
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 175, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

OSCILLATORY SOLUTIONS OF THE CAUCHY PROBLEM FOR
LINEAR DIFFERENTIAL EQUATIONS

GRO HOVHANNISYAN, OLIVER RUFF

Abstract. We consider the Cauchy problem for second and third order linear
differential equations with constant complex coefficients. We describe neces-

sary and sufficient conditions on the data for the existence of oscillatory solu-

tions. It is known that in the case of real coefficients the oscillatory behavior of
solutions does not depend on initial values, but we show that this is no longer

true in the complex case: hence in practice it is possible to control oscillatory

behavior by varying the initial conditions. Our Proofs are based on asymp-
totic analysis of the zeros of solutions, represented as linear combinations of

exponential functions.

1. Introduction

A solution to a differential equation is said to be oscillatory if it has an un-
bounded infinite sequence of zeros within some interval (t0,∞), and nonoscillatory
otherwise. Since the choice of t0 does not affect the determination of whether or
not a solution is oscillatory, we suppress it in Definition 2.1 below.

In the case where the equation has real coefficients, the theory of oscillatory so-
lutions is well-developed [1, 7, 3], and mostly based on Sturm’s famous comparison
theorems. However, the case in which the coefficients are complex has not been
studied very much, both because there are not many immediate physical applica-
tions of such equations (except the Dirac equation) and because Sturm’s comparison
theorems no longer apply.

In the complex coefficient case the oscillatory behavior of solutions depends not
only on the roots of the characteristic equation but also on initial values. So,
in applications it is possible to control the appearance of oscillatory behavior by
setting appropriate initial conditions.

In this article we study which initial values lead to oscillatory solutions and
which do not. The main result of the manuscript is the description of the initial
values and the roots of characteristic equations that produce oscillatory solutions
in the complex case.
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We think that the analysis of the complex case, even in the simplest situation
where coefficients are constant, will give us a better understanding of real coeffi-
cients case as well. For example, appearance of oscillatory solutions is connected
with a new algebraic condition (see (2.17)) which does not appear anywhere obvious
in the study of the real case.

Proofs are based on analysis of the zeros of the linear combinations of various
exponential functions. Note that asymptotic behavior of zeros of the sums of ex-
ponential functions have been studied in the classical paper of Langer and others
[6, 2, 8].

Some oscillation theorems for linear differential equations with complex variable
coefficients are proved in [4, 5] by using the asymptotic theory.

We are grateful to the referee for several helpful observations, including pointing
out Lemma 2.2 to us.

2. Differential equations with complex constant coefficients

2.1. Notation and a preliminary results. For z ∈ C, write <[z] and =[z] for
(respectively) the real and imaginary parts of z.

Definition 2.1. A solution to a differential equation is said to be oscillatory if it
possesses an infinite sequence of real zeros whose limit is ∞.

Since this is a fact we will use frequently, we emphasize that Definition 2.1
requires that an oscillatory solution must possess real zeros of arbitrarily large
magnitude. Given a particular oscillatory solution u, we denote by {tk : k ≥ 1}
an unbounded increasing sequence of its zeros, so u(ti) = 0 and ti < tj for all
1 ≤ i < j.

For a given linear differential equation of order n, write λ1, . . . , λn for the roots
of its characteristic polynomial, and write

xi = <[λi], yi = =[λi], λij = λi − λj , xij = <[λij ], yij = =[λij ]

for all 1 ≤ i, j,≤ n.
We are going to use an important general result connected to the zeros of the

solutions of linear ordinary differential equation with constant complex coefficients.

Lemma 2.2. A linear n-th order ordinary differential equation with constant com-
plex coefficients has a nontrivial solution with infinitely many zeros if and only if
it has two distinct characteristic roots with equal real parts.

This result follows from standard facts about the asymptotic zero distribution
of exponential sums (see [6, 8]).

2.2. Second order equations.

Theorem 2.3. A nontrivial solution of the initial-value problem

u′′(t) + au′(t) + bu(t) = 0,

u(0) = d0, u′(0) = d1, d0, d1 ∈ R, a, b ∈ C
(2.1)

is oscillatory on (0,∞) if and only if either

x12 = 0, d0=[λ1 + λ2] = 0, (2.2)

or the discriminant
D2 = a2 − 4b = λ2

12 (2.3)
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is real and negative and
d0=[a] = 0. (2.4)

If the coefficients a and b are real, then (2.4) is automatically satisfied and
the oscillatory behavior of the solutions does not depend on the initial conditions.
However, the following example shows that this is not true for general complex
coefficients.

