. In this application, following a different approach and using the compactness of $A_{i}^{-1}, i=1,2,3$, we obtain the same stability result first for the simpler porous elastic system, then the property is derived for the original porous thermoelastic system.

2. Main Results

In what follows, $A_{i}: \mathcal{D}\left(A_{i}\right) \subset H_{i} \rightarrow H_{i}, i=1,2,3$, be self-adjoint positive operators with bounded inverses, and H_{i} be Hilbert spaces equipped with the norm $\|\cdot\|_{H_{i}}, i=1,2,3$. The operator A_{i} can be extended (or restricted) to each $H_{i, \alpha}$, such that it becomes a bounded operator

$$
\begin{equation*}
A_{i}: H_{i, \alpha} \rightarrow H_{i, \alpha-1}, \quad \forall \alpha \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

where for $\alpha \geq 0, H_{i, \alpha}=\mathcal{D}\left(A_{i}^{\alpha}\right)$, with the norm $\|z\|_{i, \alpha}=\left\|A_{i}^{\alpha} z\right\|_{H_{i}}$ and for $\alpha \leq 0$, $H_{i, \alpha}=H_{i,-\alpha}^{*}$, the dual of $H_{i,-\alpha}$ with respect to the pivot space H_{i}. The operator $D \in \mathcal{L}\left(H_{2}\right)$ and D^{*} its adjoint. The coupled operators $C_{i}, \mathrm{i}=1,2,3$, satisfy
(C1) $D\left(C_{1}\right) \subset H_{2} \rightarrow H_{1}$, with adjoint C_{1}^{*} such that $D\left(A_{2}^{1 / 2}\right) \hookrightarrow D\left(C_{1}\right)$ and $D\left(A_{1}^{1 / 2}\right) \hookrightarrow D\left(C_{1}^{*}\right)$.
(C2) $D\left(C_{2}\right) \subset H_{3} \rightarrow H_{1}$ with adjoint C_{2}^{*} such that $D\left(A_{3}^{1 / 2}\right) \hookrightarrow D\left(C_{2}\right)$ and $D\left(A_{1}^{1 / 2}\right) \hookrightarrow D\left(C_{2}^{*}\right)$.
(C3) $D\left(C_{3}\right) \subset H_{3} \rightarrow H_{2}$ with adjoint C_{3}^{*} such that

$$
\begin{equation*}
D\left(A_{3}^{1 / 2}\right) \hookrightarrow D\left(C_{3}\right) \quad \text { and } \quad D\left(A_{2}^{1 / 2}\right) \hookrightarrow D\left(C_{3}^{*}\right) \tag{2.2}
\end{equation*}
$$

Set

$$
\mathcal{H}:=H_{1,1 / 2} \times H_{2,1 / 2} \times H_{1} \times H_{2} \times H_{3}
$$

in this Hilbert space we introduce the new inner product

$$
\begin{aligned}
\left\langle\left(\begin{array}{c}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
\theta
\end{array}\right),\left(\begin{array}{c}
\widetilde{w}_{1} \\
\widetilde{w}_{2} \\
\widetilde{v}_{2} \\
\widetilde{\theta}
\end{array}\right)\right\rangle= & \left\langle w_{1}, \widetilde{w}_{1}\right\rangle_{H_{1,1 / 2}}+\left\langle w_{2}, \widetilde{w_{2}}\right\rangle_{H_{2,1 / 2}}+\left\langle v_{1}, \widetilde{v}_{1}\right\rangle_{H_{1}}+\left\langle v_{2}, \widetilde{v}_{2}\right\rangle_{H_{2}} \\
& +\langle\theta, \widetilde{\theta}\rangle_{H_{3}}+\Re\left(\left\langle C_{1}^{*} w_{1}, \widetilde{w}_{2}\right\rangle_{H_{2}}-\left\langle w_{2}, C_{1}^{*} \widetilde{w}_{1}\right\rangle_{H_{2}}\right) .
\end{aligned}
$$

The associated norm of this inner product coincides with the canonical norm of \mathcal{H}.
We can rewrite $(1.1)-(1.4)$ and $(1.5)-(1.8)$ as the first order evolution equations in \mathcal{H},

$$
\begin{gathered}
\frac{d \eta}{d t}=\mathcal{A} \eta, \quad \eta \in \mathcal{H} \\
\eta(0)=\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, \theta^{0}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{d \bar{\eta}}{d t}=\mathcal{A}_{d} \bar{\eta}, \quad \bar{\eta} \in \mathcal{H} \\
\bar{\eta}(0)=\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, \theta^{0}\right),
\end{gathered}
$$

respectively, where \mathcal{A} is the unbounded linear operator defined by

$$
\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}, \quad \mathcal{A}=\left(\begin{array}{ccccc}
0 & 0 & I & 0 & 0 \tag{2.3}\\
0 & 0 & 0 & I & 0 \\
-A_{1} & -C_{1} & 0 & 0 & -C_{2} \\
C_{1}^{*} & -A_{2} & 0 & -D D^{*} & C_{3} \\
0 & 0 & C_{2}^{*} & -C_{3}^{*} & -A_{3}
\end{array}\right)
$$

with

$$
\begin{equation*}
\mathcal{D}(\mathcal{A})=\mathcal{D}\left(A_{1}\right) \times \mathcal{D}\left(A_{2}\right) \times \mathcal{D}\left(A_{1}^{1 / 2}\right) \times \mathcal{D}\left(A_{2}^{1 / 2}\right) \times \mathcal{D}\left(A_{3}\right) \tag{2.4}
\end{equation*}
$$

and the operator \mathcal{A}_{d} associated to the decoupled system

$$
\begin{align*}
\mathcal{A}_{d}: \mathcal{D}\left(\mathcal{A}_{d}\right) & =\mathcal{D}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}, \mathcal{A}_{d} \\
& =\left(\begin{array}{ccccc}
0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & I & 0 \\
-A_{1} & -C_{1} & -C_{2} A_{3}^{-1} C_{2}^{*} & C_{2} A_{3}^{-1} C_{3}^{*} & 0 \\
C_{1}^{*} & -A_{2} & C_{3} A_{3}^{-1} C_{2}^{*} & -C_{3} A_{3}^{-1} C_{3}^{*}-D D^{*} & 0 \\
0 & 0 & C_{2}^{*} & -C_{3}^{*} & -A_{3}
\end{array}\right) . \tag{2.5}
\end{align*}
$$

We rewrite the coupled second order system 1.9 -1.11) on the Hilbert space

$$
\mathcal{H}_{c}:=H_{1,1 / 2} \times H_{2,1 / 2} \times H_{1} \times H_{2}
$$

as the first order evolution equation

$$
\begin{gathered}
\frac{d \widetilde{\eta}}{d t}=\mathcal{M} \widetilde{\eta}, \quad \widetilde{\eta} \in \mathcal{H}_{c} \\
\widetilde{\eta}^{0}=\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}\right)
\end{gathered}
$$

and $\mathcal{M}: \mathcal{D}(\mathcal{M}) \subset \mathcal{H}_{c} \rightarrow \mathcal{H}_{c}$, is the unbounded linear operator defined by

$$
\mathcal{M}=\left(\begin{array}{cccc}
0 & 0 & I & 0 \tag{2.6}\\
0 & 0 & 0 & I \\
-A_{1} & -C_{1} & -C_{2} A_{3}^{-1} C_{2}^{*} & C_{2} A_{3}^{-1} C_{3}^{*} \\
C_{1}^{*} & -A_{2} & C_{3} A_{3}^{-1} C_{2}^{*} & -C_{3} A_{3}^{-1} C_{3}^{*}-D D^{*}
\end{array}\right),
$$

with

$$
\begin{equation*}
\mathcal{D}(\mathcal{M})=\mathcal{D}\left(A_{1}\right) \times \mathcal{D}\left(A_{2}\right) \times \mathcal{D}\left(A_{1}^{1 / 2}\right) \times \mathcal{D}\left(A_{2}^{1 / 2}\right) \tag{2.7}
\end{equation*}
$$

Now we formulate the main results of this paper.
Theorem 2.1. The operators $\mathcal{A}, \mathcal{A}_{d}$ and \mathcal{M} generate strongly continuous contraction semigroups $(\mathcal{T}(t))_{t \geq 0},\left(\mathcal{T}_{d}(t)\right)_{t \geq 0}$ on \mathcal{H} and $(\mathcal{S}(t))_{t \geq 0}$ on \mathcal{H}_{c}.

Theorem 2.2. Assume that

$$
\begin{equation*}
A_{1}^{-1 / 2} C_{2} A_{3}^{-1}, \quad A_{1}^{-1 / 2} C_{1} A_{2}^{-1}, \quad A_{2}^{-1 / 2} C_{3} A_{3}^{-1} \tag{2.8}
\end{equation*}
$$

are compact operators from H_{3} to H_{1}, from H_{2} to H_{1} and from H_{3} to H_{2} respectively. Then $\mathcal{T}(t)-\mathcal{T}_{d}(t)$ is compact for every $t \geq 0$.

