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EXISTENCE OF SOLUTIONS FOR p-LAPLACIAN EQUATIONS
WITH ELECTROMAGNETIC FIELDS AND CRITICAL

NONLINEARITY

ZHONGYI ZHANG

Abstract. In this article, we study the perturbed p-Laplacian equation prob-
lems with critical nonlinearity in RN . By using the concentration compactness

principle and variational method, we establish the existence and multiplicity
of nontrivial solutions of the least energy.

1. Introduction

In this article we study the existence and multiplicity of solutions for the per-
turbed p-Laplacian equation problems with critical nonlinearity

− εp
(
a+ b

∫
RN
|∇Au|pdx

)
∆p,Au+ V (x)|u|p−2u

= |u|p
∗−2u+ h(x, |u|p)|u|p−2u, x ∈ RN ,

(1.1)

where ∆p,Au(x) := div(|∇u + iA(x)u|p−2(∇u + iA(x)u), here i is the imaginary
unit, p∗ := pN/(N − p) denotes the Sobolev critical exponent and N ≥ 3.

We make the following assumptions on V (x), g(x) and h(x) throughout this
paper:

(A1) V (x) ∈ C(RN ,R), V (x0) = minV = 0 and there is τ0 > 0 such that the
set V τ0 = {x ∈ RN : V (x) < τ0} has finite Lebesgue measure;

(A2) Aj(x) ∈ C(RN ,R) (j = 1, 2, . . . , N) and A(x0) = 0;
(A3) (1) h ∈ C(RN × [0,+∞),R) and h(x, t) = o(|t|) uniformly in x as t→ 0;

(2) there are C0 > 0 and q ∈ (p, p∗) such that |h(x, t)| ≤ C0(1 + t
q−p
p );

(3) there l0 > 0, s > 2p and 2p < µ < p∗ such that H(x, t) ≥ l0|t|
s
p and

µH(x, t) ≤ h(x, t)t for all (x, t), where H(x, t) =
∫ t

0
h(x, s)ds.

Problem (1.1) with A(x) ≡ 0 has an extensive literature. Different approaches
have been taken to investigate this problem under various hypotheses on the po-
tential and nonlinearity. See for example [1, 8, 12, 14, 15, 16, 18, 32, 33] and
the references therein. Observe that in all these papers the nonlinearities are as-
sumed to be subcritical together with some other technical conditions of course.
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The above-mentioned papers mostly concentrated on the nonlinearities with sub-
critical conditions. Floer and Weinstein in [20] first studied the existence of single
and multiple spike solutions based on the Lyapunov-Schmidt reductions. Subse-
quently, Oh [32, 33, 34] extended the results in a higher dimension. Kang and Wei
[25] established the existence of positive solutions with any prescribed number of
spikes, clustering around a given local maximum point of the potential function. In
accordance with the Sobolev critical nonlinearities, there have been many papers
devoted to studying the existence of solutions to elliptic boundary-valued problems
on bounded domains after the pioneering work by Brézis and Nirenberg [5]. Ding
and Lin [17] first studied the existence of semi-classical solutions to the problem on
the whole space with critical nonlinearities and established the existence of positive
solutions, as well as of those that change sign exactly once. They also obtained
multiplicity of solutions when the nonlinearity is odd.

As far as problem (1.1) in the case of A(x) 6≡ 0 is concerned, we recall Bartsch
[3], Cingolani [9] and Esteban and Lions [19]. This kind of paper first appeared in
[19]. The authors obtained the existence results of standing wave solutions for fixed
~ > 0 and special classes of magnetic fields. Cingolani [9] proved that the magnetic
potential A(x) only contributes to the phase factor of the solitary solutions for ~ > 0
sufficiently small. For more results, we refer the reader to [2, 10, 11, 23, 27, 36, 39]
and the references therein.

For general p ≥ 2, most of the works studied the existence results to equation
(1.1) with A(x) ≡ 0. See, for example, [13, 21, 31] and the references therein. These
papers are mostly devoted to the study of the existence of solutions to the problem
on bounded domains with the Sobolev subcritical nonlinearities.

In (1.1) with bounded domain, if we set p = 2, A(x) ≡ 0, ε = 1, V (x) = 0 and
g(t) = a+ bt, it reduces to the following Dirichlet problem of Kirchhoff type

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u), x ∈ Ω,

u|∂Ω = 0.
(1.2)

Problem (1.2) is a generalization of a model introduced by Kirchhoff [26]. More
precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2dx)∂2u

∂x2
= 0, (1.3)

where ρ, ρ0, h,E, L are constants, which extends the classical D’Alembert’s wave
equation, by considering the effects of the changes in the length of the strings during
the vibrations. The equation (1.2) is related to the stationary analogue of problem
(1.3). (1.2) received much attention only after Lions [29] proposed an abstract
framework to the problem. Some important and interesting results can be found,
see for example [22, 24, 28]. We note that the results dealing with the problem
(1.2) with critical nonlinearity are relatively scarce.