Example 2.4. The solution of

u′′(t) + (1 + 2i)u′(t) + iu(t) = 0, u(0) = 0, u′(0) = 1 (2.5)

is oscillatory but the solution of

u′′(t) + (1 + 2i)u′(t) + iu(t) = 0, u(0) = 1, u′(0) = 0 (2.6)

is nonoscillatory. Specifically,

u1(t) =
2√
3
e−

t
2−it sin(t

√
3

2
)

is the oscillatory solution of (2.5) and

u2(t) =
1√
3
e−

t
2−it

(√
3 cos(t

√
3

2
) + (2i+ 1) sin(t

√
3

2
)
)

is the nonoscillatory solution of (2.6).

2.3. Third order equations. Now we consider the initial-value problem

u′′′(t) + 3I1u′(t) + 2I2u(t) = 0,

u(0) = d0, u′(0) = d1, u′′(0) = d2,
(2.7)

where d0, d1, d2 ∈ R, and I1, I2 ∈ C.
Since the characteristic polynomial associated to (2.7) is reduced, it will always

be the case that
n∑
i=1

λi = 0. (2.8)

Write
D3 = −I3

1 − I2
2 = λ2

12λ
2
13λ

2
23 (2.9)

for the associated discriminant, and order the roots λ1, λ2, λ3 in some way so that

x1 ≤ x2 ≤ x3 (2.10)

Theorem 2.5. A nontrivial solution to (2.7) is oscillatory on (0,∞) if and only
if one of the following conditions is satisfied:

x1 = x2 < 0 < x3, d1 = d0x1, d2 = (x2
1 − y2

1)d0, λ2 = λ1, (2.11)

or
x1 < x2 = x3, |λ13k2| = |λ12k3|, (2.12)

or
x1 = x2 = x3 = 0,

there exists a sequence of distinct natural numbers {mk}∞k=1 such that
y13
y23
∈ Q,

y13
y23

(mk + ϕ∓ ϕ0)− ψ ± ψ0 ∈ Z, (2.13)
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and

|k3y12|+ |k2y13| ≥ |k1y23|, −|k1y23| ≤ |k3y12| − |k2y13| ≤ |k1y23|, (2.14)

where

k1 = d2 − d1(λ2 + λ3) + d0λ2λ3, k2 = d2 − d1(λ1 + λ3) + d0λ1λ3,

k3 = d2 − d1(λ1 + λ2) + d0λ1λ2,

ϕ =
1

2π
cos−1

(
± |k1y23|2 − |k3y12|2 − |k2y13|2

2|k2k3y12y13|

)
,

ψ =
1

2π
cos−1

(
± |k2y13|2 − |k1y23|2 − |k3y12|2

2|k1k3y12y23|

)
,

ϕ0 = − 1
2π

sin−1
(
=
[k3|k2|
k2|k3|

])
, ψ0 = − 1

2π
sin−1

(
=
[k3|k1|
k1|k3|

])
. (2.15)

Note that condition (2.14) describes the region of initial data that produce the
oscillatory solutions. Condition (2.13) is similar to the condition that the roots λj
are commensurable (see [6]), that is λj = αpj , for some α ∈ C, pj ∈ Z. For special
initial values the conditions of Theorem 2.5 may be simplified.

Theorem 2.6. A nontrivial solution to (2.7) with d0 = d1 = 0 is oscillatory if and
only if one of the following conditions is satisfied:

λ1 = x1 < 0 < x2 = x3, (2.16)

or
x1 = x2 = x3 = 0,

y13
y23
∈ Q. (2.17)

Furthermore, (2.16),(2.17) are equivalent, respectively, to

=[I1] = 0, =[I3
1 + I2

2 ] = 0, I3
1 + I2

2 > 0, (2.18)

<[I2] = =[D3] = 0, <[D3] < 0,

√
3=
[(
− I2 +

√
I3
1 + I2

2

)1/3]
<
[(
− I2 +

√
I3
1 + I2

2

)1/3] ∈ Q. (2.19)

Example 2.7. The solutions to

u′′′(t) + 2I2u(t) = 0, u(0) = u′(0) = 0, u′′(0) = 1, I2 6= 0 (2.20)

are nonoscillatory since I1 = 0 and the conditions <[I2] = 0, <[I2
2 ] > 0 are never

satisfied.

Example 2.8. The solutions to

u′′′(t) + 3(a+ ib)u′(t) = 0, u(0) = u′(0) = 0, u′′(0) = 1 (2.21)

are oscillatory if

=[I3
1 + I2

2 ] = 3a2b− b3 = 0, <[I3
1 + I2

2 ] = a3 − 3ab2 > 0,
√

3b
a
∈ Q.