As a consequence of Theorem 2.2, we have the following particular results.
Corollary 2.3. Assume that the operators $A_{i}^{-1}, i=1,2$, are compact. Then $\mathcal{T}(t)-\mathcal{T}_{d}(t)$ is compact for every $t \geq 0$.

Corollary 2.4. Assume that the operators A_{3}^{-1} and $A_{1}^{-1 / 2} C_{1} A_{2}^{-1}$ are compact. Then $\sigma_{e}(\mathcal{T}(t))=\sigma_{e}(\mathcal{S}(t))$ for $t \geq 0$.

3. Well-Posedness Results

In this section we use Lumer-Phillips theorem (see [9, Corollary 3.20]) for the proof of Theorem 2.1.
3.1. Porous thermoelastic system. To show that the operator $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$ defined by 2.3 - 2.4 generates a contraction semigroup on the Hilbert \mathcal{H}, we need the following technical lemma.

Lemma 3.1. The operator \mathcal{A} is invertible in \mathcal{H} and \mathcal{A}^{-1} is bounded on \mathcal{H}.
Proof. Given a vector $\left(\begin{array}{c}f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ f_{5}\end{array}\right) \in \mathcal{H}$, we need $\left(\begin{array}{c}w_{1} \\ w_{2} \\ v_{1} \\ v_{2} \\ w_{3}\end{array}\right) \in \mathcal{D}(\mathcal{A})$, such that

$$
\mathcal{A}\left(\begin{array}{l}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right) .
$$

We have

$$
\mathcal{A}\left(\begin{array}{l}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
v_{1}=f_{1}, \\
v_{2}=f_{2}, \\
A_{1} w_{1}+C_{1} w_{2}+C_{2} w_{3}=-f_{3}, \\
-C_{1}^{*} w_{1}+A_{2} w_{2}+D D^{*} v_{2}-C_{3} w_{3}=-f_{4}, \\
-C_{2}^{*} v_{1}+C_{3}^{*} v_{2}+A_{3} w_{3}=-f_{5} .
\end{array}\right.
$$

Hence

$$
\begin{aligned}
& \mathcal{A}\left(\begin{array}{l}
w_{1} \\
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{1}=f_{1}, \\
f_{1} \\
f_{2} \\
f_{4} \\
f_{5}
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
v_{2}=f_{2}, \\
A_{1} w_{1}+C_{1} w_{2}+C_{2} w_{3}=-f_{3}, \\
-C_{1}^{*} w_{1}+A_{2} w_{2}-C_{3} w_{3}=-f_{4}-D D^{*} f_{2}, \\
w_{3}=-A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right),
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
v_{1}=f_{1}, \\
v_{2}=f_{2}, \\
A_{1} w_{1}+C_{1} w_{2}=C_{2} A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right)-f_{3}=K_{1}, \\
-C_{1}^{*} w_{1}+A_{2} w_{2}=-C_{3} A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right)-f_{4}-D D^{*} f_{2}=K_{2}, \\
w_{3}=-A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right),
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
v_{1}=f_{1}, \\
v_{2}=f_{2}, \\
w_{1}=-A_{1}^{-1} C_{1} w_{2}+A_{1}^{-1} K_{1}, \\
\left(C_{1}^{*} A_{1}^{-1} C_{1}+A_{2}\right) w_{2}=K_{2}+C_{1}^{*} A_{1}^{-1} K_{1}, \\
w_{3}=-A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right) .
\end{array}\right.
\end{aligned}
$$

We have

$$
v_{1}=f_{1} \in H_{1,1 / 2}, \quad v_{2}=f_{2} \in H_{2,1 / 2}, \quad w_{3}=-A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right) \in \mathcal{D}\left(A_{3}\right)
$$

Suppose that we have found w_{2} with the appropriate regularity. Then,

$$
w_{1}=-A_{1}^{-1} C_{1} w_{2}+A_{1}^{-1} K_{1} \in \mathcal{D}\left(A_{1}\right)
$$

We now solve the equation

$$
\begin{equation*}
\left(C_{1}^{*} A_{1}^{-1} C_{1}+A_{2}\right) w_{2}=K_{2}+C_{1}^{*} A_{1}^{-1} K_{1} \tag{3.1}
\end{equation*}
$$

To find w_{2} we introduce a bilinear form Λ on $\mathcal{D}\left(A_{2}^{1 / 2}\right)$, defined by

$$
\Lambda(\eta, \zeta)=\left\langle A_{1}^{-1 / 2} C_{1} \eta, A_{1}^{-1 / 2} C_{1} \zeta\right\rangle+\left\langle A_{2}^{\frac{1}{2}} \eta, A_{2}^{\frac{1}{2}} \zeta\right\rangle
$$

Since Λ is a bilinear continuous and coercive form on $\mathcal{D}\left(A_{2}^{1 / 2}\right)$, the Lax-Milgram Lemma leads to the existence and uniqueness of $w_{2} \in \mathcal{D}\left(A_{2}^{1 / 2}\right)$ solution to the equation (3.1).

Moreover $K_{2}+C_{1}^{*} A_{1}^{-1} K_{1}-C_{1}^{*} A_{1}^{-1} C_{1} w_{2} \in H_{2}$ and $\left[\left(A_{2}\right)_{-1}\right]^{-1} H_{2}=\mathcal{D}\left(A_{2}\right)$, (where $\left(A_{2}\right)_{-1}$ is an extension of A_{2}), then $w_{2} \in \mathcal{D}\left(A_{2}\right)$, (see [3, Proposision 5]). Set $B_{1}=\left(C_{1}^{*} A_{1}^{-1} C_{1}+A_{2}\right)^{-1}$, then we have

$$
\mathcal{A}\left(\begin{array}{l}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
v_{1}=f_{1} \\
v_{2}=f_{2} \\
w_{1}=-A_{1}^{-1} C_{1} w_{2}+A_{1}^{-1} K_{1} \\
w_{2}=B_{1} K_{2}+B_{1} C_{1}^{*} A_{1}^{-1} K_{1} \\
w_{3}=-A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right)
\end{array}\right.
$$

$$
\Leftrightarrow\left\{\begin{aligned}
v_{1}= & f_{1}, \\
v_{2}= & f_{2}, \\
w_{1}= & \left(-A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{2}^{*}+A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}\right. \\
& \left.-A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}\right) f_{1}+\left(A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{3}^{*}+A_{1}^{-1} C_{1} B_{1} D D^{*}\right. \\
& \left.-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}+A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}\right) f_{2} \\
& +\left(A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1}-A_{1}^{-1}\right) f_{3}+A_{1}^{-1} C_{1} B_{1} f_{4} \\
& +\left(A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}+A_{1}^{-1} C_{2} A_{3}^{-1}\right) f_{5}, \\
w_{2}= & \left(B_{1} C_{3} A_{3}^{-1} C_{2}^{*}-B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}\right) f_{1} \\
& +\left(-B_{1} C_{3} A_{3}^{-1} C_{3}^{*}-B_{1} D D^{*}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}\right) f_{2} \\
& -B_{1} C_{1}^{*} A_{1}^{-1} f_{3}-B_{1} f_{4}+\left(-B_{1} C_{3} A_{3}^{-1}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}\right) f_{5} \\
w_{3}= & -A_{3}^{-1}\left(f_{5}-C_{2}^{*} f_{1}+C_{3}^{*} f_{2}\right)
\end{aligned}\right.
$$

Thus,

$$
\mathcal{A}^{-1}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & A_{1}^{-1} C_{1} B_{1} & a_{15} \tag{3.2}\\
a_{21} & a_{22} & -B_{1} C_{1}^{*} A_{1}^{-1} & -B_{1} & a_{25} \\
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
A_{3}^{-1} C_{2}^{*} & -A_{3}^{-1} C_{3}^{*} & 0 & 0 & -A_{3}^{-1}
\end{array}\right)
$$

where

$$
\begin{gathered}
a_{11}=-A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{2}^{*}+A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}-A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}, \\
a_{12}=A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{3}^{*}+A_{1}^{-1} C_{1} B_{1} D D^{*}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*} \\
+A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}, \\
a_{13}=A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1}-A_{1}^{-1}, \\
a_{15}=A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}+A_{1}^{-1} C_{2} A_{3}^{-1}, \\
a_{21}=B_{1} C_{3} A_{3}^{-1} C_{2}^{*}-B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*} \\
a_{22}=-B_{1} C_{3} A_{3}^{-1} C_{3}^{*}-B_{1} D D^{*}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*} \\
a_{25}=-B_{1} C_{3} A_{3}^{-1}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}
\end{gathered}
$$

The boundedness of the operator \mathcal{A}^{-1} follows by the assumptions 2.2.
Now, to prove that the operator \mathcal{A} generates a strongly continuous contraction semigroup $(\mathcal{T}(t))_{t \geq 0}$ on \mathcal{H}, we have only to show that $(\mathcal{A}, \mathcal{D}(\mathcal{A}))$ is a dissipative operator on \mathcal{H} and $\lambda I-\mathcal{A}$ is surjective for some $\lambda>0$.

