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THE SPREADING OF CHARGED MICRO-DROPLETS

JOSEPH IAIA

Abstract. This article considers the analysis of the Betelu-Fontelos model

of the spreading of a charged microdroplet on a flat dielectric surface whose
spreading is driven by surface tension and electrostatic repulsion. This model

assumes the droplets are circular and spread according to a power law. This

leads to a third-order nonlinear ordinary differential equation on [0, 1] that
gives the evolution of the height profile. We examine existence of solutions for

this equation.

1. Introduction

In this article we perform the analysis of the Betelu-Fontelos (BF) model [2] of
the spreading of a charged microdroplet. With this model a charged microdroplet
spreads over a flat surface. In the absence of charge, it has been shown experi-
mentally [5] that the radius of a circular drop, a(t), spreads according to the law
a(t) = At1/10 for some constant A. The mathematical analysis of the uncharged
case is difficult, the main result [1] being that in the absence of molecular forces, the
“paradox of the contact line” arises and the drop does not spread. In [2], electric
charges were included into the model, and it was shown that the drop does spread
resolving the paradox of the contact line. Also surprisingly, the presence of the
charges does not alter the similarity exponent for the spreading of the drop and it,
too, spreads according to a t1/10 law. This is also surprising since if we add gravity
instead then the exponent does change [3]. This model has practical implications
in physical processes on which electrically charged droplets spread on surfaces such
as electro-painting.

This model uses the lubrication approximation which assumes that the fluid
spreads over a solid surface and that the droplet is thin so that the horizontal
component of the velocity is much larger than the vertical component and that the
stresses are mostly due to gradients of the velocity in the direction perpendicular
to the surface. Using this approximation it is shown in [2] that the height profile
h(r, t) of a circular drop satisfies
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1
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∂
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3µ
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+ γ(hrr +

hr
r

)
)]

= 0 (1.1)
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and ∫ a(t)

0

2πrh(r, t) dr = V0 = constant (1.2)

where a(t) is the radius of the drop and the boundary conditions are

hr(0, t) = hrrr(0, t) = 0 (1.3)

(due to the circular symmetry), and

h(a(t), t) = 0. (1.4)

Here γ is the free surface tension coefficient, ε0 is the permittivity of the gas
above the drop, µ is the viscosity, and Q is the total charge. Equation (1.2) states
that the volume of the drop remains constant throughout this process.

We seek a self-similar solution such that the radius of the drop a(t) satisfies a
power law, i.e. a(t) = Atβ . The height profile will then, by conservation of mass,
be of the form

h(r, t) =
B

t2β
H
( r

a(t)
)

=
B

t2β
H
( r

Atβ
)

where ρ = r
a(t) and 0 ≤ ρ ≤ 1. In terms of V0 this gives:

V0 =
∫ a(t)

0

2πrh(r, t) dr = A2B

∫ 1

0

2πρH(ρ) dρ

where

Y ≡
∫ 1

0

2πρH(ρ) dρ (1.5)

denotes the dimensionless “shape factor” of the drop.
Remarkably, with β = 1

10 equation (1.1) becomes[
ρH3

(
Hρρ +

Hρ

ρ
+

XY

1− ρ2

)
ρ

]
ρ

= Z(ρ2Hρ + 2ρH)

where

X =
Q2

32π2ε0γV0
, Z =

3µA4

10γB3
.

Integrating once, using (1.3), and rewriting yields

H ′′′ +
H ′′

ρ
− H ′

ρ2
=
(
H ′′ +

H ′

ρ

)′ =
Zρ

H2
− 2XY ρ

(1− ρ2)2
for 0 < ρ < 1, (1.6)

H ′(0) = 0, (1.7)

H(1) = 0. (1.8)

Note that X,Y, Z are all positive constants.
Throughout this paper we will also assume:

H(0) = 1. (1.9)

Note that
H(ρ) = 1− ρ2 (1.10)

is a solution of (1.6)-(1.9) when Z = 2XY . A natural question is whether there are
other solutions of (1.6)-(1.9). In an earlier paper [7] we showed that (1.10) is the
only solution of (1.6)-(1.9) which is differentiable on all of [0, 1].

If we weaken the assumption and only look for solutions H ∈ C3[0, 1) ∩ C[0, 1],
then in an earlier paper [6] we showed that if 0 < Z < 2XY then there is a solution
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of (1.6)-(1.9) with H ∈ C3[0, 1) ∩ C[0, 1] such that limρ→1− H
′(ρ) = −∞. More

specifically we showed that: if H ∈ C3[0, 1) ∩ C[0, 1] is a solution of (1.6)-(1.9)
which is not differentiable at x = 1 then

lim
ρ→1−

H ′(ρ)
ln(1− ρ2)

=
XY

4
= lim
ρ→1−

−1
4

(1− ρ2)H ′′(ρ) = lim
ρ→1−

−1
8

(1− ρ2)2H ′′′(ρ).

In this paper we examine the case when Z > 2XY .
In attempting to solve (1.6)-(1.9), we first thought of using the shooting method.

That is, we would solve (1.6) with

H(0) = 1, (1.11)

H ′(0) = 0, (1.12)

H ′′(0) = k (1.13)

where k is arbitrary and show that if k is sufficiently large then H > 0 on [0, 1)
and if k is sufficiently small then H must have a zero on [0, 1). Then making an
appropriate choice for k we could show that H(1) = 0. Therefore we conjectured
that there would be at least one value of k such that H is a solution. However, we
discovered that this method does not quite work for this problem. In fact, in [6] we
proved the following result.

Theorem 1.1. Let H ∈ C3(ρ0, 1) ∩ C[ρ0, 1) be a solution of (1.6) such that 0 ≤
ρ0 < 1 and H(ρ0) > 0. Then H > 0 on (ρ0, 1).

We were able to eventually show that if we look at a slightly different differential
equation then it is possible to solve this new problem by the shooting method. The
key turned out to be to look at the function:

W = H −
√

Z

2XY
(1− ρ2). (1.14)

Using (1.6) it is straightforward to see that

(
W ′′ +

W ′

ρ

)′
=
(
H ′′ +

H ′

ρ

)′
=
−2XY ρ
(1− ρ2)2

W
(
H +

√
Z

2XY (1− ρ2)
)

H2
(1.15)

for 0 < ρ < 1. The initial conditions for W are related to (1.11)-(1.13) by (1.14):

W (0) = 1−
√

Z

2XY
, (1.16)

W ′(0) = 0, (1.17)

W ′′(0) = k +

√
2Z
XY

. (1.18)

In [6] we proved the following theorem.

Theorem 1.2. For each 0 < Z < 2XY there is a positive C3(0, 1)∩C1[0, 1)∩C[0, 1]
solution of (1.15) with W ′(0) = 0, W (1) = 0, and W ′(1) = −∞. (And thus H
solves (1.6) with H ′(0) = 0, H(1) = 0, and H ′(1) = −∞). If Z = 2XY then

W ≡ 0 is a solution of (1.15). (And thus H =
√

Z
2XY (1 − ρ2) solves (1.6) with

H ′(0) = 0, H(1) = 0, and H ′(1) = −
√

2Z
XY ). Thus we see that there is a solution

of (1.6)-(1.9) for 0 < Z ≤ 2XY .
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In this paper we prove the following result.

Theorem 1.3. Let Z > 2XY . Then there exist real numbers k− and k+ with
k− ≤ k+such that there are no C3(0, 1) ∩ C1[0, 1) ∩ C[0, 1] solutions of (1.15)
with (1.16)-(1.18) and W (1) = 0 if k > k+ or if k < k−. (Thus there are no
C3(0, 1)∩C1[0, 1)∩C[0, 1] solutions of (1.6) with H(0) = 1, H ′(0) = 0, H ′′(0) = k,
and H(1) = 0 if k > k+ or if k < k−).

In the proof of the Main Theorem (Theorem 1.3) we show that H(1, k) → ∞
as k → ∞ and k → −∞. We also know from Theorem 1.1 that H(1, k) ≥ 0 for
all k ∈ R. We then define k0 to be a value of k so that H(1, k0) ≤ H(1, k) for all
k ∈ R. We attempted to prove that either H(1, k0) = 0 or H(1, k0) > 0 but we
were not able to prove either of these. However, numerics in [2] strongly suggest
that H(1, k0) > 0 and so we conjecture that there are no solutions of (1.6) with
H(0) = 1, H ′(0) = 0, and H(1) = 0 for Z > 2XY .

2. Preliminaries

Rewriting (1.15) we see that

W ′′′ +
W ′′

ρ
− W ′

ρ2
+

2XY ρ
(1− ρ2)2

W
(
H +

√
Z

2XY (1− ρ2)
)

H2
= 0. (2.1)

Now we note the following:

Lemma 2.1. W ′ does not have a positive local maximum on the set where W ≤ 0
and 0 < ρ < 1.

Proof. If there were such a point, p, then at this point we would have W (p) ≤ 0,
W ′(p) > 0, and since W ′ has a local maximum at p, then from calculus it follows
that W ′′(p) = 0 and W ′′′(p) ≤ 0. This however contradicts (2.1) and Theorem
1.1. �

Lemma 2.2. W ′ does not have a negative local minimum on the set where W ≥ 0
and 0 < ρ < 1.

Proof. If there were such a point, p, then at this point we would have W (p) ≥ 0,
W ′(p) < 0, and since W ′ has a local minimum at p, then from calculus it follows
that W ′′(p) = 0 and W ′′′(p) ≥ 0. This again contradicts (2.1) and Theorem 1.1. �

Lemma 2.3. Suppose W ∈ C3(0, 1)∩C1[0, 1)∩C[0, 1] satisfies (2.1) with W (0) < 0
and W ′(0) = 0. Then W must get positive somewhere on (0, 1).

Proof. Suppose by way of contradiction that there is a solution, W , with W ≤ 0
on (0, 1). Integrating (2.1) on (ρ0, ρ) where 0 < ρ0 < ρ < 1 gives for some constant
C0:

W ′′ +
W ′

ρ
= C0 −

∫ ρ

ρ0

2XY tW
(
H +

√
Z

2XY (1− t2)
)

(1− t2)2H2
dt.

Multiplying by ρ and integrating on (ρ0, ρ) gives

ρW ′ = ρ0W
′(ρ0) +

C0

2
(ρ2− ρ2

0) +
∫ ρ

ρ0

t

∫ t

ρ0

(−2XY )sW
(
H +

√
Z

2XY (1− s2)
)

(1− s2)2H2
ds dt.

(2.2)
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Assuming W ≤ 0 on (0, 1) and Theorem 1.1 then the integrand on the right-hand
side of (2.2) is nonnegative, and so the integral term is an increasing function. Thus
it follows that

lim
ρ→1−

W ′(ρ) exists (and is possibly +∞). (2.3)

Since we are also assuming W ≤ 0 on (0, 1), it follows by continuity that W (1) ≤
0. On the other hand, we also know from (1.14) and Theorem 1.1 that W (1) =
H(1) ≥ 0. Thus W (1) = 0. Now we know from section 3 in [6] that if the limit
in (2.3) is finite then in fact the limit must be zero. Thus, it follows from (2.3)
that either: limρ→1−W

′(ρ) = 0 or limρ→1−W
′(ρ) = +∞. Suppose first that

limρ→1−W
′(ρ) = 0. We also know that since W ≤ 0 and W (0) < 0 then W has

a local and absolute minimum, m, with 0 ≤ m < 1 such that W (m) < 0 and
W ′(m) = 0. By the mean value theorem, 0 < W (1) −W (m) = W ′(c)(1 −m) for
some c ∈ (m, 1) and so we see that W ′ must get positive somewhere on (m, 1). Since
W ′(m) = 0 = limρ→1−W

′(ρ) = W ′(1) we see thatW ′ has a positive local maximum
on (m, 1) with W ≤ 0 contradicting Lemma 2.1. Therefore, the assumption that
limρ→1−W

′(ρ) = 0 must be false. Thus it must be the case that limρ→1−W
′(ρ) =

∞. Since W (1) = 0 then it follows from L’Hopital’s rule that

lim
ρ→1−

1− ρ
W (ρ)

= 0. (2.4)

Now rewriting (1.15) we see that

−
(
W ′′ +

W ′

ρ

)′
=

2XY ρ
(1− ρ2)2

( 1 + 2
√

Z
2XY

1−ρ2
W

(1 +
√

Z
2XY

1−ρ2
W )2

)
. (2.5)

By (2.4) the term in parentheses on the right-hand side of (2.5) goes to 1 as ρ→ 1−

and hence is larger than 1/2 for ρ close to 1. Thus, for ρ close to 1 with ρ < 1 we
have:

−
(
W ′′ +

W ′

ρ

)′
≥ XY ρ

(1− ρ2)2
.

Integrating this on (ρ0, ρ) gives for some constant C1,

−
(
W ′′ +

W ′

ρ

)
≥ C1 +

XY

1− ρ2
.

Multiplying by ρ and integrating on (ρ0, ρ) gives for some constant C2,

ρW ′ ≤ C2 −
C1

2
ρ2 +

XY

2
ln(1− ρ2). (2.6)

This implies W ′ → −∞ as ρ → 1− contradicting that W ′ → ∞. This completes
the proof. �

We next show that if k is chosen sufficiently large and Z > 2XY then W has a
first positive zero, z, and W > 0 on (z, 1]. This then proves the existence of the
number k+ referred to in Theorem 1.3.

We begin by integrating (1.6) on (0, ρ) and using (1.12)-(1.13) gives

H ′′ +
H ′

ρ
+

XY

1− ρ2
= 2k +XY +

∫ ρ

0

Zt

H2
dt.
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Multiplying by ρ, integrating on (0, ρ), and simplifying gives

H ′ =
XY

2
ln(1− ρ2)

ρ
+
(
k +

XY

2
)
ρ+

1
ρ

∫ ρ

0

s

∫ s

0

Zt

H2
dt ds.

Thus by (1.14), we obtain

W ′ =
XY

2
ln(1− ρ2)

ρ
+
(
k +

XY

2
+

√
2Z
XY

)
ρ+

1
ρ

∫ ρ

0

s

∫ s

0

Zt

H2
dt ds. (2.7)

Thus for k sufficiently large we see by (1.18) and (2.7) that W is increasing on say

[0, 1−ε] and since W is bounded below by −
√

Z
2XY (from Theorem 1.1) we see that

there is a z with 0 < z < 1 such that W (z) = 0 and W is increasing on [0, 1 − ε]
for ε > 0 Integrating (2.7) again on (0, ρ) and using (1.11) gives

H = 1 +
XY

2

∫ ρ

0

ln(1− t2)
t

dt+
(k

2
+
XY

4
)
ρ2 +

∫ ρ

0

1
x

∫ x

0

t

∫ t

0

Zs

H2
ds dt dx. (2.8)

Thus by (1.14) we see that

W ≥ (1−
√

Z

2XY
) +

XY

2

∫ ρ

0

ln(1− t2)
t

dt+
(k

2
+
XY

4
+

√
Z

2XY

)
ρ2. (2.9)

We note by L’Hopital’s rule that

lim
ρ→0+

XY
2

∫ ρ
0

ln(1−t2)
t dt+ (k2 + XY

4 +
√

Z
2XY )ρ2

ρ2
=
k

2
+

√
Z

2XY
.

Also, ln(1−t2)
t is integrable at t = 1 so we see that it follows from (2.9) that W

remains positive on all of [z, 1] provided k is chosen large enough.
Thus we see that if k is sufficiently large then W has exactly one zero on [0, 1].

Therefore there exists k+ > 0 such that if k > k+ then there are no C3(0, 1) ∩
C1[0, 1) ∩ C[0, 1] solutions of (1.15) with (1.16)-(1.18) and W (1) = 0. The rest of
the paper is devoted to proving the existence of k−.

3. Proofs

We now write Wk instead of W to emphasize the dependence of W on k.
Throughout this section we assume:

Wk ∈ C3(0, 1) ∩ C1[0, 1) ∩ C[0, 1] solves (1.15), (3.1)

−
√

Z

2XY
< Wk(0) < 0, and W ′k(0) = 0. (3.2)

Lemma 3.1. Suppose Wk satisfies (3.1)-(3.2) and k < −
√

2Z
XY . Then there exist

points p1,k, mk, zk, p2,k, Mk with 0 < p1,k < mk < zk < p2,k < Mk < 1 such
that Wk has a local minimum at mk, a zero at zk, a local maximum at Mk, and
inflection points at p1,k and p2,k. Furthermore, Wk has no other local extrema on
(0,Mk) and Wk has no inflection points on (mk, zk).

Proof. By assumption Wk(0) < 0 and Wk is continuous so Wk has a zero on (0, 1)
by Lemma 2.3. Thus there exists a zk with 0 < zk < 1 such that Wk < 0 on [0, zk)

and Wk(zk) = 0. Also, for k < −
√

2Z
XY we see from (1.18) that W ′k < 0 for small

positive ρ, and so for such k there is an mk with 0 < mk < zk such that W ′k < 0 on
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(0,mk), W ′k(mk) = 0, and Wk(mk) < 0. It follows from calculus that W ′′k (mk) ≥ 0.
In fact, W ′′k (mk) > 0 for if W ′′k (mk) = 0 we would have W ′k(mk) = W ′′k (mk) = 0
and from (1.15) it follows that W ′′′k (mk) > 0. Thus W ′′k would be increasing in a
neighborhood of mk and since W ′′k (mk) = 0, then W ′′k < 0 on (mk−δ,mk) for some
δ > 0 which implies W ′k is decreasing on (mk − δ,mk), and since W ′k(mk) = 0, it
follows that W ′k > 0 on (mk − δ,mk) contradicting that W ′k < 0 on (0,mk). Thus
W ′′k (mk) > 0 and therefore mk is a local minimum of Wk.

Also since W ′′k (0) < 0 and W ′′k (mk) > 0 it follows that there must be an inflection
point, p1,k, with 0 < p1,k < mk such that W ′′k < 0 on (0, p1,k) and W ′′k ≥ 0 on
(p1,k, p1,k + δ2) for some δ2 > 0.

Next, we observe that W ′′k > 0 on (mk, zk) for if there were an rk with mk <
rk < zk with W ′′k > 0 on (mk, rk) and W ′′k (rk) = 0 then from (2.1) we see that
since Wk(rk) < 0 and W ′k(rk) > 0 then W ′′′k (rk) > 0. Thus, W ′′k is increasing in
a neighborhood of rk and since W ′′k (rk) = 0 then this would imply W ′′k < 0 on
(rk − δ3, rk) for some δ3 > 0 which contradicts that W ′′k > 0 on (mk, rk). Thus
W ′′k > 0 on (mk, zk) and since W ′k(mk) = 0 it follows that W ′k(zk) > 0. Thus there
is a δ4 > 0 such that Wk > 0 on (zk, zk + δ4).

Now either Wk has a second zero, z2,k, on (zk, 1) or Wk > 0 on (zk, 1).
Case 1: IfWk has another zero, z2,k, on (zk, 1) then there existsMk withW ′k > 0

on [zk,Mk), W ′k(Mk) = 0, and Wk(Mk) > 0. This implies W ′′k (Mk) ≤ 0. Now since
W ′k(mk) = 0, W ′′k (mk) > 0 (shown earlier in this proof), and W ′k(Mk) = 0 it
follows that W ′k has a positive local maximum, p2,k, on (mk,Mk) with W ′′k > 0 on
(mk, p2,k) and mk < p2,k < Mk. From Lemma 2.1 it follows that Wk(p2,k) > 0 and
so zk < p2,k. We also see that mk < zk < p2,k < Mk. In addition, W ′′k (Mk) < 0
for if W ′′k (Mk) = 0 then since W ′k(Mk) = 0 it follows from (1.6) that W ′′′k (Mk) < 0
and so W ′′k is decreasing in a neighborhood of Mk. But since W ′′k < 0 on (p2,k,Mk)
and W ′′k is decreasing in a neighborhood of Mk then W ′′k could not be zero at Mk.
Therefore we see that W ′′k (Mk) < 0 and so Mk is a local maximum for Wk. This
completes the proof of the lemma for Case 1.

Case 2: If Wk > 0 on (zk, 1] then there is a constant c0 > 0 such that(
W ′′k +

W ′k
ρ

)′
+

c0ρ

(1− ρ2)2
≤ 0

near ρ = 1. Integrating this on (ρ0, ρ) gives

W ′′k +
W ′k
ρ

+
c0

2(1− ρ2)
≤W ′′k (ρ0) +

W ′k(ρ0)
ρ0

+
c0

2(1− ρ2
0)
≡ bk (3.3)

and thus we see that W ′′k + W ′k
ρ must get negative as ρ → 1− since the right-hand

side of 3.3 is fixed. Multiplying (3.3) by ρ and integrating on (ρ0, ρ) gives

ρW ′k ≤ ρ0W
′
k(ρ0) + bk(ρ− ρ0) +

c0
4

ln
(1− ρ2

1− ρ2
0

)
. (3.4)

Thus we see that W ′k becomes negative as ρ→ 1−.
Therefore, we see that there is an Mk with mk < zk < Mk < 1 such that

W ′k > 0 on (mk,Mk), Wk(Mk) > 0, and W ′k(Mk) = 0. As in the proof of Case 1,
it is possible to show that Mk is a local maximum, W ′′k (Mk) < 0, and there is an
inflection point p2,k with mk < zk < p2,k < Mk with Wk(p2,k) > 0. This completes
the proof of the lemma for Case 2. �
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Lemma 3.2. Suppose Wk satisfies (3.1)-(3.2). Then Hk(mk) → 0 as k → −∞
(for some subsequence of k’s).

Proof. Suppose on the contrary that there exists an l0 > 0 such that Hk(mk) ≥ l0 >
0 for all k sufficiently negative. Then on [0,mk] we have 0 ≥W ′k = H ′k +

√
2Z
XY ρ ≥

H ′k. Therefore, Hk is decreasing on [0,mk] and hence Hk ≥ Hk(mk) ≥ l0 on [0,mk].
Then 1

H2
k
≤ 1

l20
on [0,mk] ⊂ [0, 1] so we see by integrating (1.15) on (0, ρ), using

(1.17)-(1.18), and assuming k is sufficiently negative

W ′′k +
W ′k
ρ

+
XY

1− ρ2
= 2
(
k +

√
2Z
XY

)
+XY +

∫ ρ

0

Zt

H2
k

dt

≤ 2
(
k +

√
2Z
XY

)
+XY +

Z

2l20
ρ2 < 0.

(3.5)

Evaluating (3.5) at mk gives

0 < W ′′k (mk) +
XY

1−m2
k

≤ 2
(
k +

√
2Z
XY

)
+XY +

Z

2l20
m2
k < 0

which is a contradiction to (3.5). Thus, the lemma holds. �

Lemma 3.3. Suppose Wk satisfies (3.1)-(3.2). Then p1,k → 0 as k → −∞ (for
some subsequence of k’s).

Proof. Since W ′′k = H ′′k +
√

2Z
XY we see that H ′′k ≤ 0 when W ′′k ≤ 0. Also, by

Lemma 3.1 we note that Hk is concave down on [0, p1,k] and so on this interval the
graph of Hk lies above the line through (0, 1) and (p1,k, Hk(p1,k)). That is

Hk(ρ) ≥ 1− 1−Hk(p1,k)
p1,k

ρ on [0, p1,k).

Thus
Hk(ρ) ≥ 1−Akρ > 0 on [0, p1,k),

where

Ak =
1−Hk(p1,k)

p1,k
. (3.6)

Thus
1
H2
k

≤ 1
(1−Akρ)2

on [0, p1,k). (3.7)

And so integrating (1.6) on (0, ρ) ⊂ (0, 1) and using (3.7) we see

H ′′k +
H ′k
ρ

+
XY

1− ρ2
= 2k +XY +

∫ ρ

0

Zt

H2
k

dt

≤ 2k +XY +
∫ ρ

0

Zt

(1−Akt)2
dt

≤ 2k +XY +
ρZ

(1−Akρ)
.

Since XY
1−ρ2 ≥ XY on [0, 1] this reduces to

H ′′k +
H ′k
ρ
≤ 2k +

ρZ

d(d−Akρ)
on [0, p1,k).
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Multiplying by ρ, integrating on (0, ρ), and simplifying gives

H ′k ≤ kρ−
Z

Akρ
ln(1−Akρ).

Integrating on (0, p1,k) we obtain

0 ≤ Hk(p1,k) ≤ 1 +
k

2
p2
1,k −

Z

Ak

∫ p1,k

0

ln(1−Akt)
t

dt. (3.8)

Making the change of variables u = Akt and using (3.6)-(3.8) we obtain

|k|
2
p2
1,k ≤ 1 +

Zp1,k

d2

1(
1−Hk(p1,k)

) ∫ (1−Hk(p1,k))

0

(
− ln(1− u)

u

)
du. (3.9)

Now let

g(x) =
1
x

∫ x

0

(
− ln(1− u)

u

)
du.

It follows by using the power series for ln(1− u) that

g(x) =
1
x

∫ x

0

(
− ln(1− u)

u

)
du = 1 +

x

22
+
x2

32
+
x3

42
+ · · ·

which converges for 0 ≤ x ≤ 1. In addition, for these x we have 1 ≤ g(x) ≤ g(1) =
1 + 1

22 + 1
32 + 1

42 + · · · = π2

6 < 2.
Now notice that since p1,k ≤ 1 then (3.9) can be rewritten as

|k|
2
p2
1,k ≤ 1 + Zp1,kg (1−Hk(p1,k)) ≤ 1 + Zg (1−Hk(p1,k)) .

Thus
|k|
2
p2
1,k ≤ 1 + 2Z

and so we see that p1,k → 0 as k → −∞. �

Lemma 3.4. Suppose Wk satisfies (3.1)-(3.2). Then Hk(p1,k) → 0 as k → −∞
(for some subsequence of k’s).

Proof. Suppose not and so assume there is an s0 > 0 such that Hk(p1,k) ≥ s0.
Now recall that W ′k has a local minimum at p1,k. Therefore from calculus we have
W ′′k (p1,k) = 0 and W ′′′k (p1,k) ≥ 0. Using (1.6) and (1.15) we see that

0 ≤ −W
′
k(p1,k)
p2
1,k

≤ Zp1,k

H2
k(p1,k)

.

Thus, by Lemma 3.3,

0 ≤ −W
′
k(p1,k)
p1,k

≤
Zp2

1,k

H2
k(p1,k)

≤
Zp2

1,k

s20
→ 0 as k → −∞. (3.10)

On the other hand, since W ′k = H ′k +
√

2Z
XY ρ and Wk is decreasing on [0, p1,k],

it follows that Hk is also decreasing on [0, p1,k] and therefore H ≥ s0 on [0, p1,k).
Using this fact and integrating (1.15) on (0, ρ) gives

W ′′k +
W ′k
ρ

+
XY

1− ρ2
= 2k +XY +

∫ ρ

0

Zt

H2
k

dt ≤ 2k +XY +
Z

2s20
ρ2 on [0, p1,k].
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Further since XY
1−ρ2 ≥ XY on [0, 1] we obtain

W ′′k +
W ′k
ρ
≤ 2k +

Z

2s20
ρ2 on [0, p1,k].

Multiplying by ρ and integrating on (0, ρ) gives:

W ′k ≤ kρ+
Z

8s20
ρ4

and so
W ′k(p1,k)
p1,k

≤ k +
Z

8s20
p3
1,k ≤ k +

Z

8s20
→ −∞ as k → −∞

contradicting (3.10). Thus H(p1,k)→ 0 as k → −∞. �

Lemma 3.5. Suppose Wk satisfies (3.1)–(3.2). Then mk → 0 as k → −∞ (for
some subsequence of k’s).

Proof. Suppose not. So then there is a t0 such that mk ≥ t0 > 0. Using Theorem
1.1 and the fact that Wk is decreasing on [0,mk] we obtain

Hk(p1,k)−
√

Z

2Y
(1− p2

1,k) = Wk(p1,k) ≥Wk(mk)

= Hk(mk)−
√

Z

2XY
(1−m2

k)

≥ −
√

Z

2XY
(1− t20).

(3.11)

By Lemmas 3.3 and 3.4 we see that the left-hand side of (3.11) goes to −
√

Z
2XY as

k → −∞ and so this implies t0 = 0 which is a contradiction. �

Now let 0 < ε ≤ 1 and observe that W ′k
ρ1−ε is zero at mk, Mk, and is positive on

(mk,Mk). Therefore W ′k
ρ1−ε has an absolute and local maximum on (mk,Mk).

Lemma 3.6. Let 0 < ε ≤ 1. Suppose Wk satisfies (3.1)-(3.2). At an absolute
maximum, qk, of W ′k

ρ1−ε on (mk,Mk) we have qk ≤ p2,k and

W ′k(qk)
q1−εk

≤
2XY q2+εk

ε(2− ε)(1− q2k)2
.

Proof. At qk we have ( W ′k
ρ1−ε

)′
= 0 and

( W ′k
ρ1−ε

)′′
≤ 0.

Thus, qkW ′′(qk)− (1− ε)W ′k(qk) = 0 and qkW
′′′(qk) + εW ′′k (qk) ≤ 0. Therefore by

(1.6),
W ′k(qk)
q1−εk

≤
2XY q2+εk

ε(2− ε)(1− q2k)2
.

In addition, since qk is the maximum of W ′k
ρ1−ε and mk < p2,k < Mk then

W ′k(p2,k)
p1−ε
2,k

≤ W ′k(qk)
q1−εk

.
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Also, we know that p2,k is the maximum of W ′k on (mk,Mk) so:

W ′k(qk)
q1−εk

≤ W ′k(p2,k)
q1−εk

.

Since W ′k > 0 at p2,k and qk, and also that 0 < ε ≤ 1, it then follows from the two
previous inequalities that

qk ≤ p2,k.

This completes the proof. �

Lemma 3.7. Suppose Wk satisfies (3.1)-(3.2). Then p2,k → 1 as k → −∞ (for
some subsequence of k’s). (And hence Mk → 1 since p2,k ≤ Mk (for some subse-
quence of k’s)).

Proof. We first show that p2,k 6→ 0. If p2,k → 0 then using Lemma 3.6 with ε = 1
we see that

0 ≤W ′k(p2,k) ≤
2XY p3

2,k

(1− p2
2,k)2

→ 0 as k → −∞. (3.12)

On the other hand, by the mean value theorem we have

−Wk(mk) = Wk(zk)−Wk(mk) = W ′k(ck)(zk −mk) (3.13)

for some ck with mk < ck < zk. Also, since p2,k is a local maximum for W ′k on
(mk,Mk), it follows that 0 ≤ W ′k(ck) ≤ W ′k(p2,k). Substituting this into (3.13),
using (3.12), and that 0 ≤ mk ≤ zk ≤ 1 gives

−Wk(mk) = Wk(zk)−Wk(mk)

= W ′k(ck)(zk −mk)

≤W ′k(p2,k)(zk −mk)

≤
2XY p3

2,k

(1− p2
2,k)2

.

(3.14)

Next by Lemma 3.2 and (1.14) it follows that Wk(mk) → −
√

Z
2XY as k → −∞.

Therefore, the left-hand side of (3.14) goes to
√

Z
2XY > 0 as k → −∞ but the

right-hand side goes to zero as k → −∞ by (3.12) which is a contradiction. Thus
we see that p2,k 6→ 0.

So now suppose that the lemma is not true and that there is a u0 and v0 with
0 < u0 < v0 < 1 such that 0 < u0 < p2,k ≤ v0 < 1. Then we have the following
identity which follows from (1.6),(

H2
k

(
H ′′k +

H ′k
ρ

)
−HkH

′2
k

)′
= Zρ− 2XY ρH2

k

(1− ρ2)2
+

2HkH
′2
k

ρ
−H ′3k .

Integrating this on (mk, ρ), using Lemma 3.1, and that Hk > 0, W ′k > 0 on

(mk,Mk), as well as H ′k(mk) +
√

2Z
XY mk = W ′k(mk) = 0, H ′′k (mk) +

√
2Z
XY =

W ′′k (mk) > 0, and HkH
′2
k ≥ 0 gives

H2
k

(
H ′′k +

H ′k
ρ

)
≥ −2

(√ 2Z
XY

H2
k(mk) +

Z

XY
m2
kHk(mk)

)
+
Z

2
(ρ2 −m2

k)−
∫ ρ

mk

2XY tH2
k

(1− t2)2
dt−

∫ ρ

mk

H ′k
3
dt.
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Multiplying by ρ and integrating by parts on (mk, ρ) gives

ρH2
kH
′
k −

∫ ρ

mk

2tHkH
′2
k dt

≥ −
(√ 2Z

XY
H2
k(mk) +

Z

XY
m2
kHk(mk)

)
(ρ2 −m2

k) +
∫ ρ

mk

Z

2
t(t2 −m2

k) dt

−
∫ ρ

mk

t

∫ t

mk

2XY sH2
k

(1− s2)2
ds dt−

∫ ρ

mk

t

∫ t

mk

H ′3k ds dt.

Thus, since Hk > 0 and HkH
′2
k ≥ 0,

ρH2
kH
′
k +

∫ ρ

mk

t

∫ t

mk

2XY sH2
k

(1− s2)2
ds dt+

∫ ρ

mk

t

∫ t

mk

H ′3k ds dt

≥ −
(√ 2Z

XY
H2
k(mk) +

Z

XY
m2
kHk(mk)

)
(ρ2 −m2

k)

+
Z

2

( (ρ4 −m4
k)

4
− m2

k(ρ2 −m2
k)

2

)
.

(3.15)

Since p2,k ≤ v0 < 1, it follows from Lemma 3.6 and (1.14) that for fixed ε with
0 < ε < 1,

H ′k ≤W ′k ≤ C4ρ
1−ε on [mk, p2,k] where C4 =

2XY v2+ε
0

ε(2− ε)(1− v2
0)2

. (3.16)

Substituting (3.16) into (3.15) gives

C4ρ
1−εH2

k +
∫ ρ

mk

t

∫ t

mk

2XY sH2
k

(1− s2)2
ds dt+ C3

4

∫ ρ

mk

t

∫ t

mk

s3−3ε ds dt

≥ −
(√ 2Z

XY
H2
k(mk) +

Z

XY
m2
kHk(mk)

)
(ρ2 −m2

k)

+
Z

2

( (ρ4 −m4
k)

4
− m2

k(ρ2 −m2
k)

2

)
.

(3.17)

Also, integrating (3.16) on (mk, ρ) and using (1.14) as well as Theorem 1.1 gives

−
√

Z

2XY
(1−ρ2) ≤Wk(ρ) ≤Wk(mk)+

C4

2− ε
(ρ2−ε−m2−ε

k ) ≤ C4

2− ε
(ρ2−ε−m2−ε

k ).

(3.18)
Now we know from Lemma 3.1 that W ′k ≥ 0 on [mk,Mk] and so it follows from

(3.16)-(3.18) and Lemma 3.6 that Wk and W ′k are uniformly bounded on [mk,Mk].
So since mk and p2,k are bounded there exists a subsequence (still labeled k) such
that mk → m = 0 (by Lemma 3.5) and p2,k → p2 with 0 < u0 ≤ p2 ≤ v0 < 1. We

also know from (3.18) that −
√

Z
2XY ≤ Wk ≤ 0 and so Wk is bounded on [0,mk].

Thus Wk and hence Hk are uniformly bounded on compact subsets of [0, p2). Thus,
it follows by the Arzela-Ascoli theorem that there is a subsequence (still labeled k)
such that Wk →W uniformly on compact subsets of (0, p2) as k → −∞ and hence
by (1.14) we have Hk → H uniformly on compact subsets of (0, p2) as k → −∞.

Taking limits in (3.17) on (0, p2) as k → −∞ (using Lemmas 3.2, 3.5, and the
dominated convergence theorem) gives

C4ρ
1−εH2 +

∫ ρ

0

t

∫ t

0

2Y sH2

(1− s2)2
ds dt+ C3

4

∫ ρ

0

t

∫ t

0

s3−3ε ds dt ≥ Z

8
ρ4. (3.19)
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Next, it follows from (3.18) and (1.14) that on (mk, p2,k):

Hk(ρ) ≤ Hk(mk) +

√
Z

2XY
(ρ2 −m2

k) + C5(ρ2−ε −m2−ε
k ) (3.20)

where C5 = C4
2−ε . So by taking the limit as k → −∞ in (3.20) and using Lemmas

3.2, 3.5, and 3.6 we see that

0 < H ≤ C6ρ
2−ε on (0, p2) (3.21)

where C6 = C5 +
√

Z
2XY . Substituting (3.21) into (3.19) gives

C4C
2
6ρ

5−3ε + C7ρ
8−2ε + C8ρ

6−3ε ≥ Z

8
ρ4 on (0, p2)

where C7 = 2XY C2
6

(1−p2)2(6−2ε)(8−2ε) and C8 = C3
4

(4−3ε)(6−3ε) . Dividing by ρ4 we obtain:

C4C
2
6ρ

1−3ε + C7ρ
4−2ε + C8ρ

2−3ε ≥ Z

8
on (0, p2). (3.22)

Assuming now that 0 < ε < 1
3 and letting ρ→ 0+ we see that the left-hand side of

(3.22) goes to zero but the right-hand side is positive yielding a contradiction. Thus
it must be that p2,k → 1 as k → −∞ for some subsequence of k’s. This completes
the proof. �

We next observe the following identity which follows from (1.15),(
(1− ρ)2

(
W ′′k +

W ′k
ρ

)
+ 2(1− ρ)W ′k +

2
ρ
Wk

)′
= (1− ρ)2

( −2XY ρ
(1− ρ2)2

+
Zρ

H2
k

)
− 2
ρ2
Wk

= −
2XY ρWk

(
Hk +

√
2Z
XY (1− ρ2)

)
H2
k(1 + ρ)2

− 2
ρ2
Wk.

(3.23)

Note that

(1− ρ)2
(
W ′′k +

W ′k
ρ

)
+ 2(1− ρ)W ′k +

2
ρ
Wk

is decreasing on (zk,Mk).
Next we observe from the first equality in (3.23) that(

(1− ρ)2
(
W ′′k +

W ′k
ρ

)
+ 2(1− ρ)W ′k +

2
ρ
Wk

)′
≥ −2XY ρ

(1 + ρ)2
− 2
ρ2
Wk.

Integrating this on (ρ,Mk), using W ′k(Mk) = 0, and also using W ′′k (Mk) ≤ 0 gives

(1− ρ)2
(
W ′′k +

W ′k
ρ

)
+ 2(1− ρ)W ′k +

2
ρ
Wk

≤ 2Wk(Mk)
Mk

+
∫ Mk

ρ

2XY t
(1 + t)2

dt+
∫ Mk

ρ

2
t2
Wk dt.

(3.24)

Lemma 3.8. Suppose Wk satisfies (3.1)-(3.2). Then Wk(Mk) → ∞ as k → −∞
(for some subsequence of k’s).
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Proof. Suppose the lemma is false and so there is a C > 0 such that Wk(Mk) ≤ C
for all k. Now we know from Lemma 3.1 that on (mk, p2,k) we have W ′k ≥ 0 and
W ′′k ≥ 0, and so it follows from (3.24) and (1.15) thatWk,W

′
k, andW ′′k are uniformly

bounded on compact subsets of (mk, p2,k). It then follows by the Arzela-Ascoli
theorem that there is a subsequence (still labeled k) such that Wk →W , W ′k →W ′,
and W ′′k → W ′′ uniformly on compact subsets of (0, 1) since mk → 0 by Lemma
3.5 and p2,k → 1 by Lemma 3.7. In addition, W ′k ≥ 0 on (mk, p2,k) and W ′′k ≥ 0
on (mk, p2,k). