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EXISTENCE OF SOLUTIONS FOR p-LAPLACIAN EQUATIONS
WITH ELECTROMAGNETIC FIELDS AND CRITICAL
NONLINEARITY

ZHONGYI ZHANG

ABSTRACT. In this article, we study the perturbed p-Laplacian equation prob-
lems with critical nonlinearity in R™V. By using the concentration compactness
principle and variational method, we establish the existence and multiplicity
of nontrivial solutions of the least energy.

1. INTRODUCTION

In this article we study the existence and multiplicity of solutions for the per-
turbed p-Laplacian equation problems with critical nonlinearity

—eP a—|—b/ VaulPdz ) A, au+ V(z)|ulP%u
(a4 [ | IVaulde) Ay qu+ Vi)l )

= ul” “Put h(z, [u’)[ul"?u, xRV,

where A, au(z) = div(|Vu + iA(x)uP~?(Vu + iA(x)u), here i is the imaginary
unit, p* := pN/(N — p) denotes the Sobolev critical exponent and N > 3.
We make the following assumptions on V(z), g(x) and h(z) throughout this
paper:
(A1) V(z) € C(RM,R), V(29) = minV = 0 and there is 75 > 0 such that the
et

set V7o = {z € RY : V(z) < 70} has finite Lebesgue measure;

(A2) Aj(z) € CRY,R) (j=1,2,...,N) and A(zg) = 0;

(A3) (1) he C(RYN x [0,+00),R) and h(x,t) = o(|t|) uniformly in = as t — 0;
(2) there are Cy > 0 and ¢ € (p,p*) such that |h(z,t)| < Co(1 + t%);
(3) there lp > 0, s > 2p and 2p < p < p* such that H(m t) > lo|t|» and

pH(x,t) < h(z,t)t for all (x,t), where H(z,t) fo x, s)ds.
Problem with A(z) = 0 has an extensive literature. Different approaches
have been taken to investigate this problem under various hypotheses on the po-
tential and nonlinearity. See for example [I 8, 12| 4], 15, 16 I8 B2, B3] and
the references therein. Observe that in all these papers the nonlinearities are as-
sumed to be subcritical together with some other technical conditions of course.
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The above-mentioned papers mostly concentrated on the nonlinearities with sub-
critical conditions. Floer and Weinstein in [20] first studied the existence of single
and multiple spike solutions based on the Lyapunov-Schmidt reductions. Subse-
quently, Oh [32] B3] B4] extended the results in a higher dimension. Kang and Wei
[25] established the existence of positive solutions with any prescribed number of
spikes, clustering around a given local maximum point of the potential function. In
accordance with the Sobolev critical nonlinearities, there have been many papers
devoted to studying the existence of solutions to elliptic boundary-valued problems
on bounded domains after the pioneering work by Brézis and Nirenberg [5]. Ding
and Lin [I7] first studied the existence of semi-classical solutions to the problem on
the whole space with critical nonlinearities and established the existence of positive
solutions, as well as of those that change sign exactly once. They also obtained
multiplicity of solutions when the nonlinearity is odd.

As far as problem in the case of A(z) # 0 is concerned, we recall Bartsch
[B], Cingolani [9] and Esteban and Lions [I9]. This kind of paper first appeared in
[19]. The authors obtained the existence results of standing wave solutions for fixed
i > 0 and special classes of magnetic fields. Cingolani [9] proved that the magnetic
potential A(z) only contributes to the phase factor of the solitary solutions for i > 0
sufficiently small. For more results, we refer the reader to [2] [0} 1T}, 23] 27, [36, [39]
and the references therein.

For general p > 2, most of the works studied the existence results to equation
with A(z) = 0. See, for example, [13} 21} [31] and the references therein. These
papers are mostly devoted to the study of the existence of solutions to the problem
on bounded domains with the Sobolev subcritical nonlinearities.

In with bounded domain, if we set p = 2, A(z) =0, e =1, V(x) = 0 and
g(t) = a + bt, it reduces to the following Dirichlet problem of Kirchhoff type

u|aQ = 0.

Problem (1.2 is a generalization of a model introduced by Kirchhoff [26]. More
precisely, Kirchhoff proposed a model given by the equation

3 U po L ou 2,

P o ( h 2L ‘ ) Ox?
where p, po, h, E, L are constants, which extends the classical D’Alembert’s wave
equation, by considering the effects of the changes in the length of the strings during
the vibrations. The equation is related to the stationary analogue of problem
. received much attention only after Lions [29] proposed an abstract
framework to the problem. Some important and interesting results can be found,
see for example [22] 24] 28]. We note that the results dealing with the problem
(1.2) with critical nonlinearity are relatively scarce.

Equation with p # 2, A(z) =0, ¢ = 1, V(z) = 0, it reduces to the p-
Kirchhoff type problem. p-Kirchhoff type problem began to attract the attention of
several researchers mainly after the work of Lions [29], where a functional analysis
approach was proposed to attack it. However, in this work, we use a different
approach to those explored in [24], because here we are working with the p-Laplacian
operator. Because p-Laplacian operator is nonlinear, some estimates for this type

=0, (1.3)
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of operator can not be obtained using the same kind of ideas explored for the case
p = 2. For example, We know that W1?(R") is not a Hilbert space for 1 < p < N,
except for p = 2. The space WP(RY) with p # 2 does not satisfy the Lieb lemma
[31].

To the best of our knowledge, the existence and multiplicity of solutions to
problem on RY has not ever been studied by variational methods. As we shall
see in the present paper, problem can be viewed as a Schrodinger equation
coupled with a non-local term. The competing effect of the non-local term with the
critical nonlinearity and the lack of compactness of the embedding of W1?(RY) into
the space LP(RY), prevents us from using the variational methods in a standard
way. Some new estimates for such a Kirchhoff equation involving Palais-Smale
sequences, which are key points to apply this kinds of theory, are needed to be
re-established. Let us point out that although the idea was used before for other
problems, the adaptation to the procedure to our problem is not trivial at all, since
the appearance of non-local term, we must consider our problem for suitable space
and so we need more delicate estimates.

Our main result is the following theorem.

Theorem 1.1. Let (A1)—(A3) be satisfied. Then

(i) For any k > 0 there is E; > 0 such that if e < &, problem (1.1)) has at least
one solution u. satisfying

—1 1 .
Hup / H(x,|u|P)dx + (g _E)/ luc|P dz < ke, (1.4)
RN RN
0 1 / 1 1 / N
- — = VaulPde + (- — — AV (2)|ue[Pda < ke . 1.5
(=) L IWaelrda s (0= 2) | v(a)luc] (1.5)

Moreover, uc — 0 in WHP(RY) as e — 0.

(ii) Assume additionally that h(x,t) is odd in t, for any m € N and k > 0 there
18 Emr > 0 such that if ¢ < &y, problem has at least m pairs of
solutions ue s, Ue —;, © = 1,2,...,m which satisfy the estimates and
(L5). Moreover, u.; — 0 in WHP(RY) ase —0,i=1,2,...,m.

2. MAIN RESULT

We set A = 7P and rewrite (1.1]) in the form

— a+b/ VaulPdz ) A, au+ AV (2)|ulP?u
(a0 [ IVaulPde) Ay gut AV (@)Jul o)

= AulP" ~2u 4+ Moz, [ulP)[uP~2u, 2 € RY.
We are going to prove the following result.

Theorem 2.1. Let (A1)—(A3) be satisfied. Then
(1) For any o > 0 there is Ay > 0 such that problem (2.1) has at least one
solution uy for each A > A, satisfying

1 1

;1,72 * _N
—_— H P)d — - — Prde <oA™» 2.2
5 | e+ (3= =) [ e <o (22)

and

1 1 1 1 N
(7 — —) / |V aux|Pdz + (5 — ﬁ) / AV (2)|uy|Pdz < oA, (2.3)
RN RN

pp
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(2) Assume additionally that h(x,t) is odd in t, for any m € N and o > 0 there
is Ao > 0 such that if problem (2.1)) has at least m pairs of solutions uy which
satisfy the estimates (2.2) and (2.3) whenever A > Ay,

To prove the above theorems, we introduce the space
Ey:={ue W"?RN C): /N AV (z)|ulPdz < 0o, A >0}
equipped with the norm :
Jullf = [ (Vaul? + V(@) do

where V 4u := Vu+iAu. Tt is known that E) is the closure of C$°(RY,C). Similar
to the diamagnetic inequality [19], we have the following inequality

|V au(z)| > |V|u(z)||, forue WP(RY,C).

Indeed, since A is real-valued

|V|u|(z)] = ’Re (Vu )‘ = |Re (Vu+iAu)%| < |Vu + iAul,

(the bar denotes complex conjugation) this fact means that if v € Ey, then |u| €
WLP(RN, C), and therefore u € L*(RY) for any s € [p,p*). Thus, for each s €
[p, p*], there is ¢; > 0 (independent of A) such that if A > 1

(L) el [ omr) " se( [ war) " el @

The energy functional Jy : Ex — R associated with problem ([2.1))

a

b 1
Ia(u) == —/ |V aulPdx + 2—(/ \VAu|pd:C) + » /RN AV (z)|ulPdx

f—/ |u\pd:1:ff/ H(x,|ulP)d

is well defined. Thus, it is easy to check that as arguments [35, B8] J\ € C1(Ej,R)
and its critical points are solutions of (2.1)).
We call that u € E) is a weak solution of (2.1)), if

(J3(u),v) :Re{a/ (IV aulP~2V g4u - V 4v) dx—i—)\/ V() |u|P~2uvda
RN RN

—|—b/ |VAu\pdx/ (IVaulP=?V gu - V 4v) dz
RN RN

- )\/ Jul?” ~2upds — )\/ h(z, \u|p)\u|p_2u6dx},
RN RN

where v € F).

3. BEHAVIOR OF (PS) SEQUENCES
We recall the second concentration-compactness principle by Lions [30]

Lemma 3.1 ([30]). Let {u,} be a weakly convergent sequence to u in WP (RN)
such that |un|P” — v and |Vu,|P — u in the sense of measures. Then, for some at
most countable index set I,

(1) V= ‘u|p* + ZjEI 6wjl/j} Vj > 0,
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(i) p > |[VulP + Zje] 590;‘/“% ;> 0,

/p*

(i) 1y > S,
where S is the best Sobolev constant, i.e. S =1inf{ [on [VulPdz : [py |ulP dz =1},
T; € RN, (593j are Dirac measures at x; and p;, v; are constants.

Lemma 3.2 ([7]). Let {u,} be a weakly convergent sequence to u in WHP(RY) and
define
(i) Voo =limp—oc limsup, o [l,1op [un [P de,
(i) poo = limp_ o0 limsup,,_, o flm\>R |V, |Pdz.
The quantities Voo, and pio exist and satisfy
(ili) Hmsup,_ o Jon [UnlP dz = [pn dv + veo,
(iv) imsup,, o fpn |[VunPde = [pn dp+ pioo,
(V) proo > Sygép*.
We recall that a C! functional Jy on Banach space E) is said to satisfy the Palais-

Smale condition at level ¢ ((PS). in short) if every sequence {u,} C E) satisfying
limy, oo Jx () = ¢ and limy, o0 || Jx (un )] p; = 0 has a convergent subsequence.

Lemma 3.3. Suppose that (A1)—(A3) hold. Then any (PS). sequence {u,} is
bounded in E and ¢ > 0.

Proof. Let {u,} be a sequence in E) such that

c+o(1) = Jy(un) = 3/ |vAun|pdz+ﬂ(/ |VAun|pdx)2
D JrN 2p \ Jrw
1 A
+7/ /\V(x)|un|pdx——*/ lun
P JrN P Jry
and

(J\(tn), v)

= Re {a/ |VAun\p_2VAun-VAvdx+)\/ V(2)|wn|P%u, vda
RN RN

(3.1)

p*dx—é/ H(x, |uy|P)dz
D Jry

+b/ |VAun|pdsc/ |VAun|p_2VAun-VAvdx—)\/ |un|p*_2un@d:§
RN RN RN

_ )\/ (P =0k} = o(1) |
RN
(3.2)
By , (3-2) and condition (A3)(3), we have

¢+ o(1)Jun||

=Awm—5ﬂwmw»

= (% — i)a/RN |V aup|Pdx + (% - %) /RN AV () |up|Pdz
n (% - i)b(/w \vAun|de)2 + (% = I%)A/RN | d

1 1
+ )\/ [fh(x7 [tn |P) |un|P — = H(x, |un|p)]daz
RN M p
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1 1 1 1
> (f . —)a/ IV qtty |Pda + (f - f) / AV (@) un|Pdz. (3.3)
p K RN p KBS JrN
This inequality implies that {u,} is bounded in E\. Taking the limit in (3.3]) shows
that ¢ > 0. This completes the proof of Lemma [3.3 O

The main result in this section is the following compactness result.

Lemma 3.4. Suppose that (A1)—(A3) hold. For any X\ > 1, Jy satisfies (PS).

condition, for all ¢ € (0,00/\1_%), where oy = (% - p%)(aS)N/p, that is any

(PS).-sequence (u,) C E) has a strongly convergent subsequence in Ej.

Proof. Let {u,} be a (PS). sequence, by Lemma {u,} is bounded in E,.
Hence, by diamagnetic inequality, {|u,|} is bounded in W?(RN C). Then, for
some subsequence, there is u € WHP(RY,C) such that u, — u in WH?(RY, C).

We claim that
/ |t |P” da — / lulP” da. (3.4)
RN RN

To prove this claim, we suppose that
IV]un||P = [V|ul|P + 1 and  |u,|P” — |[ulP” +v (weak® sense of measures).

Using the concentration compactness-principle due to Lions (cf. [30, Lemma 1.2]),
we obtain a countable index set I, sequences {z;} C RY, {u;}, {r;} C (0,00) such
that

v= Z(sm Vi, W > Z‘sleu‘ja M > Syf/p* (35)
Jjel jel
for all j € I, where §,, are Dirac measures at z; and p;, v; are constants.

Now, let z; be a singular point of the measures 1 and v. We define a function
d(z) € Cg°(RN,[0,1]) such that ¢(z) = 1 in B(zj,¢), ¢(z) = 0 in RN \ B(zy,2¢)
and |V¢| < 2/e in RN, Since {u, ¢} is bounded in WHP(RY C) and ¢ takes values
in R, a direct calculation shows that

(JA(un), und) — 0,

Va(und) = ity Vo + oV sy,

Therefore,
a/ |vAun\P¢dx+aRe(/ i\VAun|p72mVAunVA¢dx)
RN RN
+/ AV () |un|P pdx
RN
= —b/ |VAun\pdx'Re</ i|VAun|p72WVAunVA¢)dx> (3.6)
RN RN
—b/ |VAun\pdx/ |VAun|p¢dx—|—)\/ h(z, |un|?)|un P pdx
RN RN RN

+)\/ un|?” da + 0, (1).
RN
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On the other hand, by Holder’s inequality we obtain

lim sup ’ Re/ i|VAun|p_2%VAun%dx‘
RN

n—00

(p-1)/ N\
< lim sup (/ \VAun|pdm) 8 p(/ |unVA¢|pdas)
n—oo RN RN
1/p
<o / [ul? |V a0z (3.7)
B(:Ej,26)

=G ( /B(mj,zs) |VA¢|Ndx) . ( /B(mj,ze) fu wdx) "

* 1/p*
§02</ |ul? dx) —0 ase—0.
B(Ij,QS)

Similarly, it follows from the definition of ¢ and condition (A3) that

lim lim h(x, |un|?)|un|Ppdx = 0. (3.8)

e—0n—oo RN

Since ¢ has compact support, letting n — oo in (3.6) we deduce from the lower
semicontinuity of the norm, (3.7)) and (3.8]) that

a/RN bdp < */RN )\V(l’)‘u|p¢d$+)\/RN bdv.

Letting € — 0, we obtain ap; < Av;. Combing this with Lemma we obtain
P
v; > a/\*lsy;’ " . This result implies that

D) v;=0 or (1) v;>(ax"1)"".