For every $\left(\begin{array}{c}w_{1} \\ w_{2} \\ v_{1} \\ v_{2} \\ w_{3}\end{array}\right) \in \mathcal{D}(\mathcal{A})$, by the Cauchy-Schwartz inequality, we have

$$
\begin{aligned}
& \Re\left(\left\langle\mathcal{A}\left(\begin{array}{c}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right),\left(\begin{array}{c}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right)\right\rangle\right)=\Re\left(\left\langle\left(\begin{array}{c}
v_{1} \\
v_{2} \\
-A_{1} w_{1}-C_{1} w_{2}-C_{2} w_{3} \\
C_{1}^{*} w_{1}-A_{2} w_{2}-D D^{*} v_{2}+C_{3} w_{3} \\
C_{2}^{*} v_{1}-C_{3}^{*} v_{2}-A_{3} w_{3}
\end{array}\right),\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{1} \\
v_{2} \\
w_{3}
\end{array}\right)\right\rangle\right) \\
& =\Re\left(\left\langle v_{1}, w_{1}\right\rangle_{H_{1,1 / 2}}+\left\langle v_{2}, w_{2}\right\rangle_{H_{2,1 / 2}}-\left\langle A_{1} w_{1}, v_{1}\right\rangle_{H_{1}}-\left\langle C_{1} w_{2}, v_{1}\right\rangle_{H_{1}}\right. \\
& \quad-\left\langle C_{2} w_{3}, v_{1}\right\rangle_{H_{1}}+\left\langle C_{1}^{*} w_{1}, v_{2}\right\rangle_{H_{2}}-\left\langle A_{2} w_{2}, v_{2}\right\rangle_{H_{2}}-\left\langle D D^{*} v_{2}, v_{2}\right\rangle_{H_{2}} \\
& \quad+\left\langle C_{3} w_{3}, v_{2}\right\rangle_{H_{2}}+\left\langle C_{2}^{*} v_{1}, w_{3}\right\rangle_{H_{3}}-\left\langle C_{3}^{*} v_{2}, w_{3}\right\rangle_{H_{3}}-\left\langle A_{3} w_{3}, w_{3}\right\rangle_{H_{3}} \\
& \left.\left.\quad+\left\langle C_{1}^{*} v_{1}, w_{2}\right\rangle_{H_{2}}-<v_{2}, C_{1}^{*} w_{1}\right\rangle_{H_{2}}\right) \\
& =-\left\|D^{*} v_{2}\right\|_{H_{2}}^{2}-\left\|A_{3}^{1 / 2} w_{3}\right\|_{H_{3}}^{2} \leq 0 .
\end{aligned}
$$

Finally, \mathcal{A} is dissipative. By a standard argument, one shows that $(\lambda I-\mathcal{A})$ is surjective for $\lambda \in\left(0, \frac{1}{\left\|\mathcal{A}^{-1}\right\|}\right)$. Thus, [9, Corollary 3.20] leads to the claim.
3.2. Decoupled system. We show that the operator $\left(\mathcal{A}_{d}, \mathcal{D}\left(\mathcal{A}_{d}\right)\right)$, associated with the decoupled system $(1.5)-(1.8)$, generates a contraction semigroup on the Hilbert space \mathcal{H}. For this, we first show the following lemma.

Lemma 3.2. The operator \mathcal{A}_{d} is boundedly invertible in \mathcal{H}.
Proof. Following the argument of the proof of Lemma 3.1, we show that the operator \mathcal{A}_{d} is invertible and

$$
\mathcal{A}_{d}^{-1}=\left(\begin{array}{ccccc}
b_{11} & b_{12} & b_{13} & A_{1}^{-1} C_{1} B_{1} & 0 \tag{3.3}\\
b_{21} & b_{22} & -B_{1} C_{1}^{*} A_{1}^{-1} & -B_{1} & 0 \\
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
A_{3}^{-1} C_{2}^{*} & -A_{3}^{-1} C_{3}^{*} & 0 & 0 & -A_{3}^{-1}
\end{array}\right)
$$

where

$$
\begin{gathered}
b_{11}=-A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{2}^{*}+A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}-A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}, \\
b_{12}=A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{3}^{*}+A_{1}^{-1} C_{1} B_{1} D D^{*}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*} \\
+A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}, \\
b_{13}=A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1}-A_{1}^{-1} \\
b_{21}=B_{1} C_{3} A_{3}^{-1} C_{2}^{*}-B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*} \\
b_{22}=-B_{1} C_{3} A_{3}^{-1} C_{3}^{*}-B_{1} D D^{*}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}
\end{gathered}
$$

Now we show the dissipativity of the operator $\left(\mathcal{A}_{d}, \mathcal{D}\left(\mathcal{A}_{d}\right)\right)$ on \mathcal{H}. Take $\left(\begin{array}{l}w_{1} \\ w_{2} \\ v_{1} \\ v_{2} \\ w_{3}\end{array}\right) \in$ $\mathcal{D}\left(\mathcal{A}_{d}\right)$, by the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \Re(\left(\left\langle\mathcal{A}_{d}\left(\begin{array}{c}
w_{1} \\
w_{2} \\
v_{1} \\
v_{2} \\
w_{3}
\end{array}\right),\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{1} \\
v_{2} \\
w_{3}
\end{array}\right)\right\rangle\right) \\
&= \Re\left(\left\langle v_{1}, w_{1}\right\rangle_{H_{1,1 / 2}}+\left\langle v_{2}, w_{2}\right\rangle_{H_{2,1 / 2}}-\left\langle A_{1} w_{1}, v_{1}\right\rangle_{H_{1}}\right. \\
& \quad-\left\langle C_{1} w_{2}, v_{1}\right\rangle_{H_{1}}-\left\langle C_{2} A_{3}^{-1} C_{2}^{*} v_{1}, v_{1}\right\rangle_{H_{1}}+\left\langle C_{2} A_{3}^{-1} C_{3}^{*} v_{2}, v_{1}\right\rangle_{H_{1}} \\
& \quad+\left\langle C_{1}^{*} w_{1}, v_{2}\right\rangle_{H_{2}}-\left\langle A_{2} w_{2}, v_{2}\right\rangle_{H_{2}}+\left\langle C_{3} A_{3}^{-1} C_{2}^{*} v_{1}, v_{2}\right\rangle_{H_{2}} \\
&\left.\quad-\left\langle\left(C_{3} A_{3}^{-1} C_{3}^{*}+D D^{*}\right) v_{2}, v_{2}\right\rangle_{H_{2}}+\left\langle C_{2}^{*} v_{1}, w_{3}\right\rangle_{H_{3}}-<C_{3}^{*} v_{2}, w_{3}\right\rangle_{H_{3}} \\
&\left.\left.\quad-\left\langle A_{3} w_{3}, w_{3}\right\rangle_{H_{3}}+\left\langle C_{1}^{*} v_{1}, w_{2}\right\rangle_{H_{2}}-<C_{1}^{*} w_{1}, v_{2}\right\rangle_{H_{2}}\right) \\
&= \Re\left(-\left\|D^{*} v_{2}\right\|_{H_{2}}^{2}-\left\|A_{3}^{1 / 2} C_{2}^{*} v_{1}\right\|_{H_{3}}^{2}+2\left\langle A_{3}^{-1 / 2} C_{3}^{*} v_{2}, A_{3}^{-1 / 2} C_{2}^{*} v_{1}\right\rangle\right. \\
&\left.\quad-\left\|A_{3}^{-1 / 2} C_{3}^{*} v_{2}\right\|^{2}\right) \\
& \leq-\left\|D^{*} v_{2}\right\|_{H_{2}}^{2} \leq 0 .
\end{aligned}
$$

The proof of $\lambda I-\mathcal{A}$ is surjective for some $\lambda>0$, follows as in Theorem 2.1.
3.3. Porous elastic system. As above, we can compute the operator

$$
\mathcal{M}^{-1}=\left(\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & A_{1}^{-1} C_{1} B_{1} \tag{3.4}\\
b_{21} & b_{22} & -B_{1} C_{1}^{*} A_{1}^{-1} & -B_{1} \\
I & 0 & 0 & 0 \\
0 & I & 0 & 0
\end{array}\right)
$$

where $B_{1}=\left(C_{1}^{*} A_{1}^{-1} C_{1}+A_{2}\right)^{-1}$, and

$$
\begin{gathered}
b_{11}=-A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{2}^{*}+A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*}-A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*} \\
b_{12}=A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1} C_{3}^{*}+A_{1}^{-1} C_{1} B_{1} D D^{*}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*} \\
+A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}, \\
b_{13}=A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1}-A_{1}^{-1} \\
b_{21}=B_{1} C_{3} A_{3}^{-1} C_{2}^{*}-B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{2}^{*} \\
b_{22}=-B_{1} C_{3} A_{3}^{-1} C_{3}^{*}-B_{1} D D^{*}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1} C_{3}^{*}
\end{gathered}
$$

and show that the operator \mathcal{M} generates a strongly continuous contraction semi$\operatorname{group}(\mathcal{S}(t))_{t \geq 0}$ on \mathcal{H}_{c}.

4. Compactness result

In this section we prove the compactness of the difference $\mathcal{T}(t)-\mathcal{T}_{d}(t)$, we use 20 , Theorem 2.3], where it is sufficient to prove the norm continuity of the difference between the two semigroups, and the compactness of the difference between the resolvents of their generators. To show the first assertion, we need the following technical lemma, see [21, Theorem 1.4.3].
Lemma 4.1. The map $t \mapsto A_{3}^{\alpha} e^{-A_{3} t}$ is norm continuous on $(0, \infty)$ for all $\alpha \geq 0$.
Now we can show the following norm continuity result.
Theorem 4.2. The map $t \mapsto \mathcal{T}(t)-\mathcal{T}_{d}(t)$ is norm continuous on $(0, \infty)$.
Proof. Let $t>0$ and $x_{0}=\left(\begin{array}{c}w_{1}^{0} \\ w_{2}^{0} \\ w_{1}^{1} \\ w_{2}^{1} \\ w_{3}^{0}\end{array}\right) \in \mathcal{D}(\mathcal{A})$ such that $\left\|x_{0}\right\| \leq 1$. Let us write

$$
\mathcal{T}(t) x_{0}-\mathcal{T}_{d}(t) x_{0}=\left(\begin{array}{c}
w_{1}(t)-\bar{w}_{1}(t) \\
w_{2}(t)-\bar{w}_{2}(t) \\
v_{1}(t)-\bar{v}_{1}(t) \\
v_{2}(t)-\bar{v}_{2}(t) \\
w_{3}(t)-\bar{w}_{3}(t)
\end{array}\right)=\int_{0}^{t} \mathcal{T}(t-s)\left(\begin{array}{c}
0 \\
0 \\
f(s) \\
g(s) \\
0
\end{array}\right) d s,
$$

where

$$
\begin{gathered}
f(s)=C_{2} A_{3}^{-1} C_{2}^{*} \bar{v}_{1}(s)-C_{2} A_{3}^{-1} C_{3}^{*} \bar{v}_{2}(s)-C_{2} \bar{w}_{3}(s) \\
g(s)=-C_{3} A_{3}^{-1} C_{2}^{*} \bar{v}_{1}(s)+C_{3} A_{3}^{-1} C_{3}^{*} \bar{v}_{2}(s)+C_{3} \bar{w}_{3}(s)
\end{gathered}
$$

Let $0<h<1$, we begin by checking that $\|f(s+h)-f(s)\| \rightarrow 0$ as $h \rightarrow 0$.
We have $\bar{w}_{3}(t)=e^{-A_{3} t} w_{3}^{0}+\int_{0}^{t} e^{-A_{3}(t-\sigma)} C_{2}^{*} \bar{v}_{1}(\sigma) d \sigma-\int_{0}^{t} e^{-A_{3}(s-\sigma)} C_{3}^{*} \bar{v}_{2}(\sigma) d \sigma$. Then

$$
\begin{aligned}
f(s)= & C_{2} A_{3}^{-1} C_{2}^{*} \bar{v}_{1}(s)-C_{2} A_{3}^{-1} C_{3}^{*} \bar{v}_{2}(s)-C_{2} e^{-A_{3} s} w_{3}^{0} \\
& -C_{2} A_{3}^{-1 / 2} \int_{0}^{s} A_{3}^{1 / 2} e^{-A_{3}(s-\sigma)} C_{2}^{*} \bar{v}_{1}(\sigma) d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& +C_{2} A_{3}^{-1 / 2} \int_{0}^{s} A_{3}^{1 / 2} e^{-A_{3}(s-\sigma)} C_{3}^{*} \bar{v}_{2}(\sigma) d \sigma \\
= & \left(C_{2} A_{3}^{-1 / 2}\right)\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(s)-\left(C_{2} A_{3}^{-1 / 2}\right)\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(s) \\
& -\left(C_{2} A_{3}^{-1 / 2}\right) A_{3}^{1 / 2} e^{-A_{3} s} w_{3}^{0}-\left(C_{2} A_{3}^{-1 / 2}\right) \int_{0}^{s} A_{3} e^{-A_{3}(s-\sigma)}\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(\sigma) d \sigma \\
& +\left(C_{2} A_{3}^{-1 / 2}\right) \int_{0}^{s} A_{3} e^{-A_{3}(s-\sigma)}\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(\sigma) d \sigma
\end{aligned}
$$

Since $C_{2} A_{3}^{-1 / 2}$ and $C_{3} A_{3}^{-1 / 2}$ are bounded operators from H_{3} to H_{1} and from H_{3} to H_{2} respectively, and $s \mapsto e^{-A_{3} s}, s \mapsto A_{3}^{1 / 2} e^{-A_{3} s}$ are norm continuous on $(0, \infty)$, the map $s \mapsto\left(C_{2} A_{3}^{-1 / 2}\right) A_{3}^{1 / 2} e^{-A_{3}(s)}$ is norm continuous on $(0, \infty)$, and there exists a positive constant $\alpha(s)$ and $\beta(s)$ such that $\left\|\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(\sigma)\right\| \leq \alpha(s)\left\|\bar{v}_{1}(\sigma)\right\|$ and $\left\|\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(\sigma)\right\| \leq \beta(s)\left\|\bar{v}_{2}(\sigma)\right\|$, for every $\sigma \in[0, s)$. By the inequality

$$
\left\|\left(\bar{w}_{1}, \bar{w}_{2}, \bar{v}_{1}, \bar{v}_{2}, \bar{w}_{3}\right)\right\|_{\mathcal{H}} \leq\left\|x_{0}\right\|_{\mathcal{H}}, \quad \text { for all } t \geq 0
$$

we deduce

$$
\begin{aligned}
\left\|\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(\sigma)\right\| & \leq \alpha(s)\left\|x_{0}\right\|, \\
\left\|\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(\sigma)\right\| & \leq \beta(s)\left\|x_{0}\right\|,
\end{aligned}
$$

for every $\sigma \in[0, s)$. Thus

$$
\begin{aligned}
s & \mapsto \int_{0}^{s} A_{3} e^{-A_{3}(s-\sigma)}\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(\sigma) d \sigma \\
s & \mapsto \int_{0}^{s} A_{3} e^{-A_{3}(s-\sigma)}\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(\sigma) d \sigma
\end{aligned}
$$

are continuous on $(0, \infty)$ uniformly with respect to $\left\|x_{0}\right\| \leq 1$.
Finally $\|f(s+h)-f(s)\| \rightarrow 0$, as $h \rightarrow 0$, uniformly in x_{0}. Using the same argument, we have $\|g(s+h)-g(s)\| \rightarrow 0$, as $h \rightarrow 0$, uniformly in x_{0}.

Let us write

$$
\begin{aligned}
& \left\|\left(\begin{array}{c}
w_{1}(t+h)-\bar{w}_{1}(t+h) \\
w_{2}(t+h)-\bar{w}_{2}(t+h) \\
v_{1}(t+h)-\bar{v}_{1}(t+h) \\
v_{2}(t+h)-\bar{v}_{2}(t+h) \\
w_{3}(t+h)-\bar{w}_{3}(t+h)
\end{array}\right)-\left(\begin{array}{c}
w_{1}(t)-\bar{w}_{1}(t) \\
w_{2}(t)-\bar{w}_{2}(t) \\
v_{1}(t)-\bar{v}_{1}(t) \\
v_{2}(t)-\bar{v}_{2}(t) \\
w_{3}(t)-w_{3}(t)
\end{array}\right)\right\| \\
& =\left\|\int_{0}^{t+h} \mathcal{T}(t+h-s)\left(\begin{array}{c}
0 \\
0 \\
f(s) \\
g(s) \\
0
\end{array}\right) d s-\int_{0}^{t} \mathcal{T}(t-s)\left(\begin{array}{c}
0 \\
0 \\
f(s) \\
g(s) \\
0
\end{array}\right) d s\right\| \\
& =\left\|\int_{0}^{t+h} \mathcal{T}(s)\left(\begin{array}{c}
0 \\
0 \\
f(t+h-s) \\
g(t+h-s) \\
0
\end{array}\right) d s-\int_{0}^{t} \mathcal{T}(s)\left(\begin{array}{c}
0 \\
0 \\
f(t-s) \\
g(t-s) \\
0
\end{array}\right) d s\right\| \\
& =\left\|\int_{0}^{t} \mathcal{T}(s)\left(\begin{array}{c}
0 \\
0 \\
f(t+h-s)-f(t-s) \\
g(t+h-s-g(t-s) \\
0
\end{array}\right) d s+\int_{0}^{h} \mathcal{T}(t+s)\left(\begin{array}{c}
0 \\
0 \\
f(h-s) \\
g(h-s) \\
0
\end{array}\right) d s\right\| \\
& \leq\left\|\int_{0}^{t}\left(\begin{array}{c}
0 \\
0 \\
\left.\begin{array}{c}
f(t+h-s)-f(t-s) \\
g(t+h-s)-g(t-s) \\
0
\end{array}\right)
\end{array}\right) d s\right\| \int_{0}^{h}\left(\begin{array}{c}
0 \\
0 \\
f(h-s) \\
g(h-s) \\
0
\end{array}\right) d s \| .
\end{aligned}
$$