(2.22)

These conditions are satisfied if, for example, b = 0, I1 = a > 0 or

a =
√

3, b = 3, I1 =
√

3 + 3i.
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Theorem 2.9. A nontrivial solution to (2.7) with d0 = d2 = 0 is oscillatory if and
only if one of the following conditions is satisfied

λ1 = x1 < 0 < x2 = x3, I1, I2 ∈ R, (2.23)

or
0 < x2 = x3, 6x2

2 + y2
12 = 3y2

2 , (2.24)
or

x1 = x2 = x3 = 0,
y13
y23
∈ Q. (2.25)

Theorem 2.10. A nontrivial solution to (2.7) with d1 = d2 = 0 is oscillatory if
and only if

λ1 = x1 < 0 < x2 = x3, I1, I2 ∈ R, (2.26)
or equivalently

I1, I2 ∈ R, I2 < 0, D3 < 0. (2.27)

3. Proofs

Proof of Theorem 2.3. Note that we may assume that

D2 = a2 − 4b = λ2
12 6= 0, (3.1)

since otherwise there is no distinct roots of the characteristic polynomial and in
view of Lemma 2.2 there are no nontrivial oscillatory solutions of (2.1).

The solutions to (2.1) where D2 6= 0 are given by the formula

u(t) =
(d1 − d0λ2)etλ1 − (d1 − d0λ1)etλ2

λ12
. (3.2)

The zeros of (3.2) satisfy

(d1 − d0λ2)etλ1 = (d1 − d0λ1)etλ2 ;

that is,

etλ12 =
d1 − d0λ1

d1 − d0λ2
. (3.3)

Note that we may also assume that

(d1 − d0λ1)(d1 − d0λ2) 6= 0, (3.4)

otherwise (3.2) is nonoscillatory.
If x12 > 0 then the left-hand side of (3.3) becomes unboundedly large as t→∞,

so this is impossible in view of (3.4). On the other hand, if x12 < 0 then the
left-hand side of (3.3) approaches 0 as t → ∞ and this is impossible as well.
Consequently x12 = 0.

Solving (3.3) for t, we obtain

t =
ln d1−d0λ1

d1−d0λ2

λ12
=

ln |d1−d0λ1
d1−d0λ2

|+ i arg
(
d1−d0λ1
d1−d0λ2

)
iy12

In order for (3.2) to be oscillatory, we need an infinite number of these t to lie in
R, which happens if and only if

x12 = 0, |d1 − d0λ1| = |d1 − d0λ2|. (3.5)

So we have the following infinite sequence of zeros:

tk =
2kiπ
λ12

=
2kπ
=[λ12]

, k ∈ Z.
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Simplifying (3.5) we have

x12 = 0, d2
0(y2

1 − y2
2) = 0.

and hence (since y12 = x12 = 0 would imply D2 = 0, which is not the case)

x12 = 0, d0(y1 + y2) = 0. (3.6)

Theorem 2.3 will now follow from the next two lemmas. �

Lemma 3.1.
<
[√

m+ in
]

= 0, m, n ∈ R

if and only if
n = 0, m ≤ 0.

Proof. From the well known formula√
2(m+ in) =

√√
m2 + n2 +m+ i sign(n)

√√
m2 + n2 −m (3.7)

we obtain

<
[√

m+ in
]

=
1√
2

√√
m2 + n2 +m

which equals 0 if and only if n = 0, m ≤ 0. �

Lemma 3.2. <[λ12] = 0 if and only if

=[D2] = 0, D2 = a2 − 4b ≤ 0. (3.8)

Proof. As they are the roots of λ2+aλ+b = 0, λ1 and λ2 are given by the quadratic
formula

λ1, λ2 =
−a±

√
m+ in

2
, λ12 =

√
m+ in, m = <[D2], n = =[D2].

Applying Lemma 3.1 we obtain

x12 = <
[√
m+ in

]
= 0

if and only if n = =[D2] = 0, m = <[D2] ≤ 0. �

Proof of Theorem 2.5. First consider the case D3 = 0. There are two possibilities:
I1 = 0 and I1 6= 0. Since in the case

D3 = −I3
1 − I2

2 = 0, I1 = 0 (3.9)

the equation u′′′(t) = 0 has nonoscillatory nontrivial solutions u = C1 +C2t+C3t
2,

it is sufficient to consider the case

D3 = λ2
12λ

2
13λ

2
23 = 0, I1 6= 0. (3.10)

In this case there is one repeated root – for convenience, we assume λ2 = λ3. (In
principle this involves a loss of generality as the λi are ordered, but we will not use
the ordering in what follows.) So λ2 = λ3 6= 0, 3I1 = λ2(2λ1 + λ2) 6= 0, and the
solutions of u′′′(t) + 3I1u′(t) + 2I2u(t) = 0 are given by

u(t) = C1e
tλ1 + C2e

tλ2 + C3te
tλ2 .