Equation (1.1) with p 6= 2, A(x) ≡ 0, ε = 1, V (x) = 0, it reduces to the p-
Kirchhoff type problem. p-Kirchhoff type problem began to attract the attention of
several researchers mainly after the work of Lions [29], where a functional analysis
approach was proposed to attack it. However, in this work, we use a different
approach to those explored in [24], because here we are working with the p-Laplacian
operator. Because p-Laplacian operator is nonlinear, some estimates for this type
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of operator can not be obtained using the same kind of ideas explored for the case
p = 2. For example, We know that W 1,p(RN ) is not a Hilbert space for 1 < p < N ,
except for p = 2. The space W 1,p(RN ) with p 6= 2 does not satisfy the Lieb lemma
[37].

To the best of our knowledge, the existence and multiplicity of solutions to
problem (1.1) on RN has not ever been studied by variational methods. As we shall
see in the present paper, problem (1.1) can be viewed as a Schrödinger equation
coupled with a non-local term. The competing effect of the non-local term with the
critical nonlinearity and the lack of compactness of the embedding of W 1,p(RN ) into
the space Lp(RN ), prevents us from using the variational methods in a standard
way. Some new estimates for such a Kirchhoff equation involving Palais-Smale
sequences, which are key points to apply this kinds of theory, are needed to be
re-established. Let us point out that although the idea was used before for other
problems, the adaptation to the procedure to our problem is not trivial at all, since
the appearance of non-local term, we must consider our problem for suitable space
and so we need more delicate estimates.

Our main result is the following theorem.

Theorem 1.1. Let (A1)–(A3) be satisfied. Then
(i) For any κ > 0 there is Eκ > 0 such that if ε ≤ Eκ problem (1.1) has at least

one solution uε satisfying
θµ− 1
p

∫
RN

H(x, |uε|p)dx+
(θ
p
− 1
p∗

)∫
RN
|uε|p

∗
dx ≤ κεN , (1.4)(θ

p
− 1
µ

)∫
RN
|∇Auε|pdx+

(1
p
− 1
µ

)∫
RN

λV (x)|uε|pdx ≤ κεN . (1.5)

Moreover, uε → 0 in W 1,p(RN ) as ε→ 0.
(ii) Assume additionally that h(x, t) is odd in t, for any m ∈ N and κ > 0 there

is Emκ > 0 such that if ε ≤ Emκ, problem (1.1) has at least m pairs of
solutions uε,i, uε,−i, i = 1, 2, . . . ,m which satisfy the estimates (1.4) and
(1.5). Moreover, uε,i → 0 in W 1,p(RN ) as ε→ 0, i = 1, 2, . . . ,m.

2. Main result

We set λ = ε−p and rewrite (1.1) in the form

−
(
a+ b

∫
RN
|∇Au|pdx

)
∆p,Au+ λV (x)|u|p−2u

= λ|u|p
∗−2u+ λh(x, |u|p)|u|p−2u, x ∈ RN .

(2.1)

We are going to prove the following result.

Theorem 2.1. Let (A1)–(A3) be satisfied. Then
(1) For any σ > 0 there is Λσ > 0 such that problem (2.1) has at least one

solution uλ for each λ ≥ Λσ satisfying
µ− 2

2p

∫
RN

H(x, |uλ|p)dx+
( 1

2p
− 1
p∗

)∫
RN
|uλ|p

∗
dx ≤ σλ−

N
p (2.2)

and (1
p
− 1
µ

)∫
RN
|∇Auλ|pdx+

(1
p
− 1
µ

)∫
RN

λV (x)|uλ|pdx ≤ σλ1−Np . (2.3)
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(2) Assume additionally that h(x, t) is odd in t, for any m ∈ N and σ > 0 there
is Λmσ > 0 such that if problem (2.1) has at least m pairs of solutions uλ which
satisfy the estimates (2.2) and (2.3) whenever λ ≥ Λmσ.