In addition, there exists constants N_{1} and N_{2} such that

$$
\sup _{s \in[0, t+1]}\|f(h-s)\| \leq N_{1}, \quad \sup _{s \in[0, t+1]}\|g(h-s)\| \leq N_{2}
$$

uniformly with respect to x_{0}, and $0<h<1$.
Since $\|f(s+h)-f(s)\| \rightarrow 0$ as $h \rightarrow 0$ and $\|g(s+h)-g(s)\| \rightarrow 0$ as $h \rightarrow 0$ uniformly with respect x_{0}, we deduce that $\int_{0}^{t}\|f(t+h-s)-f(t-s)\| d s \rightarrow 0$ and $\int_{0}^{t}\|g(t+h-s)-g(t-s)\| d s \rightarrow 0$, as $h \rightarrow 0$ uniformly for $x_{0} \in \mathcal{D}(\mathcal{A})$ such that $\left\|x_{0}\right\| \leq 1$. Finally, $t \mapsto \mathcal{T}(t)-\mathcal{T}_{d}(t)$ is norm continuous on $(0, \infty)$.
Proof of Theorem 2.2. Since the map $t \mapsto \mathcal{T}(t)-\mathcal{T}_{d}(t)$ is norm continuous on $(0, \infty)$, we need only to show the compactness of $R(\lambda, \mathcal{A})-R\left(\lambda, \mathcal{A}_{d}\right), \lambda \in \rho(\mathcal{A}) \cap \rho\left(\mathcal{A}_{d}\right)$. From the following result

$$
\mathcal{R}\left(\lambda, \mathcal{A}_{d}\right)-\mathcal{R}(\lambda, \mathcal{A})=\mathcal{A} \mathcal{R}(\lambda, \mathcal{A})\left[\mathcal{A}^{-1}-\mathcal{A}_{d}^{-1}\right] \mathcal{A}_{d} \mathcal{R}\left(\lambda, \mathcal{A}_{d}\right)
$$

it is sufficient to prove that $\mathcal{A}^{-1}-\mathcal{A}_{d}^{-1}$ is compact. We have

$$
\mathcal{A}^{-1}-\mathcal{A}_{d}^{-1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & c_{15} \tag{4.1}\\
0 & 0 & 0 & 0 & c_{25} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where

$$
\begin{gathered}
c_{15}=A_{1}^{-1} C_{1} B_{1} C_{3} A_{3}^{-1}-A_{1}^{-1} C_{1} B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}+A_{1}^{-1} C_{2} A_{3}^{-1} \\
c_{25}=-B_{1} C_{3} A_{3}^{-1}+B_{1} C_{1}^{*} A_{1}^{-1} C_{2} A_{3}^{-1}
\end{gathered}
$$

From the assumption 2.8, it is clear that the operators c_{15} and c_{25} are compact, and this achieves the proof.

Proof of Corollary 2.4. Since the operators A_{3}^{-1} and $A_{1}^{-1 / 2} C_{1} A_{2}^{-1}$ are compact, assumption 2.8 is satisfied. In view of Theorem 2.2 , it is enough to show that for each $t>0$,

$$
\left\{\mathcal{T}_{d}(t)\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, w_{3}^{0}\right)-\left(\mathcal{S}(t)\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}\right) ; 0\right):\left\|\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, w_{3}^{0}\right)\right\| \leq 1\right\}
$$

is a compact set in \mathcal{H}, i.e. that

$$
\begin{aligned}
& \left\{e^{-A_{3} t} w_{3}^{0}+\int_{0}^{t} e^{-A_{3}(t-\sigma)} C_{2}^{*} \bar{v}_{1}(\sigma) d \sigma-\int_{0}^{t} e^{-A_{3}(s-\sigma)} C_{3}^{*} \bar{v}_{2}(\sigma) d \sigma:\right. \\
& \left.\quad\left\|\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, w_{3}^{0}\right)\right\| \leq 1\right\}
\end{aligned}
$$

is a compact set in H_{3}, where $\left(\bar{w}_{1}(\sigma), \bar{w}_{2}(\sigma), \bar{v}_{1}(\sigma), \bar{v}_{2}(\sigma)\right)=\mathcal{S}(\sigma)\left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}\right)$. Since

$$
\begin{aligned}
& \left(w_{1}^{0}, w_{2}^{0}, w_{1}^{1}, w_{2}^{1}, w_{3}^{0}\right) \\
& \rightarrow A_{3}^{1 / 2} e^{-A_{3} t} w_{3}^{0}+\int_{0}^{t} A_{3} e^{-A_{3}(t-\sigma)}\left(C_{2} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{1}(\sigma) d \sigma \\
& \quad-\int_{0}^{t} A_{3} e^{-A_{3}(s-\sigma)}\left(C_{3} A_{3}^{-1 / 2}\right)^{*} \bar{v}_{2}(\sigma) d \sigma
\end{aligned}
$$

is bounded with values in H_{3} (we have used the Lemma 4.1 and Lebesgue's theorem) and $A_{3}^{-1 / 2}$ is compact, the result follows.

Remark 4.3. (1) If we have the conditions $C_{3} A_{3}^{-\gamma}, C_{2} A_{3}^{-\gamma}$ and $C_{1} A_{2}^{-\gamma}$ are compact for some $\gamma<1$ then the assumptions 2.8) are satisfied and we have the compactness of the difference between $\mathcal{T}(t)-\mathcal{T}_{d}(t)$ for every $t \geq 0$, which is similar to Henry's condition in 11].
(2) If we suppose that A_{1}^{-1} and A_{2}^{-1} are compacts we have $\sigma_{e}(\mathcal{T}(t))=\sigma_{e}\left(\mathcal{T}_{d}(t)\right)$ for $t \geq 0$ but to have $\sigma_{e}\left(\mathcal{T}_{d}(t)\right)=\sigma_{e}(\mathcal{S}(t))$ for $t \geq 0$ we need the condition A_{3}^{-1} is compact.

5. Applications

We give two illustrating examples of Theorem 2.2 and Corollary 2.4
Application 1. We give one application of Theorem 2.2. Let Ω the bounded open Jelly Roll set proposed in [26],

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: \frac{1}{2}<r<1\right\} \backslash \Gamma
$$

where Γ is the curve in \mathbb{R}^{2} given in polar coordinates by

$$
r(\phi)=\frac{\frac{3 \pi}{2}+\arctan (\phi)}{2 \pi}, \quad-\infty<\phi<\infty .
$$

We consider the initial and boundary problem

$$
\begin{gather*}
\ddot{u}(t, x)-\Delta_{e} u(t, x)-b \nabla \phi(t, x)+c \nabla \theta(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\ddot{\phi}(t, x)-(a \Delta-\alpha I) \phi(t, x)+b \operatorname{div} u(t, x)-d \theta(t, x)+r \dot{\phi}(t, x)=0 \\
\text { in }(0,+\infty) \times \Omega, \\
\dot{\theta}(t, x)-(\Delta-k I) \theta(t, x)+c \operatorname{div} \dot{u}(t, x)+d \dot{\phi}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.1}\\
u=0, \quad \phi=0, \quad \frac{\partial \theta}{\partial n}=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \\
u(0)=u^{0}, \quad \dot{u}(0)=u^{1}, \quad \phi(0)=\phi^{0}, \quad \dot{\phi}(0)=\phi^{1}, \quad \theta(0)=\theta^{0}, \quad \text { in } \Omega,
\end{gather*}
$$

where n denotes the outer uniter normal vector to $\partial \Omega, \Delta_{e}:=\mu \Delta+(\mu+\lambda) \nabla \operatorname{div}$, and $\mu, \lambda, a, b, c, d, r, \alpha, k$ are positive constants.

To fit this system into the abstract setting of $1.1-(1.4)$, we take

$$
\begin{gathered}
H_{1}=L^{2}(\Omega)^{2}, \quad H_{2}=H_{3}=L^{2}(\Omega), \quad H_{1, \frac{1}{2}}=\left(H_{0}^{1}(\Omega)\right)^{2}, \quad H_{2, \frac{1}{2}}=H_{0}^{1}(\Omega) \\
\mathcal{H}=\mathcal{H}_{c} \times L^{2}(\Omega), \quad \mathcal{H}_{c}=\left(H_{0}^{1}(\Omega)\right)^{2} \times H_{0}^{1}(\Omega) \times L^{2}(\Omega)^{2} \times L^{2}(\Omega) \\
A_{1}=-\Delta_{e}, \quad \mathcal{D}\left(A_{1}\right)=\mathcal{D}\left(-\Delta_{D}\right)=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2} \\
A_{2}=-(a \Delta-\alpha I), \quad \mathcal{D}\left(A_{2}\right)=\mathcal{D}\left(-\Delta_{D}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
A_{3}=-(\Delta-k I), \quad \mathcal{D}\left(A_{3}\right)=\mathcal{D}\left(-\Delta_{N}\right)
\end{gathered}
$$

We recall that u, ϕ, θ are the displacement vector, the volume fraction and the temperature. The Dirichlet and Neumann Laplacian operators Δ_{D} and Δ_{N} are the unique positive self adjoint operators associated to the closed quadratic form on $H_{0}^{1}(\Omega)$ and $H^{1}(\Omega)$ respectively

$$
\langle\Delta f, g\rangle=\int_{\Omega} \nabla f \nabla g d x
$$

The operator $D D^{*}=r I_{H_{2}}$, and the coupled operators

$$
C_{1}=-b \nabla, \quad C_{2}=c \nabla, \quad C_{1}^{*}=b \operatorname{div}, \quad C_{2}^{*}=-c \operatorname{div}, \quad C_{3}=d I_{H_{3}}
$$

$$
\mathcal{D}\left(C_{1}\right)=\mathcal{D}\left(C_{2}\right)=H^{1}(\Omega), \quad \mathcal{D}\left(C_{2}^{*}\right)=\mathcal{D}\left(C_{1}^{*}\right)=\left\{u \in H^{1}(\Omega)^{2}: u \cdot \vec{n}=0 \text { in } \partial \Omega\right\} .
$$

Note that the conditions $\left(2.2\right.$ are verified and we have A_{1}^{-1} and A_{2}^{-1} are compact from H_{1} and H_{2} respectively, then the assumptions 2.8 are satisfied, consequently the Theorem 2.2 is satisfied. To show $\sigma_{e}\left(\mathcal{T}_{d}(t)\right)=\sigma_{e}(\mathcal{S}(t))$ for $t \geq 0$, we need the compactness of A_{3}^{-1}, but from [26], A_{3}^{-1} is not compact.

Application 2. We give an application of Corollary 2.4 Let $\Omega \subset \mathbb{R}^{2}$ a bounded open domain with boundary $\partial \Omega$ having regularity of class C^{2}, and satisfies the following condition:
(A1) If $\varphi \in\left(H_{0}^{1}(\Omega)\right)^{2}$ such that

$$
\begin{gather*}
-\Delta \varphi=\gamma^{2} \varphi \quad \text { in } \Omega \\
\operatorname{div} \varphi=0 \quad \text { in } \Omega \tag{5.2}\\
\varphi=0 \quad \text { in } \partial \Omega
\end{gather*}
$$

for some $\gamma \in \mathbb{R}$, then $\varphi=0$.
We consider the initial and boundary problem

$$
\begin{gather*}
\ddot{u}(t, x)-\Delta_{e} u(t, x)-b \nabla \phi(t, x)+c \nabla \theta(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\ddot{\phi}(t, x)-(a \Delta-\alpha I) \phi(t, x)+b \operatorname{div} u(t, x)+r \dot{\phi}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\dot{\theta}(t, x)-\Delta \theta(t, x)+c \operatorname{div} \dot{u}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.3}\\
u=0, \quad \phi=0, \quad \theta=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \\
u(0)=u^{0}, \quad \dot{u}(0)=u^{1}, \quad \phi(0)=\phi^{0}, \quad \dot{\phi}(0)=\phi^{1}, \theta(0)=\theta^{0} \quad \text { in } \Omega,
\end{gather*}
$$

where $\Delta_{e}:=\mu \Delta+(\mu+\lambda) \nabla$ div is Lamé operator, $\mu, \lambda, a, b, c, r, \alpha$ are positive constants, and the condition $(\lambda+\mu) \alpha>b^{2}$ is satisfied.

To fit this system into the abstract setting of $\sqrt{1.1})-(\sqrt{1.4})$, we take

$$
\begin{gathered}
H_{1}=L^{2}(\Omega)^{2}, \quad H_{2}=H_{3}=L^{2}(\Omega), \quad H_{1, \frac{1}{2}}=\left(H_{0}^{1}(\Omega)\right)^{2}, \quad H_{2, \frac{1}{2}}=H_{0}^{1}(\Omega) \\
\mathcal{H}=\mathcal{H}_{c} \times L^{2}(\Omega), \quad \text { where } \mathcal{H}_{c}=\left(H_{0}^{1}(\Omega)\right)^{2} \times H_{0}^{1}(\Omega) \times L^{2}(\Omega)^{2} \times L^{2}(\Omega) \\
A_{1}=-\Delta_{e}, \quad \mathcal{D}\left(A_{1}\right)=\mathcal{D}\left(-\Delta_{D}\right)=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2} \\
A_{2}=-(a \Delta-\alpha I), \quad \mathcal{D}\left(A_{2}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
A_{3}=-\Delta, \quad \mathcal{D}\left(A_{3}\right)=\mathcal{D}\left(A_{2}\right)
\end{gathered}
$$

The operator $D D^{*}=r I_{H_{2}}$, and the coupled operators

$$
\begin{gathered}
C_{1}=-b \nabla, \quad C_{1}^{*}=b \operatorname{div}, \quad C_{2}=c \nabla, \quad C_{2}^{*}=-c \operatorname{div}, \quad C_{3}=0 \\
\mathcal{D}\left(C_{1}\right)=\mathcal{D}\left(C_{2}\right)=H^{1}(\Omega), \quad \mathcal{D}\left(C_{2}^{*}\right)=\mathcal{D}\left(C_{1}^{*}\right)=\left\{u \in H^{1}(\Omega)^{2}: u \cdot \vec{n}=0 \quad \text { on } \partial \Omega\right\} .
\end{gathered}
$$

The decoupled system corresponding to system (5.3) is given by

$$
\begin{gather*}
\ddot{u}(t, x)-\Delta_{e} u(t, x)-b \nabla \phi(t, x)+c^{2} P \dot{u}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\ddot{\phi}(t, x)-(a \Delta-\alpha I) \phi(t, x)+b \operatorname{div} u(t, x)+r \dot{\phi}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\dot{\theta}(t, x)-\Delta \theta(t, x)+c \operatorname{div} \dot{u}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.4}\\
u=0, \quad \phi=0, \quad \theta=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \\
u(0)=u^{0}, \quad \dot{u}(0)=u^{1}, \quad \phi(0)=\phi^{0}, \quad \dot{\phi}(0)=\phi^{1}, \theta(0)=\theta^{0} \quad \text { in } \Omega,
\end{gather*}
$$

where $P:=\nabla(\Delta)^{-1}$ div the orthogonal projection operator from $L^{2}(\Omega)^{2}$ into the subspace $\left\{\nabla \varphi ; \varphi \in H_{0}^{1}(\Omega)\right\}$. Now we write the porous elastic system given by the first and second equation in decoupled system (5.4)

$$
\begin{gather*}
\ddot{u}(t, x)-\Delta_{e} u(t, x)-b \nabla \phi(t, x)+c^{2} P \dot{u}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
\ddot{\phi}(t, x)-(a \Delta-\alpha I) \phi(t, x)+b \operatorname{div} u(t, x)+r \dot{\phi}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \\
u=0, \quad \phi=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \tag{5.5}\\
u(0)=u^{0}, \quad \dot{u}(0)=u^{1}, \quad \phi(0)=\phi^{0}, \quad \dot{\phi}(0)=\phi^{1} \quad \text { in } \Omega .
\end{gather*}
$$

Let $(\mathcal{T}(t))_{t \geq 0}$ the porous-thermoelastic C_{0}-semigroup generated by the system (5.3) and $(\mathcal{S}(t))_{t \geq 0}$ the porous elastic C_{0}-semigroup generated by the system (5.5). Note that the operators A_{1}^{-1}, A_{2}^{-1} and A_{3}^{-1} are compact, consequently the assumptions of Corollary 2.4 are satisfied, then

$$
\sigma_{e}(\mathcal{T}(t))=\sigma_{e}(\mathcal{S}(t)) \quad \text { for } t \geq 0
$$

The second aim of this application is to characterize the exponential energy decay of solution of system 5.5), and then deduce the one of the coupled systems 5.3.

Now we show that $(\mathcal{S}(t))_{t \geq 0}$ is exponentially stable in \mathcal{H}_{c}, by using a similar argument as in the proof of [15, theorem 4.4]. Let $\varepsilon(t):=\mathcal{S}(t) \varepsilon^{0}, t \geq 0$, be the solution of

$$
\begin{equation*}
\frac{d \varepsilon}{d t}=\mathcal{M} \varepsilon, \quad \varepsilon(0)=\varepsilon^{0} \tag{5.6}
\end{equation*}
$$

where $\varepsilon^{0}:=\left(u^{0}, \phi^{0}, u^{1}, \phi^{1}\right)$. We look for $\varepsilon(t)$ having the form $\bar{\varepsilon}(t)=\Sigma_{l=0}^{\infty} b^{l} \varepsilon_{l}(t)$, where $\varepsilon_{l}(t) \equiv\left(u_{l}(t), \phi_{l}(t), \dot{u}_{l}(t), \dot{\phi}_{l}(t)\right), \bar{\varepsilon}(0)=\varepsilon^{0}$ and $l \in\{0\} \cup \mathbb{N}$. After the formal substitution into the equation (5.6) we derive equations for $\left(u_{l}, \phi_{l}\right)$, where $l \in\{0\} \cup \mathbb{N}$. For $\left(u_{0}, \phi_{0}\right)$ we obtain

$$
\begin{align*}
& \ddot{u}_{0}(t, x)-\Delta_{e} u_{0}(t, x)+c^{2} P \dot{u}_{0}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.7}\\
& \ddot{\phi}_{0}(t, x)-(a \Delta-\alpha I) \phi_{0}(t, x)+r \dot{\phi}_{0}(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.8}\\
& u_{0}=0, \quad \phi_{0}=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \\
& u_{0}(0)=u^{0}, \quad \dot{u}_{0}(0)=u^{1}, \quad \phi_{0}(0)=\phi^{0}, \quad \dot{\phi}_{0}(0)=\phi^{1} \quad \text { in } \Omega .
\end{align*}
$$

For $k \in\{0\} \cup \mathbb{N},\left(u_{k+1}, \phi_{k+1}\right)$ will be the solution of problem

$$
\begin{align*}
& \ddot{u}_{k+1}(t, x)-\Delta_{e} u_{k+1}(t, x)-b \nabla \phi_{k}(t, x)+c^{2} P \dot{u}_{k+1}=0 \quad \text { in }(0,+\infty) \times \Omega, \tag{5.9}\\
& \ddot{\phi}_{k+1}(t, x)-(a \Delta-\alpha I) \phi_{k+1}(t, x)+b \operatorname{div} u_{k}(t, x)+r \dot{\phi}_{k+1}(t, x) \tag{5.10}\\
& =0 \quad \text { in }(0,+\infty) \times \Omega, \\
& u_{k+1}=0, \quad \phi_{k+1}=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \\
& u_{k+1}(0)=0, \quad \dot{u}_{k+1}(0)=0, \quad \phi_{k+1}(0)=0, \quad \dot{\phi}_{k+1}(0)=0 \quad \text { in } \Omega .
\end{align*}
$$

Let $\varepsilon=(u, \phi, v, \psi) \in \mathcal{H}_{c}$, and define the norms

$$
\begin{gathered}
\|(u(t), v(t))\|_{1}^{2}:=\int_{\Omega}\left[\mu|\nabla u(x, t)|^{2}+(\lambda+\mu)|\operatorname{div} u(x, t)|^{2}+|v(x, t)|^{2}\right] d x, \\
\|(\phi(t), \psi(t))\|_{2}^{2}:=\int_{\Omega}\left[a|\nabla \phi(x, t)|^{2}+\alpha|\phi(x, t)|^{2}+|\psi(x, t)|^{2}\right] d x, \\
\|\varepsilon\|^{2}:=\|(u(t), v(t))\|_{1}^{2}+\|(\phi(t), \psi(t))\|_{2}^{2} .
\end{gathered}
$$

From [19], there exists $M_{1}, \gamma_{1}>0$, such that

$$
\left\|\left(\phi_{0}(t), \dot{\phi}_{0}(t)\right)\right\|_{2}^{2} \leq M_{1} e^{-\gamma_{1} t}\left\|\left(\phi^{0}, \phi^{1}\right)\right\|_{2}^{2}, \quad t \geq 0
$$

Note that the damped Lamé system (5.7) has been studied by Zuazua and Lebeau in [17] and they proved the exponential decay of solution of (5.7) if the following inequality of observability holds true for some $T, C>0$, i.e,

$$
\begin{equation*}
\left\|\varphi^{0}\right\|_{\left(L^{2}(\Omega)\right)^{2}}+\left\|\varphi^{1}\right\|_{\left(H^{-1}(\Omega)\right)^{2}} \leq C \int_{0}^{T}\|\operatorname{div} \varphi\|_{H^{-1}(\Omega)} d t \tag{5.11}
\end{equation*}
$$

where $\varphi(t)$ is solution of the Lamé system

$$
\begin{gather*}
\ddot{\varphi}(t, x)-\Delta_{e} \varphi(t, x)=0 \quad \text { in }(0,+\infty) \times \Omega \\
\varphi=0 \quad \text { on }(0,+\infty) \times \partial \Omega \tag{5.12}\\
\varphi(0)=\varphi^{0}, \dot{\varphi}(0)=\varphi^{1} \quad \text { in } \Omega
\end{gather*}
$$

Under the condition that (5.11) is satisfied, we have

$$
\left\|\left(u_{0}(t), \dot{u}_{0}(t)\right)\right\|_{1}^{2} \leq M_{2} e^{-\gamma_{2} t}\left\|\left(u^{0}, u^{1}\right)\right\|_{1}^{2}, \quad t \geq 0
$$

for positive constants M_{2}, γ_{2}. Let $\gamma=\inf \left(\gamma_{1}, \gamma_{2}\right)$, we have

$$
\begin{equation*}
\left\|\left(u_{0}(t), \phi_{0}(t), \dot{u}_{0}(t), \dot{\phi}_{0}(t)\right)\right\| \leq M e^{-\frac{\gamma}{2} t}\left\|\left(u^{0}, \phi^{0}, u^{1}, \phi^{1}\right)\right\|, \quad t \geq 0 \tag{5.13}
\end{equation*}
$$

Let $(\mathcal{G}(t))_{t>0}$ and $(\mathcal{K}(t))_{t \geq 0}$ be the contraction C_{0}-semigroups generated by the equations (5.8) and (5.7) respectively, where $\left(\phi_{0}(t), \dot{\phi}_{0}(t)\right)=\mathcal{G}(t)\left(\phi^{0}, \phi^{1}\right)$, and $\left(u_{0}(t), \dot{u}_{0}(t)\right)=\mathcal{K}(t)\left(u^{0}, u^{1}\right)$. For the solution of system 5.10 we have

$$
\left(\phi_{k+1}(t), \dot{\phi}_{k+1}(t)\right)=\int_{0}^{t} \mathcal{G}(t-s)\left(0,-\operatorname{div} u_{k}(s)\right) d s
$$

Then

$$
\left\|\left(\phi_{k+1}(t), \dot{\phi}_{k+1}(t)\right)\right\|_{2} \leq \int_{0}^{t} M_{1} e^{-\frac{\gamma_{1}}{2}(t-s)}\left\|\left(0,-\operatorname{div} u_{k}(s)\right)\right\|_{2} d s
$$

Since $\left\|\left(0,-\operatorname{div} u_{k}(s)\right)\right\|_{2} \leq C_{1}\left\|\left(u_{k}(s), \dot{u}_{k}(s)\right)\right\|_{1}$, we have

$$
\left\|\left(\phi_{k+1}(t), \dot{\phi}_{k+1}(t)\right)\right\|_{2} \leq \int_{0}^{t} C_{1} M_{1} e^{-\frac{\gamma_{1}}{2}(t-s)}\left\|\left(u_{k}(s), \dot{u}_{k}(s)\right)\right\|_{1} d s
$$

For the solution of system (5.9) we have

$$
\left(u_{k+1}(t), \dot{u}_{k+1}(t)\right)=\int_{0}^{t} \mathcal{K}(t-s)\left(0, b \nabla \phi_{k}(s)\right) d s
$$

Then

$$
\left\|\left(u_{k+1}(t), \dot{u}_{k+1}(t)\right)\right\|_{1} \leq \int_{0}^{t} M_{2} e^{-\frac{\gamma_{2}}{2}(t-s)}\left\|\left(0, b \nabla \phi_{k}(s)\right)\right\|_{1} d s
$$

Since $\left\|\left(0, b \nabla \phi_{k}(s)\right)\right\|_{1} \leq C_{2} b\left\|\left(\phi_{k}(s), \dot{\phi}_{k}(s)\right)\right\|_{2}$, we have

$$
\left\|\left(u_{k+1}(t), \dot{u}_{k+1}(t)\right)\right\|_{1} \leq \int_{0}^{t} b C_{2} M_{2} e^{-\frac{\gamma_{2}}{2}(t-s)}\left\|\left(\phi_{k}(s), \dot{\phi}_{k}(s)\right)\right\|_{2} d s
$$

Then we have

$$
\begin{align*}
& \left\|\left(u_{k+1}(t), \phi_{k+1}(t), \dot{u}_{k+1}(t), \dot{\phi}_{k+1}(t)\right)\right\| \\
& \leq \int_{0}^{t} M_{3} e^{-\frac{\gamma}{2}(t-s)}\left\|\left(u_{k}(s), \phi_{k}(s), \dot{u}_{k}(s), \dot{\phi}_{k}(s)\right)\right\| d s \tag{5.14}
\end{align*}
$$

From 5.13 and 5.14 we deduce that

$$
\left\|\left(u_{l}(t), \phi_{l}(t), \dot{u}_{l}(t), \dot{\phi}_{l}(t)\right)\right\| \leq M M_{3}^{l} \frac{t^{l}}{l!} e^{-\frac{\gamma}{2} t}\left\|\left(u^{0}, \phi^{0}, u^{1}, \phi^{1}\right)\right\|
$$

Let $0<b<\frac{\gamma}{2 M_{3}}$, the sequence $\sum_{l=0}^{\infty} b^{l} \varepsilon_{l}(t)$ is convergent in $C\left([0, \tau] ; \mathcal{H}_{c}\right)$ for every $\tau>0$. Let $\bar{\varepsilon}^{n}(t)=\sum_{l=0}^{n} b^{l} \varepsilon_{l}(t), n \in \mathbb{N}$ where $\bar{\varepsilon}^{n}(t)$ is the solution of the problem

$$
\frac{d \bar{\varepsilon}^{n}(t)}{d t}=\mathcal{M} \bar{\varepsilon}^{n}(t)+\beta_{n}(t) ; \quad \bar{\varepsilon}^{n}(0)=\bar{\varepsilon}^{0}
$$

where $\beta_{n}(t):=\left(0, b^{n} \nabla \phi_{n}(t), 0,-b^{n} \operatorname{div} u_{n}(t)\right)^{T}$. We have

$$
\bar{\varepsilon}^{n}(t)=\mathcal{S}(t) \bar{\varepsilon}^{0}+\int_{0}^{t} \mathcal{S}(t-s) \beta_{n}(s) d s
$$

and
$\left\|\bar{\varepsilon}(t)-\mathcal{S}(t) \varepsilon^{0}\right\|=\left\|\Sigma_{l=n+1}^{\infty} b^{l} \varepsilon_{l}(t)+\int_{0}^{t} \mathcal{S}(t-s) \beta_{n}(s) d s\right\| \rightarrow 0, \quad$ as $n \rightarrow \infty, \forall n \in \mathbb{N}$.
This means that $\mathcal{S}(t) \varepsilon^{0}=\bar{\varepsilon}(t)$ and

$$
\left\|\mathcal{S}(t) \varepsilon^{0}\right\| \leq \Sigma_{l=0}^{\infty} b^{l}\left\|\varepsilon_{l}(t)\right\| \leq M \Sigma_{l=0}^{\infty} b^{l} M_{3}^{l} \frac{t^{l}}{l!} e^{-\frac{\gamma t}{2}}\left\|\varepsilon^{0}\right\| \leq M e^{-\varrho t}\left\|\varepsilon^{0}\right\|
$$

where $\varrho:=\frac{\gamma}{2}-M_{3} b$. Consequently $(\mathcal{S}(t))_{t \geq 0}$ is exponentially stable and $w_{e}(\mathcal{M})<$ 0 . Since $\sigma_{e}(\mathcal{T}(t))=\sigma_{e}(\mathcal{S}(t))$ for $t \geq 0$, then

$$
w_{e}(\mathcal{A})<0
$$

Now we prove that $(\mathcal{T}(t))_{t \geq 0}$ is exponentially stable in \mathcal{H}, i.e, $\|\mathcal{T}(t)\| \leq M e^{-\delta t}$, $t \geq 0$, where $M, \delta>0$. From [14, Theorem 2.9] the semigroup $(\mathcal{T}(t))_{t \geq 0}$ is asymptotically stable in \mathcal{H} i.e, $\lim _{t \rightarrow \infty}\|\mathcal{T}(t) x\|=0$, for every $x \in \mathcal{H}$. Then $s_{1}(\mathcal{A}) \leq 0$, where

$$
s_{1}(\mathcal{A})=\sup \left\{\Re \lambda / \lambda \in \sigma(\mathcal{A}) \backslash \sigma_{e}(\mathcal{A})\right\}
$$

To show that $w_{0}(\mathcal{A})<0$, it suffices to prove that $s_{1}(\mathcal{A})<0$. Suppose that $s_{1}(\mathcal{A})=$ 0 , then there exists $\left\{\lambda_{n}\right\}_{1}^{\infty} \subset \sigma(\mathcal{A}) \backslash \sigma_{e}(\mathcal{A})$, such that $\Re \lambda_{n} \rightarrow 0$, as $n \rightarrow \infty$. $e^{\lambda_{n} t_{0}}$ is an eigenvalue of $\mathcal{T}\left(t_{0}\right)$, we have $\left|e^{\lambda_{n} t_{0}}\right| \leq 1$ and $\left|e^{\lambda_{n} t_{0}}\right| \rightarrow 1$ as $n \rightarrow \infty$. Let y be the accumulation point of $\left\{e^{\lambda_{n} t_{0}}\right\}_{1}^{\infty}$ in \mathbb{C}. Then $y \in \sigma_{e}\left(\mathcal{T}\left(t_{0}\right)\right)$ and $|y|=1$. Thus,

$$
r_{e}\left(\mathcal{T}\left(t_{0}\right)\right) \geq 1
$$

furthermore

$$
r_{e}\left(\mathcal{T}\left(t_{0}\right)\right)=e^{w_{e}(\mathcal{A}) t_{0}}<1
$$

This contradiction implies that $s_{1}(\mathcal{A})<0$, using $w_{e}(\mathcal{A})<0$, we obtain $w_{0}(\mathcal{A})<0$. Finally we have proved the uniform stabilization of the energy of solution of system (5.3).

References

[1] E. Ait Ben Hassi, H. Bouslous, L. Maniar; Compact decoupling for thermoelasticity in irregular domains, Asymptotic Analysis., 58 (2008), 47-56.
[2] K. Ammari, E. M. Ait Ben Hassi, S. Boulite, L. Maniar; Stabilization of coupled second order systems with delay, Semigroup Forum, 86, (2013), 362-382.
[3] B. Amir, L. Maniar; Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Mathematicae., 13, (1998), 95-105.
[4] F. Ammar-Khodja, A. Bader, A. Benabdallah; Dynamic stabilization of systems via decoupling techniques, ESAIM Control Optim.Calc. Var., 4 (1999), 577-593.
[5] S. C. Cowin, W. Nunziato; A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.
[6] S. C. Cowin, W. Nunziato; Linear elastic materials with voids, J. Elasticity., 13 (1983), 125-147.
[7] S. C. Cowin; The viscoelastic behavior of linear elastic materials with voids, J. Elasticity., 15 (1985), 185-191.
[8] P. S. Casas, R. Quintanilla; Exponential decay in one-dimensional porous-thermo- elasticity, Mech. Res. Comm., 32 (2005), 652-658.
[9] K. J. Engel, R. Nagel; One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, Vol. 194 , Springer-Verlag, 2000.
[10] D. E. Edmunds, W. D. Evans; Spectral theory and differential operators, Clarendon Press, Oxford, 1987.
[11] D. Henry, O. Lopes, A. Perissinotto; On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. T.M.A., 21 (1993), 65-75.
[12] D. Henry; Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981.
[13] P. Glowinski, A. Lada; The compact decoupling for system of thermoelasticity in viscoporous media and exponential decay, challenges of Technology., 2 (2011), 3-6.
[14] P. Glowinski, A. Lada; Stabilization of elasticity-viscoporosity system by linear boundary feedback, Math. Methods Appl. Sci., 32 (2009), 702-722.
[15] P. Glowinski, A. Lada; On exponential decay for linear porous-thermo-elasticity system, Demonstratio Mathematica., 45 (2012), 847-868.
[16] B. Z. Guo; On the exponential stability of c_{0}-semigroups on Banach spaces with compact perturbations, Semigroup Forum., 59 (1999), 190-196.
[17] G. Lebeau, E. Zuazua; Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.
[18] W. J. Liu; Compactness of the difference between the thermoviscoelastic semigroup and its decoupled semigroup, Rocky Mount. J. Math., 30 (2000), 1039-1056.
[19] W. J. Liu, E. Zuazua; Decay rate for dissipative wave equations, Ricerche di Matematica., 48 (1999), 61-75.
[20] M. Li, G. Xiaohui, F. Huang; Unbounded perturbations of semigroups, compactness and norm continuity, Semigroup Forum., 65 (2002), 58-70.
[21] A. Lunardi; Analytic Semigroups and optimal regularity in parabolic problems, Birkhauser, Basel, 1995.
[22] J. E. M. Rivera, R. Racke; Mildly dissipative nonlinear Timoshenko systems, Math. Anal. Appl., 276 (2002), 248-278.
[23] J. E. M. Rivera, R. Racke; Global stability for damped Timoshenko systems, Discrete. Contin. Dyn. Syst., 9 (2003), 1625-1639.
[24] A. Pazy; Semigroups of linear operators and application to partial differential equations, App. Math. Sci. 44, Springer-Verlag, 1983.
[25] R. Quintanilla; Slow decay for one-dimensional porous dissipation elasticity, Appl. Mathematics Letters., 16 (2003), 487-491.
[26] B. Simon; The Neumann Laplacian of a jelly roll, Proc. Amer. Math. Soc., 114 (1992), 783-785.

Université Cadi Ayyad, Faculté des Sciences Semlalia, LMDP, UMMiSCO (IRD- UPMC), Marrakech 40000, B.P. 2390, Maroc. Fax. 00212524437409

E-mail address: m.benhassi@uca.ma
E-mail address: jbenyaich@gmail.com
E-mail address: bouslous@uca.ma
E-mail address: maniar@uca.ma

[^0]: 2010 Mathematics Subject Classification. 34G10, 47D06.
 Key words and phrases. Porous thermoelastic system; semigroup; compactness;
 norm continuity; fractional powers; essential spectrum.
 (C) 2015 Texas State University - San Marcos.

 Submitted October 14, 2014. Published June 22, 2015.