From the initial conditions

C1 + C2 = d0, C1λ1 + C2λ2 + C3 = d1, C1λ
2
1 + C2λ

2
2 + 2C3λ2 = d2,
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we obtain

C1 =
d2 + d0λ

2
2 − 2d1λ2

λ2
12

, C2 =
d0λ

2
1 + 2d1λ2 − d2 − 2d0λ1λ2

λ2
12

,

C3 = − k3

λ12
, k3 = d2 − d1(λ1 + λ2) + d0λ1λ2,

and hence the solution is

u(t) =
(d2 + d0λ

2
2 − 2d1λ2)etλ1 + (d0λ1(λ1 − 2λ2) + 2d1λ2 − d2)etλ2

λ2
12

− k3te
tλ2

λ12
.

(3.11)
The zeros of (3.11) satisfy

(d2 − 2d1λ2 + d0λ
2
2)

tλ2
12

etλ12 +
d0λ1(λ1 − 2λ2) + 2d1λ2 − d2

tλ2
12

=
k3

λ12
;

that is,

d2 − 2d1λ2 + d0λ
2
2

tλ12
etλ12 = k3 +

d2 − 2d1λ2 − d0λ1(λ1 − 2λ2)
tλ12

(3.12)

From Lemma 2.2 it follows that if (2.7) is oscillatory then the distinct roots
λ1, λ2 have equal real parts, that is x12 = 0.

On the other hand, if x12 = 0 then the left-hand side of (3.12) approaches 0 as
t→∞, so for (3.11) to be oscillatory we must have k3 = d2−d1(λ1+λ2)+d0λ1λ2 =
0.

Further from (3.12)

etλ12 =
d2 − 2d1λ2 − d0λ1(λ1 − 2λ2)

d2 − 2d1λ2 + d0λ2
2

=
d1λ12 − d0λ1λ12

d1λ12 − d0λ2λ12
=
d1 − d0λ1

d1 − d0λ2

which is impossible as t→∞ unless x12 = 0, that is x1 = x2 = x3 = 0.
Since d0, d1, d2 ∈ R, from k3 = 0,=[k3] = 0 we obtain

d1(y1] + y2) = d0x1(y1 + y2)

and since λ1 + λ2 + λ3 = 0, λ2 = λ3, and x12 = 0 it follows that y1 + y2 6= 0. Then

d1 = d0x1, |etλ12 | = |y1
y2
| = 1

yielding y1 = ±y2, which is a contradiction (since we know y1+y2 6= 0 and λ12 6= 0).
So: there are no oscillatory solutions in the case D3 = 0, I1 6= 0 .

In the case D3 = λ2
12λ

2
13λ

2
23 6= 0 (λ1, λ2, λ3 are distinct) the solutions of (2.7)

are given by u(t) = C1e
tλ1 + C2e

tλ2 + C3e
tλ3 , and in view of the initial conditions

we have

u(t) =
k1λ23e

tλ1 − k2λ13e
tλ2 + k3λ12e

tλ3

λ12λ13λ23
(3.13)

where, as in (2.15),

k1 = d2 − d1(λ2 + λ3) + d0λ2λ3, k2 = d2 − d1(λ1 + λ3) + d0λ1λ3,

k3 = d2 − d1(λ1 + λ2) + d0λ1λ2

The zeros of (3.13) satisfy

k1λ23e
tλ1 − k2λ13e

tλ2 + k3λ12e
tλ3 = 0;

that is,
k1λ23e

tλ13 − k2λ13e
tλ23 + k3λ12 = 0. (3.14)



8 G. HOVHANNISYAN, O. RUFF EJDE-2015/??

In view of assumption (2.10) it is sufficient to consider the following three cases:

x1 ≤ x2 < x3, (3.15)

x1 < x2 = x3, (3.16)

x1 = x2 = x3. (3.17)

From (2.8) we have

x1 + x2 + x3 = 0, y1 + y2 + y3 = 0. (3.18)

First we consider case (3.15). If (3.13) is oscillatory (that is, (3.14) is true for
arbitrarily large values of t) then by letting t→∞ in (3.14) we obtain k3 = 0 and

k1 = k1 − k3 = λ13(d1 − d0λ2), k2 = k2 − k3 = λ23(d1 − d0λ1).

Further, from (3.14) we have

etλ12 =
k2λ13

k1λ23
,

which gives the infinite sequence of zeros

tn =
1
y12

sin−1
(
=
[k2λ13

k1λ23

])
+
nπ

y12

provided that either ∣∣k2λ13

k1λ23

∣∣ = 1, k3 = 0, x1 = x2 < x3

or ∣∣d1 − d0λ1

d1 − d0λ2

∣∣ = 1, x1 = x2, d2 = d1(λ1 + λ2)− d0λ1λ2, x2 < x3.