To prove the above theorems, we introduce the space

Eλ :=
{
u ∈W 1,p(RN ,C) :

∫
RN

λV (x)|u|pdx <∞, λ > 0
}

equipped with the norm

‖u‖pλ =
∫

RN
(|∇Au|p + λV (x)|u|p) dx,

where ∇Au := ∇u+ iAu. It is known that Eλ is the closure of C∞0 (RN ,C). Similar
to the diamagnetic inequality [19], we have the following inequality

|∇Au(x)| ≥ |∇|u(x)||, for u ∈W 1,p(RN ,C).

Indeed, since A is real-valued

|∇|u|(x)| =
∣∣∣Re

(
∇u u
|u|

)∣∣∣ =
∣∣Re

(
∇u+ iAu

) u
|u|
∣∣ ≤ |∇u+ iAu|,

(the bar denotes complex conjugation) this fact means that if u ∈ Eλ, then |u| ∈
W 1,p(RN ,C), and therefore u ∈ Ls(RN ) for any s ∈ [p, p∗). Thus, for each s ∈
[p, p∗], there is cs > 0 (independent of λ) such that if λ > 1(∫

RN
|u|s
)1/s

≤ cs
(∫

RN
|∇|u||p

)1/p

≤ cs
(∫

RN
|∇Au|p

)1/p

≤ cs‖u‖λ. (2.4)

The energy functional Jλ : Eλ → R associated with problem (2.1)

Jλ(u) :=
a

p

∫
RN
|∇Au|pdx+

b

2p

(∫
RN
|∇Au|pdx

)2

+
1
p

∫
RN

λV (x)|u|pdx

− λ

p∗

∫
RN
|u|p

∗
dx− λ

p

∫
RN

H(x, |u|p)dx

is well defined. Thus, it is easy to check that as arguments [35, 38] Jλ ∈ C1(Eλ,R)
and its critical points are solutions of (2.1).
We call that u ∈ Eλ is a weak solution of (2.1), if

〈J ′λ(u), v〉 = Re
{
a

∫
RN

(
|∇Au|p−2∇Au · ∇Av

)
dx+ λ

∫
RN

V (x)|u|p−2uvdx

+ b

∫
RN
|∇Au|pdx

∫
RN

(
|∇Au|p−2∇Au · ∇Av

)
dx

− λ
∫

RN
|u|p

∗−2uvdx− λ
∫

RN
h(x, |u|p)|u|p−2uvdx

}
,

where v ∈ Eλ.

3. Behavior of (PS) sequences

We recall the second concentration-compactness principle by Lions [30]

Lemma 3.1 ([30]). Let {un} be a weakly convergent sequence to u in W 1,p(RN )
such that |un|p

∗
⇀ ν and |∇un|p ⇀ µ in the sense of measures. Then, for some at

most countable index set I,
(i) ν = |u|p∗ +

∑
j∈I δxjνj, νj > 0,
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(ii) µ ≥ |∇u|p +
∑
j∈I δxjµj , µj > 0,

(iii) µj ≥ Sνp/p
∗

j ,

where S is the best Sobolev constant, i.e. S = inf
{ ∫

RN |∇u|
pdx :

∫
RN |u|

p∗dx = 1
}

,
xj ∈ RN , δxj are Dirac measures at xj and µj, νj are constants.

Lemma 3.2 ([7]). Let {un} be a weakly convergent sequence to u in W 1,p(RN ) and
define

(i) ν∞ = limR→∞ lim supn→∞
∫
|x|>R |un|

p∗dx,
(ii) µ∞ = limR→∞ lim supn→∞

∫
|x|>R |∇un|

pdx.

The quantities ν∞ and µ∞ exist and satisfy
(iii) lim supn→∞

∫
RN |un|

p∗dx =
∫

RN dν + ν∞,
(iv) lim supn→∞

∫
RN |∇un|

pdx =
∫

RN dµ+ µ∞,
(v) µ∞ ≥ Sνp/p

∗

∞ .

We recall that a C1 functional Jλ on Banach space Eλ is said to satisfy the Palais-
Smale condition at level c ((PS)c in short) if every sequence {un} ⊂ Eλ satisfying
limn→∞ Jλ(un) = c and limn→∞ ‖Jλ(un)‖E∗λ = 0 has a convergent subsequence.

Lemma 3.3. Suppose that (A1)–(A3) hold. Then any (PS)c sequence {un} is
bounded in Eλ and c ≥ 0.

Proof. Let {un} be a sequence in Eλ such that

c+ o(1) = Jλ(un) =
a

p

∫
RN
|∇Aun|pdx+

b

2p

(∫
RN
|∇Aun|pdx

)2

+
1
p

∫
RN

λV (x)|un|pdx−
λ

p∗

∫
RN
|un|p

∗
dx− λ

p

∫
RN

H(x, |un|p)dx
(3.1)

and
〈J ′λ(un), v〉

= Re
{
a

∫
RN
|∇Aun|p−2∇Aun · ∇Avdx+ λ

∫
RN

V (x)|un|p−2unvdx

+ b

∫
RN
|∇Aun|pdx

∫
RN
|∇Aun|p−2∇Aun · ∇Avdx− λ

∫
RN
|un|p

∗−2unvdx

− λ
∫

RN
h(x, |un|p)|un|p−2unvdx

}
= o(1)‖un‖.

(3.2)
By (3.1), (3.2) and condition (A3)(3), we have

c+ o(1)‖un‖

= Jλ(un)− 1
µ
〈J ′λ(un), un〉

=
(1
p
− 1
µ

)
a

∫
RN
|∇Aun|pdx+

(1
p
− 1
µ

)∫
RN

λV (x)|un|pdx

+
( 1

2p
− 1
µ

)
b
(∫

RN
|∇Aun|pdx

)2

+
( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
dx

+ λ

∫
RN

[ 1
µ
h(x, |un|p)|un|p −

1
p
H(x, |un|p)

]
dx
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≥
(1
p
− 1
µ

)
a

∫
RN
|∇Aun|pdx+

(1
p
− 1
µ

)∫
RN

λV (x)|un|pdx. (3.3)

This inequality implies that {un} is bounded in Eλ. Taking the limit in (3.3) shows
that c ≥ 0. This completes the proof of Lemma 3.3. �

The main result in this section is the following compactness result.

Lemma 3.4. Suppose that (A1)–(A3) hold. For any λ ≥ 1, Jλ satisfies (PS)c
condition, for all c ∈ (0, σ0λ

1−Np ), where σ0 := ( 1
µ −

1
p∗ )(aS)N/p, that is any

(PS)c-sequence (un) ⊂ Eλ has a strongly convergent subsequence in Eλ.

Proof. Let {un} be a (PS)c sequence, by Lemma 3.3, {un} is bounded in Eλ.
Hence, by diamagnetic inequality, {|un|} is bounded in W 1,p(RN ,C). Then, for
some subsequence, there is u ∈ W 1,p(RN ,C) such that un ⇀ u in W 1,p(RN ,C).
We claim that ∫

RN
|un|p

∗
dx→

∫
RN
|u|p

∗
dx. (3.4)

To prove this claim, we suppose that

|∇|un||p ⇀ |∇|u||p + µ and |un|p
∗
⇀ |u|p

∗
+ ν (weak∗ sense of measures).

Using the concentration compactness-principle due to Lions (cf. [30, Lemma 1.2]),
we obtain a countable index set I, sequences {xj} ⊂ RN , {µj}, {νj} ⊂ (0,∞) such
that

ν =
∑
j∈I

δxjνj , µ ≥
∑
j∈I

δxjµj , µj ≥ Sνp/p
∗

j (3.5)

for all j ∈ I, where δxj are Dirac measures at xj and µj , νj are constants.
Now, let xj be a singular point of the measures µ and ν. We define a function

φ(x) ∈ C∞0 (RN , [0, 1]) such that φ(x) = 1 in B(xj , ε), φ(x) = 0 in RN \ B(xj , 2ε)
and |∇φ| ≤ 2/ε in RN . Since {unφ} is bounded in W 1,p(RN ,C) and φ takes values
in R, a direct calculation shows that

〈J ′λ(un), unφ〉 → 0,

∇A(unφ) = iun∇φ+ φ∇Aun.

Therefore,

a

∫
RN
|∇Aun|pφdx+ aRe

(∫
RN

i|∇Aun|p−2un∇Aun∇Aφdx
)

+
∫

RN
λV (x)|un|pφdx

= −b
∫

RN
|∇Aun|pdx · Re

(∫
RN

i|∇Aun|p−2un∇Aun∇Aφdx
)

− b
∫

RN
|∇Aun|pdx

∫
RN
|∇Aun|pφdx+ λ

∫
RN

h(x, |un|p)|un|pφdx

+ λ

∫
RN
|un|p

∗
φdx+ on(1).

(3.6)
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On the other hand, by Hölder’s inequality we obtain

lim sup
n→∞

∣∣Re
∫

RN
i|∇Aun|p−2un∇Aun∇φdx

∣∣
≤ lim sup

n→∞

(∫
RN
|∇Aun|pdx

)(p−1)/p(∫
RN
|un∇Aφ|pdx

)1/p

≤ C1

(∫
B(xj ,2ε)

|u|p|∇Aφ|pdx
)1/p

≤ C1

(∫
B(xj ,2ε)

|∇Aφ|Ndx
)1/N(∫

B(xj ,2ε)

|u|p
∗
dx
)1/p∗

≤ C2

(∫
B(xj ,2ε)

|u|p
∗
dx
)1/p∗

→ 0 as ε→ 0 .

(3.7)

Similarly, it follows from the definition of φ and condition (A3) that

lim
ε→0

lim
n→∞

∫
RN

h(x, |un|p)|un|pφdx = 0. (3.8)

Since φ has compact support, letting n → ∞ in (3.6) we deduce from the lower
semicontinuity of the norm, (3.7) and (3.8) that

a

∫
RN

φdµ ≤ −
∫

RN
λV (x)|u|pφdx+ λ

∫
RN

φdν.

Letting ε → 0, we obtain aµj ≤ λνj . Combing this with Lemma 3.1, we obtain

νj ≥ aλ−1Sν
p
p∗

j . This result implies that

(I) νj = 0 or (II) νj ≥
(
aλ−1S

)N/p
.

To obtain the possible concentration of mass at infinity, similarly, we define a cut
off function φR ∈ C∞0 (RN ) such that φR(x) = 0 on |x| < R and φR(x) = 1 on
|x| > R+ 1. Note that 〈J ′(un), unφR〉 → 0, this fact imply that

a

∫
RN
|∇Aun|pφRdx+ aRe

(∫
RN

i|∇Aun|p−2un∇Aun∇AφRdx
)

+
∫

RN
λV (x)|un|pφRdx

= −b
∫

RN
|∇Aun|pdx · Re

(∫
RN

i|∇Aun|p−2un∇Aun∇AφRdx
)

− b
∫

RN
|∇Aun|pdx

∫
RN
|∇Aun|pφRdx+ λ

∫
RN

h(x, |un|p)|un|pφRdx

+ λ

∫
RN
|un|p

∗
φRdx+ on(1).

(3.9)

It is easy to prove that

− lim
R→∞

lim
n→∞

Re
(∫

RN
i|∇Aun|p−2un∇Aun∇AφRdx

)
= 0,

lim
R→∞

lim
n→∞

∫
RN

h(x, |un|p)|un|pφRdx = 0.
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Letting R → ∞, we obtain aµ∞ ≤ λν∞. By Lemma 3.2, we obtain ν∞ ≥
aλ−1Sν

p
p∗
∞ . This result implies that

(III) ν∞ = 0 or (IV) ν∞ ≥
(
aλ−1S

)N/p
.

Next, we claim that (II) and (IV) cannot occur. If the case (IV) holds, for some
j ∈ I, then by using Lemma 3.2 and condition (A3)(3), we have that

c = lim
n→∞

(
Jλ(un)− 1

µ
〈J ′λ(un), un〉

)
≥
(1
p
− 1
µ

)
a

∫
RN
|∇Aun|pdx+

(1
p
− 1
µ

)∫
RN

λV (x)|un|pdx

+ λ

∫
RN

[ 1
µ
h(x, |un|p)|un|p −

1
p
H(x, |un|p)

]
dx+

( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
dx

≥
( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
dx

≥
( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
φRdx

=
( 1
µ
− 1
p∗

)
λν∞ ≥ σ0λ

1−Np ,

where σ0 = ( 1
µ−

1
p∗ )(aS)N/p. This is impossible. Consequently, νj = 0 for all j ∈ I.

Similarly, if the case (II) holds, for some j ∈ I, then by condition (A3), we have

c = lim
n→∞

(
Jλ(un)− 1

µ
〈J ′λ(un), un〉

)
≥
( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
dx

≥
( 1
µ
− 1
p∗

)
λ

∫
RN
|un|p

∗
φdx

=
( 1
µ
− 1
p∗

)
λν ≥ aλ1−Np as ε→ 0,

which leads to a contradiction. Thus, we must have (II) cannot occur for each j.
Then ∫

RN
|un|p

∗
dx→

∫
RN
|u|p

∗
dx. (3.10)

Thus, from (3.10), the lower semicontinuity of the norm and Brezis-Lieb Lemma
[6], we have

o(1)‖un‖ = 〈J ′λ(un), un〉

= a

∫
RN
|∇Aun|pdx+ λ

∫
RN

V (x)|un|pdx+ b
(∫

RN
|∇Aun|pdx

)2

− λ
∫

RN
|un|p

∗
dx− λ

∫
RN

H(x, |un|p)dx

≥ min{a, 1}‖un − u‖pλ + a

∫
RN
|∇Au|pdx+ λ

∫
RN

V (x)|u|pdx

+ b

(∫
RN
|∇Au|pdx

)2

− λ
∫

RN
|u|p

∗
dx− λ

∫
RN

H(x, |u|p)dx
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= ‖un − u‖pλ + o(1)‖u‖λ,
here we use J ′λ(u) = 0. Thus we prove that {un} strongly converges to u in Eλ.
This completes the proof of Lemma 3.4. �

4. Proof of Theorem 2.1

In the following, we always consider λ ≥ 1. By the assumptions (A1)–(A3), one
can see that Jλ(u) has the mountain pass geometry.

Lemma 4.1. Assume (A1)–(A3) hold. Then There exist αλ, ρλ > 0 such that
Jλ(u) > 0 if u ∈ Bρλ \ {0} and Jλ(u) ≥ αλ if u ∈ ∂Bρλ , where Bρλ = {u ∈ Eλ :
‖u‖λ ≤ ρλ}.

Proof. From condition (A3), there is Cδ > 0 such that
1
p∗

∫
RN
|u|p

∗
dx+

1
p

∫
RN

H(x, |u|p)dx ≤ δ|u|pp + Cδ|u|p
∗

p∗ ,

for δ ≤
(
2 min

{
a
p ,

1
p

}
λcpp
)−1. It follows that

Jλ(u) :=
a

p

∫
RN
|∇Au|pdx+

b

2p

(∫
RN
|∇Au|pdx

)2

+
1
p

∫
RN

λV (x)|u|pdx

− λ

p∗

∫
RN
|u|p

∗
dx− λ

p

∫
RN

H(x, |u|p)dx

≥ min
{a
p
,

1
p

}
‖u‖pλ − λδ|u|

p
p − λCδ|u|

p∗

p∗

≥ 1
2

min
{a
p
,

1
p

}
‖u‖pλ − λCδc

p∗

p∗‖u‖
p∗

λ .

Since p∗ > p, we know that the conclusion of Lemma 4.1 holds. �

Lemma 4.2. Under the assumption of Lemma 4.1, for any finite dimensional
subspace F ⊂ Eλ,

Jλ(u)→ −∞ as u ∈ F, ‖u‖λ →∞.

Proof. By using conditions (A2) and (A3), we obtain

Jλ(u) ≤ max{a
p
, 1}‖u‖pλ +

b

2p
‖u‖2pλ −

λ

p∗
|u|p

∗

p∗ − λl0|u|ss

for all u ∈ F . Since all norms in a finite-dimensional space are equivalent and
2p < p∗, p < p∗. This completes the proof. �

Since Jλ(u) does not satisfy the (PS)c condition for all c > 0, in the following we
will find a special finite-dimensional subspaces by which we construct sufficiently
small minimax levels.

Recall that assumption (A2) implies that there is x0 ∈ RN such that V (x0) =
minx∈RN V (x) = 0. Without loss of generality we assume from now on that x0 = 0.
Observe that, by (A3)(3) we have

λ

p∗

∫
RN
|u|p

∗
dx+ λ

∫
RN

H(x, |u|p)dx ≥ l0λ
∫

RN
|u|sdx.

Definite the function Iλ ∈ C1(Eλ,R) by

Iλ(u) :=
a

p

∫
RN
|∇Au|pdx+

b

2p

(∫
RN
|∇Au|pdx

)2

+
∫

RN
λV (x)|u|pdx−l0λ

∫
RN
|u|sdx.
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Then Jλ(u) ≤ Iλ(u) for all u ∈ Eλ and it suffices to construct small minimax levels
for Iλ. Note that

inf
{∫

RN
|∇φ|pdx : φ ∈ C∞0 (RN ,R), |φ|p = 1

}
= 0.

For any 1 > δ > 0 one can choose φδ ∈ C∞0 (RN ) with |φδ|p = 1 and suppφδ ⊂
Brδ(0) so that |∇φδ|pp < δ. Set

fλ = φδ(λ1/px), (4.1)

then
supp fλ ⊂ Bλ−1/prδ(0).

Thus, for t ≥ 0,

Iλ(tfλ) ≤ a

p
tp
∫

RN
|∇Afλ|pdx+

b

2p
t2p
(∫

RN
|∇Afλ|pdx

)2

+
tp

p

∫
RN

λV (x)|fλ|pdx− tsl0λ
∫

RN
|fλ|sdx

≤ λ1−Np
[a
p
tp
∫

RN
|∇Aφδ|pdx+

b

2p
t2pλ1−Np

(∫
RN
|∇Aφδ|pdx

)2

+
tp

p

∫
RN

V
(
λ−1/px

)
|φδ|pdx− tsl0

∫
RN
|φδ|sdx

]
= λ1−Np Ψλ(tφδ),

where Ψλ ∈ C1(Eλ,R) defined by

Ψλ(u) :=
a

p

∫
RN
|∇Au|pdx+

b

2p

(∫
RN
|∇Au|pdx

)2

+
1
p

∫
RN

V
(
λ−1/px

)
|u|pdx− l0

∫
RN
|u|sdx.

Since s > 2p, thus there exists finite number t0 ∈ [0,+∞) such that

max
t≥0

Ψλ(tφδ) =
a

p
tp0

∫
RN
|∇Aφδ|pdx+

b

2p
t2p0

(∫
RN
|∇Aφδ|pdx

)2

+
tp0
p

∫
RN

V
(
λ−1/px

)
|φδ|pdx− ts0l0

∫
RN
|φδ|sdx

≤ a

p
tp0

∫
RN
|∇Aφδ|pdx+

b

2p
t2p0

(∫
RN
|∇Aφδ|pdx

)2

+
tp0
p

∫
RN

V
(
λ−1/px

)
|φδ|pdx.

On the one hand, since V (0) = 0 and suppφδ ⊂ Brδ(0), there is Λδ > 0 such that

V
(
λ−1/px

)
≤ δ

|φδ|pp
for all |x| ≤ rδ and λ ≥ Λδ.

This implies

max
t≥0

Ψλ(tφδ) ≤
a

p
tp0δ +

b

2p
t2p0 δ

2 +
tp0
p
δ ≤ T ∗δ. (4.2)

where T ∗ := (ap t
p
0 + b

2p t
2p
0 + tp0

p ). Therefore, for all λ ≥ Λδ,

max
t≥0

Jλ(tφδ) ≤ T ∗δλ1−Np . (4.3)
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Thus we have the following lemma.

Lemma 4.3. Under the assumption of Lemma 4.1, for any κ > 0 there exists
Λκ > 0 such that for each λ ≥ Λκ, there is f̂λ ∈ Eλ with ‖f̂λ‖ > ρλ, Jλ(f̂λ) ≤ 0
and

max
t∈[0,1]

Jλ(tf̂λ) ≤ κλ1−Np . (4.4)

Proof. Choose δ > 0 so small that T ∗δ ≤ κ. Let fλ ∈ Eλ be the function defined
by (4.1). Taking Λκ = Λδ. Let t̂λ > 0 be such that t̂λ‖fλ‖λ > ρλ and Jλ(tfλ) ≤ 0
for all t ≥ t̂λ. By (4.3), let f̂λ = t̂λfλ we know that the conclusion of Lemma 4.3
holds. �

For any m∗ ∈ N, one can choose m∗ functions φiδ ∈ C∞0 (RN ) such that suppφiδ∩
suppφkδ = ∅, i 6= k, |φiδ|s = 1 and |∇φiδ|pp < δ. Let rm

∗

δ > 0 be such that suppφiδ ⊂
Birδ(0) for i = 1, 2, . . . ,m∗. Set

f iλ(x) = φiδ(λ
1/px), for i = 1, 2, . . . ,m∗ (4.5)

and
Hm∗

λδ = span{f1
λ, f

2
λ, . . . , f

m∗

λ }.
Observe that for each u =

∑m∗

i=1 cif
i
λ ∈ Hm∗

λδ ,∫
RN
|∇Au|pdx =

m∗∑
i=1

|ci|p
∫

RN
|∇Af iλ|pdx,

∫
RN

V (x)|u|pdx =
m∗∑
i=1

|ci|p
∫

RN
V (x)|f iλ|pdx,

1
p∗

∫
RN
|u|p

∗
dx =

1
p∗

m∗∑
i=1

|ci|p
∗
∫

RN
|f iλ|p

∗
dx,

∫
RN

H(x, |u|p)dx =
m∗∑
i=1

∫
RN

H(x, cif iλ)dx.

On the other hand, by mathematical induction we have the inequality( m∑
i=1

ai

)2

≤ m
m∑
i=1

a2
i for all ai ≥ 0. (4.6)

Thus by (4.6), one has(∫
RN
|∇u|pdx

)2

=
( m∗∑
i=1

|ci|p
∫

RN
|∇f iλ|pdx

)2

≤ m∗
m∗∑
i=1

|ci|2p
(∫

RN
|∇f iλ|pdx

)2

.

Therefore

Jλ(u) ≤ m∗
m∗∑
i=1

Jλ(cif iλ)

and as before
Jλ(cif iλ) ≤ λ1−Np Ψ(|ci|f iλ).

Set
βδ := max{|φiδ|pp : j = 1, 2, . . . ,m∗}



12 Z. ZHANG EJDE-2015/178

and choose Λm∗δ > 0 so that

V (λ−1/px) ≤ δ

βδ
for all |x| ≤ rm

∗

δ and λ ≥ Λm∗δ.

As before, we can obtain

max
u∈Hm∗λδ

Jλ(u) ≤ (m∗)pT ∗δλ1−Np (4.7)

for all λ ≥ Λm∗δ. Using this estimate we have the following result.

Lemma 4.4. Under the assumptions of Lemma 4.1, for any m∗ ∈ N and κ > 0
there exists Λm∗κ > 0 such that for each λ ≥ Λm∗κ, there exists an m∗-dimensional
subspace Fλm∗ satisfying

max
u∈Fλm∗

Jλ(u) ≤ κλ1−Np .

Proof. Choose δ > 0 so small that (m∗)pT ∗δ ≤ κ. Taking Fλm∗ = Hm∗

λδ =
span{f1

λ, f
2
λ, . . . , f

m∗

λ }, where f iλ(x) = φiδ(λ
1/px), for i = 1, 2, . . . ,m∗ are given

by (4.5). From (4.7), the statement of the lemma follows. �

We now establish the existence and multiplicity results.

Proof of Theorem 2.1. Using Lemma 4.3, we choose Λσ > 0 and define for λ ≥ Λσ,
the minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(tf̂λ)

where
Γλ := {γ ∈ C([0, 1], Eλ) : γ(0) = 0 and γ(1) = f̂λ}.

By Lemma 4.1, we have αλ ≤ cλ ≤ σ0λ
1−Np . By Lemma 3.4, we know that

Jλ satisfies the (PS)cλ condition, there is uλ ∈ Eλ such that J ′λ(uλ) = 0 and
Jλ(uλ) = cλ. Then uλ is a solution of (2.1). Moreover, it is well known that such
a Mountain-Pass solution is a least energy solution of (2.1). Such uλ is a critical
point of Jλ, for τ ∈ [2p, p∗],

σλ1−Np ≥ Jλ(uλ) = Jλ(uλ)− 1
τ
J ′λ(uλ)uλ

=
(1
p
− 1
τ

)
a

∫
RN
|∇Auλ|pdx+

( 1
2p
− 1
τ

)
b
(∫

RN
|∇Au|pdx

)2

+
(1
p
− 1
τ

)∫
RN

λV (x)|uλ|pdx+
(1
τ
− 1
p∗

)
λ

∫
RN
|uλ|p

∗
dx

+ λ

∫
RN

[1
τ
h(x, |uλ|p)|uλ|p −

1
p
H(x, |uλ|p)

]
dx

≥
(1
p
− 1
τ

)
a

∫
RN
|∇Auλ|pdx+

(1
p
− 1
τ

)∫
RN

λV (x)|uλ|pdx

+
(1
τ
− 1
p∗

)
λ

∫
RN
|uλ|p

∗
dx+

(µ
τ
− 1
p

)
λ

∫
RN

H(x, |uλ|p)dx,

(4.8)

where µ is the constant in (A3). Taking τ = 2p yields the estimate (2.2), and taking
τ = µ gives the estimate (2.3) hence the existence is proved.
Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of
E by Σ, for each Z ∈ Σ. Let gen(Z) be the Krasnoselski genus and

i(Z) := min
h∈Γm∗

gen(h(Z) ∩ ∂Bρλ),
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where Γm∗ is the set of all odd homeomorphisms h ∈ C(Eλ, Eλ) and ρλ is the
number from Lemma 4.1. Then i is a version of Benci’s pseudoindex [4]. Let

cλi := inf
i(Z)≥i

sup
u∈Z

Jλ(u), 1 ≤ i ≤ m∗.

Since Jλ(u) ≥ αλ for all u ∈ ∂B+
ρλ and since i(Fλm∗) = dimFλm∗ = m∗, we have

αλ ≤ cλ1 ≤ · · · ≤ cλm∗ ≤ sup
u∈Hλm∗

Jλ(u) ≤ σλ1−Np .

It follows from Lemma 3.4 that Jλ satisfies the (PS)cλ condition at all levels ci.
By the usual critical point theory, all ci are critical levels and Jλ has at least m∗

pairs of nontrivial critical points. �
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