To obtain the possible concentration of mass at infinity, similarly, we define a cut
off function ¢r € C5°(RYN) such that ¢r(z) = 0 on |x| < R and ¢r(r) = 1 on
|x] > R+ 1. Note that (J'(u,),u,¢r) — 0, this fact imply that
a/ |VAun|p¢Rdx+aRe(/ i\VAun|p_21TnVAunVA¢Rdx>
RN RN
—|—/ AV () |un |Pprdx
RN
= —b/ |V aun|Pdz - Re (/ i|VAun|p_2WVAunVA¢Rdx> (3.9)
RN RN
b / IV atn P / IV atinP b + A / (2, Jun?) [un P bl
RN RN RN

+ )\/ |un|p*¢Rdx + on(1).
RN

It is easy to prove that

R—o00 n—o0

— lim lim Re (/ i|VAun\”*2mVAunVA¢Rdz> =0,
RN

lim lim h(x, |un|P)|unPprdr = 0.
N

R—o00 n—o0
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Letting R — oo, we obtain apiee < Aoo. By Lemma [3:2] we obtain v, >
aX~1SvZ . This result implies that

() v =0 or (IV) e > (ar~15)"".

Next, we claim that (II) and (IV) cannot occur. If the case (IV) holds, for some
j € I, then by using Lemma [3.2 and condition (A3)(3), we have that

— ] 1 /

c= nlgr;o (J,\(Un) - ;UA(Un)?Un))
1 1 1 1

> (- — — npd o AV npd

—(p u)a/RNWAu' m+(p u) o NV Dl
A 2n WD) un|? — = H (z, [un|P) |d Z )\ WP d
n [ [k ol = Sl o+ (5 = )5 [ e
1 1 *

Z(*—T )\/ |un P dx
wp RN

)
(-2 [ e
1) _N

I%)(aS)N/”. This is impossible. Consequently, v; =0 for all j € I.

Similarly, if the case (II) holds, for some j € I, then by condition (A3), we have

e lim (Tn(un) = 2 (3 )

11 .
> (- —)A/ P dee
noop* RN

S L M

1 1
= (7 — —*>)\1/ > a/\lf% as € — 0,
wop

which leads to a contradiction. Thus, we must have (IT) cannot occur for each j.

Then
/ |un|p*d:cﬂ/ lulP" da. (3.10)
RN RN

Thus, from (3.10), the lower semicontinuity of the norm and Brezis-Lieb Lemma
[6], we have

o(V)||lunll = (J3(un), un)
2
:a/ \VAun|pdx+)\/ V(z)|un|pda:+b(/ |vAun\pdx)
RN RN RN

—A/ |un\p*dzf>\/ H(z, |u,|P)dx
RN RN

> min{a, 1}|lu, — ul/f + a/ |V aulPdz + )\/ V(z)|u|Pdz
RN RN

2
+b(/ |VAu|pd:z:> f>\/ \u|p*dxf)\/ H(x, |ulP)dz
RN RN RN

where g9 = (i -
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= llun = ullX + o(1)[Jullx,
here we use J§(u) = 0. Thus we prove that {u, } strongly converges to u in Ej.
This completes the proof of Lemma O

4. PROOF OF THEOREM [2.1]

In the following, we always consider A > 1. By the assumptions (A1)—(A3), one
can see that Jy(u) has the mountain pass geometry.

Lemma 4.1. Assume (A1)—(A3) hold. Then There exist ax,px > 0 such that
Ja(u) > 0 if u € By, \ {0} and Jx(u) > ay if u € 0B,,, where B,, = {u € E :
[ullx < pa}-

Proof. From condition (A3), there is Cs > 0 such that

* 9

1 . 1 .
7/ luf" d + f/ H(z, [ul?)dz < 8lul? + Cslul?
p* Jry D JrN

for § < (2 min {%, %})\cg)fl. It follows that

a

Ix(u) ::f/ |VAu|pdx+2£(/ \VAu|pdx / AV (z)|u|Pdx

—7/ |u\pdaﬁ—f/ H(z, [ul)da

> min {;), ]f)}Hqu\ — Ad[ulb — )\C5|u\§*

1 a 1
> —min{—, = }|u||? - )\Cg ull?.
3 min {2, 2} ull — ACael

Since p* > p, we know that the conclusion of Lemma [4.1] holds. O

Lemma 4.2. Under the assumption of Lemma for any finite dimensional
subspace F C E\y,

I(u) = =00 as u€F, |ul|lx— .

Proof. By using conditions (A2) and (AS) we obtain

— Aolul;

a
JA(U)SmaX{571}IIU|\§ *ll I - =

for all w € F. Since all norms in a ﬁmtc—d1mens1onal space are equivalent and
2p < p*, p < p*. This completes the proof. O

Since Jy (u) does not satisfy the (P.S), condition for all ¢ > 0, in the following we
will find a special finite-dimensional subspaces by which we construct sufficiently
small minimax levels.

Recall that assumption (A2) implies that there is 9 € RY such that V(zo) =
ming g~y V(z) = 0. Without loss of generality we assume from now on that z¢ = 0.
Observe that, by (A3)(3) we have

A *
—*/ |u|P dﬂc—i—)\/ H(z,|u|?)dx > lo)\/ |u|®dx.
P Jry RN RN

Definite the function Iy, € C1(E\,R) by

b 2
I(u) == g/ |VAu|pdx+f(/ |VAu|pd:13) +/ )\V(;U)|u|pdx—l0)\/ |ul®dx.
P JrN 2p \ Jrw RN RN
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Then Jy(u) < In(u) for all u € E) and it suffices to construct small minimax levels
for I,. Note that

inf{/RN \Vé|Pdx : ¢ € C°(RY,R), |¢|, = 1} = 0.

For any 1 > 6 > 0 one can choose ¢5 € C§°(RY) with |¢s|, = 1 and supp ¢s C
B,;(0) so that [V¢s|h < 6. Set

fa = ds(AV/P), (4.1)

then
supp f C By-1/5,,(0).
Thus, for t > 0,

b 2
) <50 [ vapde+ g ([ Vi)
2p RN
+7/ /\V(x)|f>\\pdx—tslo/\/ [fa]°dx
P JrN N
2
)\kﬂ[atp/ IVagsPdx + b t2p/\177(/ |VA¢6|pdx>
RN

*/ AP |ps|Pda — t° lo/N |¢5\sd$]

= A7 s (ts),
where ¥ € C!(E\,R) defined by
a

b 2
Uy (u) := —/ |V au|Pdx + —(/ \VAu|de>
P Jr~ 2p \ Jry
1
-ﬁ-*/ V()fl/pm)|u\pdx—lo/ |u|®dz.
P Jry RN

Since s > 2p, thus there exists finite number ¢y € [0, +00) such that
a b 2 2
Uy (tps) = —t Vags|Pd —tp( Pd)
max A(tgs) ’ O/]RN| A¢s[Pdx + a0 \ o |V agps|Pdx
tP
0

+ =
p

b 2
< gtp/ |V ags|Pdx + *t%(/ \VA¢5|pdSU)
p .

V(A YP2) g5 Pda — til, / (6o dz
N RN

tp
+—°/ V(ATVPz)|¢s[Pde.
D Jrwy

On the one hand, since V(0) = 0 and supp ¢s C By, (0), there is As > 0 such that

J
V()\*l/px) < oL for all |z| < rs and A > As.
dlp
This implies
a P b 2p 2 tg *
m>aX\I/,\(t¢5) < ];tO(S—i— —tPo% + —6 < T*6. (4.2)
where T := (247 + ;ptgp ) Therefore, for all A > Ay,

* 1—?
max In(tes) < T 0N . (4.3)
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Thus we have the following lemma.

Lemma 4.3. Under the assumption of Lemma for any k > 0 there exists
A, > 0 such that for each A > A, there is fx € Ex with ||fall > pa, Ja(fa) <0
and

th) < kAT 4.4
tren[gﬁ]h(fx)uﬁ (4.4)

Proof. Choose § > 0 so small t}iat T*) < k. Let f,\Ae FE) be the function defined
by (4.1). Taking A, = As. Let ¢ty > 0 be such that £x||fr||x > px and Ja(tfa) <0
for all t > %,. By (4.3), let f) = f)\fA we know that the conclusion of Lemma
holds. O

For any m* € N, one can choose m* functions qbg € C5°(RY) such that supp ngf; N
supp ¢f = 0, i # k, |¢5]s = 1 and |[V@5[p < 6. Let " > 0 be such that supp ¢} C
B (0) for i =1,2,...,m*. Set

fi(x) = s(A\YPx), fori=1,2,...,m" (4.5)
and
H{5 = span{f}, f..... ;" }.
Observe that for each u = 27;*1 cifi € HYY

Py = S|P ipd’
[ Waurae =l [ 19asipds

=1

-
/ V@)luPds =3 [P / V(@)|f{de,
RN P RN

s / |u|p*dx=i§|ci|p* / P d,
P Jry et RN

H(z, |ulP)dx = /Hx,c,-idx.
LA =32 [ HGar)

On the other hand, by mathematical induction we have the inequality

(iaif < mia? for all a; > 0. (4.6)
i=1

i=1

Thus by (4.6)), one has

([, Ivupas)’ = (mg ol [ 19fiPds) < mg Pr( [ siPds)

Therefore

Jxa(u) <m* ZJ/\(Ciff{)
i=1
and as before _ N _
I(eif) S AP U([el 1)
Set ‘
Bs = maX{WHZ tj=12,...,m"}
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and choose A,,«s > 0 so that
1) .
V(ANTVPr) < % for all |z| < r§* and A > Ass.
s
As before, we can obtain
max_Jy(u) < (m*)PT*6A1 "% (4.7)
uEHTY
for all A > A,,+5. Using this estimate we have the following result.

Lemma 4.4. Under the assumptions of Lemma for any m* € N and k > 0
there exists Ay« > 0 such that for each A > A+, there exists an m*-dimensional
subspace Fp,« satisfying
Ja(u) < KAV
ugﬁi* Au) <k
Proof. Choose § > 0 so small that (m*)PT*§ < k. Taking Fy,- = H}} =
Span{f}\,ff,...,f;"*}, where fi(z) = qﬁf;(/\l/Pa:), for i = 1,2,...,m* are given
by (4.5). From (4.7), the statement of the lemma follows. O

We now establish the existence and multiplicity results.

Proof of Theorem[2.1 Using Lemma [£.3] we choose A, > 0 and define for A > A,
the minimax value

= inf In(t]
ey = inf max A(tfr)

where

Ty = {y € C((0,1], Ex) : 7(0) = 0 and 7(1) = f}.

By Lemma we have ay < ¢y < ogA~ 7. By Lemma we know that
Jy satisfies the (PS)., condition, there is uy € Ej such that J{(uyx) = 0 and
Jx(uy) = ex. Then uy is a solution of . Moreover, it is well known that such
a Mountain-Pass solution is a least energy solution of . Such uy is a critical
point of Jy, for T € [2p, p*],

_N 1
oXN T > Ty (uy) = Ja(uy) — ;Jf\(UA)UA
1 1 1 1 2
_(f_12 P Lt P
= <p T)a/RN |V aux|Pdz + <2p T)b(/RN |V aul dﬂﬁ)

! (% - i) /RN AV (@)luaf*dz + <% B ]%))‘/RN lu|P" da

1 1
i [ el = () ds
RN T p

> (% _ %)a/RN IV aun |Pdz + (% - %) /RN NV () ua|Pdz

+ (% - %)/\/RN furl?” da + (£ - %)A/RN H(x, ux[P)da,

where p is the constant in (A3). Taking 7 = 2p yields the estimate , and taking
T = i gives the estimate hence the existence is proved.

Denote the set of all symmetric (in the sense that —Z = Z) and closed subsets of
E by X, for each Z € ¥. Let gen(Z) be the Krasnoselski genus and

i(Z) = hIenFin* gen(h(Z)N0B,,),

(4.8)
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where T',,,« is the set of all odd homeomorphisms h € C(Ey, E)) and py is the
number from Lemma Then i is a version of Benci’s pseudoindex [4]. Let

cxi = inf sup Jy(u), 1<i<m*
(Z)>iuez

Since Jy(u) > ay for all u € 83:/\ and since i(Fy,») = dim Fy,,,» = m*, we have

_N
ax<en <o <o < osup Ja(u) <o T
UEH y ,,*

It follows from Lemma that Jy satisfies the (PS)., condition at all levels ¢;.
By the usual critical point theory, all ¢; are critical levels and Jy has at least m*
pairs of nontrivial critical points. [
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