Now, since the dj are real, from k3 = 0 we obtain

d2 − d1(x1 + x2) + d0(x1x2 − y1y2) = 0,

−d1(y1 + y2) + d0(x1y2 + y1x2) = 0,
d1

d0
=
x1y2 + y1x2

y1 + y2
= x1,

d2

d0
= y1y2 − x1x2 + (x1 + x2)

d1

d0
= y1y2 + x1x2 = y1y2 + x2

1

that is condition (2.11) of Theorem 2.5:∣∣x1 − λ1

x2 − λ2

∣∣ = 1 or |y1| = |y2|, y2 = −y1,

d1 = x1d0 = d0x1, d2 = (x2
1 + y1y2)d0, λ2 = λ1, x1 = x2 < 0 < x3. (3.19)

We move to the next case (3.16). Now the left-hand side of (3.14) approaches

−k2λ13e
tλ23 + k3λ12 = 0

as t → ∞, so if (3.13) is going to be oscillatory we must have k2λ13e
tλ23 = k3λ12

for certain arbitrarily large values of t. Since we are in case (3.16), we know that
x23 = 0, so λ23 = iy23, and also x12 = x13. So in fact

eity23 =
k3λ12

k2λ13
,
∣∣k3λ12

k2λ13

∣∣ = |eity23 | = 1, (3.20)

and we obtain condition (2.12) of Theorem 2.5:

|k2λ13| = |k3λ12|, x1 < x2 = x3.
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Finally, we turn to case (3.17), in which x1 = x2 = x3 (so by (3.18) they are all
zero) and so (3.14) can be written

− k1y23e
ity13 + k2y13e

ity23 = k3y12. (3.21)

Denoting

b1 = k3y12, b2 = −k1y23, b3 = k2y13, v = ty13, w = ty23. (3.22)

we obtain, from (3.21),

b2e
iv + b3e

iw = b1, b1, b2, b3 ∈ C. (3.23)

Lemma 3.3. The exponential equation (3.23) has solution (v, w) ∈ R × R if and
only if

|b1|+ |b3| ≥ |b2|, −|b2| ≤ |b1| − |b3| ≤ |b2|. (3.24)
These solutions are given by the formulas

v = cos−1
(
± |b1|

2 + |b2|2 − |b3|2

2|b1b2|

)
∓ 2πψ̃0,

w = cos−1
(
± |b1|

2 + |b3|2 − |b2|2

2|b1b3|

)
∓ 2πϕ̃0,

(3.25)

where

ϕ̃0 = − 1
2π

sin−1
(=[b1/b3]
|b1/b3|

)
, ψ̃0 = − 1

2π
sin−1

(=[b1/b2]
|b1/b2|

)
. (3.26)

Remark 3.4. Condition (3.24) is invariant with respect to the substitutions

bj → bje
iα, α ∈ R.

Remark 3.5. If equation (3.23) has a solution (v0, w0) ∈ R × R then it has the
infinite sequence of solutions (v0 + 2kπ,w0 + 2mπ), k,m ∈ Z.

Proof of Lemma 3.3. Assuming b3 6= 0 from (3.23) we have b1
b3
− eiw = b2

b3
eiv, and

by taking the absolute value and squaring both sides of this equation we obtain∣∣b1
b3
− eiw

∣∣2 =
∣∣b2
b3
eiv
∣∣2.

Since from the definition of ϕ̃0,
b1
b3

= ±
∣∣b1
b3

∣∣ cos(2πϕ̃0)− i
∣∣b1
b3

∣∣ sin(2πϕ̃0) = ±
∣∣b1
b3

∣∣e∓2iπϕ̃0 ,

we have ∣∣± |b1
b3
|e∓2iπϕ̃0 − eiw

∣∣2 = |b2
b3
|2,∣∣± |b1| − |b3|ei(w±2πϕ̃0)

∣∣2 = |b2|2,(
± |b1| − |b3| cos(w ± 2πϕ̃0)

)2 + |b3|2 sin2(w ± 2πϕ̃0) = |b2|2,
or

cos(w ± 2πϕ̃0) = ±|b1|
2 + |b3|2 − |b2|2

2|b1b3|
,

w = cos−1
(
± |b1|

2 + |b3|2 − |b2|2

2|b1b3|

)
∓ 2πϕ̃0,
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where

ϕ̃0 = − 1
2π

sin−1
(=[b1/b3]
|b1/b3|

)
= ± 1

2π
cos−1

(<[b1/b3]
|b1/b3|

)
.

Note that in the case b3 = 0 the real solution v of (3.23) exists if and only if
|b2| = |b3|. This also follows from (3.24) in that case.

Further the real solution w exists if and only if∣∣|b1|2 + |b3|2 − |b2|2
∣∣ ≤ 2|b1b3|.

To simplify this inequality one can rewrite it in the form

(|b1|+ |b3|)2 ≥ |b2|2, (|b1| − |b3|)2 ≤ |b2|2,
and we obtain condition (3.24).

To solve (3.23) with respect to v we apply the substitution

b2 → b2e
iw−iv, b3 → b3e

iv−iw,

and obtain
b2e

iw + b3e
iv = b1.

By transposition b2 ↔ b3 from the formula (3.25) for w we obtain the solution of
this equation with respect to v

v = cos−1
(
± |b1|

2 + |b2|2 − |b3|2

2|b1b2|

)
∓ 2πψ̃0,

where

ψ̃0 = − 1
2π

sin−1
(=[b1/b2]
|b1/b2|

)
= ± 1

2π
cos−1

(<[b1/b2]
|b1/b2|

)
.

The real solution v exists if and only if∣∣|b1|2 + |b2|2 − |b3|2
∣∣ ≤ 2|b1b2|.

It can be shown that this inequality is equivalent to (3.24). �

Remark 3.6. To study the appearance of oscillatory solutions of the Cauchy prob-
lem for n-th order ordinary differential equations with constant complex coefficients
one should study the existence of real solutions {vj}nj=1 of the exponential equation:

n−1∑
j=1

bje
ivj = b0, bk ∈ C, k = 0, 1, 2, . . . , n.

Note that the asymptotic behavior and distribution of zeros of the sums of more
general exponential functions have been studied in [6, 8, 2]. and they have a com-
plicated structure.

Continuing the proof of Theorem 2.5 we apply to equation (3.21) the condition
(3.24) of Lemma 3.3, and in view of (3.22) we obtain

|k3y12|+ |k2y13| ≥ |k1y23|, −|k1y23| ≤ |k3y12| − |k2y13| ≤ |k1y23|,
or condition (2.14) of Theorem 2.5.

In view of (3.22) we have also

ϕ̃0 = ϕ0 = − 1
2π

sin−1
(=(b1)
|b1|

)
= − 1

2π
sin−1

(=(k3/k2)
|k3/k2|

)
,

ψ̃0 = ψ0 = − 1
2π

sin−1
(=(b1/b2)
|b1/b2|

)
= − 1

2π
sin−1

(=(k3/k1)
|k3/k1|

)
.
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From (3.25) we have

ty13 = cos−1
(
± |k1y23|2 + |k3y12|2 − |k2y13|2

2|k1k3y12y23|

)
∓ 2πψ0,

ty23 = cos−1
(
± |k

2
3|y2

12 + |k2
2|y2

13 − |k2
1|y2

23

2|k2k3y12y13|

)
∓ 2πϕ0.

The infinite sequence of zeros {t∗n}, {tm} is given by

y13t
∗
n = 2nπ + 2πψ ∓ 2πψ0, n ∈ Z,

y23tm = 2mπ + 2πϕ∓ 2πϕ0, m ∈ Z,

where ϕ,ψ, ϕ0, ψ0 are as in (2.15).
We claim that this occurs precisely when there exists a sequence of distinct

integers {mk}∞k=1 such that
y13
y23
∈ Q,

y13
y23

(mk + ϕ∓ ϕ0)− ψ ± ψ0 ∈ Z.

In order for an oscillatory solution to exist, the sequences tm, t∗n must coincide infin-
itely many times. That means that there must exist sequences {mk}∞k=1, {nk}∞k=1

of distinct integers such that

tmk
=

2π(mk + ϕ∓ ϕ0)
y23

= t∗nk
=

2π(nk + ψ ∓ ψ0)
y13

or

nk =
y13
y23

(mk + ϕ∓ ϕ0)− ψ ± ψ0, nk − nj =
y13
y23

(mk −mj), k, j = 1, 2, . . .

and since nk−nj

mk−mj
∈ Q, we obtain

y13
y23
∈ Q,

y13
y23

(mk + ϕ∓ ϕ0)− ψ ± ψ0 ∈ Z.

We have now exhausted the cases (3.15)–(3.17), which completes the proof. �

Proof of Theorem 2.6. We deduce Theorem 2.6 from Theorem 2.5. Note that case
(2.11) is impossible since the condition d2 = (x2

1 + y1y2)d0, together with d0 =
d1 = 0, implies d2 = 0 as well. Note also that since d0 = d1 = 0 we obtain
k1 = k2 = k3 = d2.

From case (2.12) we have |λ13| = |λ12| or

x2
13 + y2

13 = x2
12 + y2

12,

Since in this case x13 = x12 we obtain y2
13 = y2

12, and in view of (2.8) we obtain
y1 = 0, that is, case (2.16).

Further since y2
23 = (y13 − y12)2 = y2

12 − 2y12y13 + y2
13 the formula (2.15) turns

into
ϕ = ψ = ϕ0 = ψ0 = 0 (3.27)

and case (2.13) turns into case (2.17).
It only remains to be shown that (2.16),(2.17) are equivalent correspondingly to

(2.18) and (2.19). From Vieta’s formulas

λ1 + λ2 + λ3 = 0, 3I1 = λ1(λ2 + λ3) + λ2λ3, 2I2 = −λ1λ2λ3, D3 = λ2
12λ

2
13λ

2
23

we obtain
I1, iI2, D3 ∈ R, D3 ≤ 0 (3.28)



12 G. HOVHANNISYAN, O. RUFF EJDE-2015/??

Conversely from (3.29) the cubic equation with real coefficients

µ3 − 3I1µ+ 2iI2 = 0, D̃3 = −(−I1)3 − (iI2)2 = −D3 ≥ 0 (3.29)

has non-negative discriminant, and so it has three real roots; that is, =[µj ] = 0,
and by substitution µ = −iλ equation (3.29) turns to the characteristic equation
λ3 +3I1λ+2I2 = 0. It follows that the characteristic equation has imaginary roots;
that is, (2.18) is true.

To rewrite the last part of condition (2.17) we will use the cubic formula. Denote

z1 = −I2 +
√
−D3, z2 = −I2 −

√
−D3, D3 = −I3

1 − I2
2 . (3.30)

The roots of λ3 + 3I1λ+ 2I2 = 0 are given by the cubic formula:

λ1 = z
1/3
1 + z

1/3
2 = ξ + η, ξ = (−I2 +

√
D)1/3,

η = (−I2 −
√
D)1/3, D = I3

1 + I2
2 ,

λ2 = −z
1/3
1 + z

1/3
2

2
+
i
√

3(z1/3
1 − z1/3

2 )
2

= −ξ + η

2
+
i
√

3(ξ − η)
2

,

λ3 = −z
1/3
1 + z

1/3
2

2
− i
√

3(z1/3
1 − z1/3

2 )
2

= −ξ + η

2
− i
√

3(ξ − η)
2

,

(3.31)

from which we obtain

λ23 = i
√

3(z1/3
1 − z1/3

2 ) = i
√

3(ξ − η),

λ13 =
3
2

(
z
1/3
1 + z

1/3
2

)
+
i
√

3
2

(
z
1/3
1 − z1/3

2

)
=

3
2

(ξ + η) +
i
√

3
2

(ξ − η).

Finally, we can use the cubic formula to rewrite the last part of condition (2.18):

=[λ13]
=[λ23]

=
3
2=[ξ + η] +

√
3

2 <[ξ − η]
√

3<[ξ − η]
=
√

3=[ξ + η]
2<[ξ − η]

+
1
2

=[λ13]
=[λ23]

=
√

3=[z1/3
1 + z

1/3
2 ]

2<[z1/3
1 − z1/3

2 ]
+

1
2

and we have z2 = −z1, and so

=[λ13]
=[λ23]

=
√

3=[z1/3
1 − z11/3]

2<[z1/3
1 + z1

1/3]
+

1
2

=
√

3=[z1/3
1 ]

2<[z1/3
1 ]

+
1
2
.

It follows that =[λ13]
=[λ23]

∈ Q if and only if
√

3=[(−I2 +
√
−D3)1/3]

<[(−I2 +
√
−D3)1/3]

∈ Q.

So we have established that (2.17) is equivalent to (2.19). �

Proof of Theorem 2.9. Again, we deduce Theorem 2.9 from Theorem 2.5. Note
that case (2.11) leads to the trivial solution since it follows from d0 = d2 = 0 that
d1 = 0.

The case (2.12), in view of

k1 = −d1(λ2 + λ3), k2 = −d1(λ1 + λ3), k3 = −d1(λ1 + λ2),

turns into

1 =
∣∣∣λ2

1 − λ2
2

λ2
1 − λ2

3

∣∣∣ =
(x12 + iy12)(x1 + x2 + iy1 + iy2)
(x13 + iy13)(x1 + x3 + iy1 + iy3)

.
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Further,

0 =
∣∣∣ (x12 + iy12)(x1 + x2 + iy1 + iy2)
(x13 + iy13)(x1 + x3 + iy1 + iy3)

∣∣∣2 − 1. (3.32)

Noting that we have x12 = x13, x23 = 0, and that (from (2.8)) x1 = −2x2 and
y3 = −y1 − y2, the right-hand side of (3.32) can now be shown (by some effort) to
be equal to

y1y23(3y2
2 − 6x2

2 − y2
12)

(9x2
2 + y2

12)(x2
2 + y2

3)
. (3.33)

We may assume that x2 6= 0, because then x2 = x3 and (2.8) would imply x1 = 0
and we would not be in case (2.12). By assumption, y23 6= 0 in this case (otherwise
λ2 = λ3 and so D3 = 0), so this says that in case (2.12) the solution is oscillatory
if and only if either y1 = 0 or 3y2

2 − 6x2
2 − y2

12 = 0. If y1 = 0, then λ1 ∈ R and
y2 = −y3, so λ2 and λ3 are conjugate to one another, so I1 and I2 are real as well.
This is the first case (2.23) in the statement of Theorem 2.9, since x1 < x2 and
x1 = −2x2 imply that x1 < 0 < x2. On the other hand, if 3y2

2 − 6x2
2− y2

12 = 0 then
we are in the second case (2.24) in the statement of Theorem 2.9.

Finally, we deal with case (2.13), in which x1 = x2 = x3 (and all are zero because
of (2.8)). Now (2.15) becomes

ϕ = ψ = ϕ0 = ψ0 = 0

so (2.13) turns to (2.25), and this completes the proof. �

Proof of Theorem 2.10. As in the previous two theorems, case (2.11) is impossible.
Indeed, in case (2.11) from d1 = d2 = 0 we obtain d0x1 = 0, which yields d0 = 0
since here x1 < 0.

Consider case (2.12). In this case from d1 = d2 = 0 we obtain

k2 = d0λ1λ3, k3 = d0λ1λ2.

so (2.12) turns into

|λ13λ1λ3| = |λ12λ1λ2|, x1 < x2 = x3.

If λ1 = 0, then (2.8) requires that x2 +x3 = 0, hence x2 = x3 = 0 which contradicts
the condition x1 < x2. If λ1 6= 0, then

|λ13λ3| = |λ12λ2|;
that is, ∣∣∣λ2λ12

λ3λ13

∣∣∣2 = 1.

This means that
(x2

2 + y2
2)(x2

12 + y2
12)

(x2
3 + y2

3)(x2
13 + y2

13)
− 1 = 0, x1 < x2 = x3. (3.34)

In this case we know that x2 = x3 and so that x1 = −2x2 and y1 + y2 + y3 = 0.
Using these facts and performing some calculation, (3.35) becomes

− 4y1(y1 + 2y2)(3x2
2 + y2

1 + y1y2 + y2
2)

(x2
2 + y2

1 + 2y1y2 + y2
2)(9x2

2 + 4y2
1 + 4y1y2 + y2

2)
= 0.

If y1 = 0 then λ1 is real (and negative, by (2.8) and (3.34)), and y2 = −y3, so I1
and I2 are real and we are in the situation given in the statement of the theorem.
We claim that this is the only possibility. If y1 + 2y2 = 0 then (2.8) gives that
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y2 = y3, which in case (3.35) means that λ2 = λ3, contradicting the assumption
that D3 6= 0. On the other hand, if

3x2
2 + y2

1 + y1y2 + y2
2 = 0

then by completing the square we obtain

3x2
2 +

(
y1 +

y2
2

)2

+
3
4
y2
2 = 0.

This requires that x2 = y2 = 0. But x1 < x2 = x3 = 0 violates (2.8), so this is also
impossible.

The final case is (2.13), in which x1 = x2 = x3 = 0, y3 = −y1 − y2, from which
(2.15) becomes ϕ0 = ψ0 = 0 and

cos(2πϕ) = −2y4
1 + 7y3

1y2 + 11y2
1y

2
2 + 8y1y3

2 + 4y4
2

2y2
1y2(y1 + y2)

(3.35)

which we can put in terms of the variable γ = y1/y2:

cos(ty23) = −2γ4 + 7γ3 + 11γ2 + 8γ + 4
2γ2(γ + 1)

= f(γ). (3.36)

Analysis of f(γ) reveals that −1 ≤ f(γ) ≤ 1 only when γ = −2, and f(−2) = −1 –
that is, (3.35) is only possible when y1+2y2 = 0, and that again gives a contradiction
as it would imply y2 = y3 and hence λ2 = λ3 and D3 = 0. Consequently, the
case (2.13) gives rise to no oscillatory solutions and the proof is complete. �

As noted in Remark 3.6, similar results for higher order equations will depend on
analysis of larger systems of exponential equations, which is difficult. Our results
have some limited applicability: for instance, in degree 4 if

4∑
j=1

x2
j 6= 0

then one can reduce to various instances of Theorem 2.5. However, as with the
third order results presented here, the most troublesome case is when all the xis
are zero.
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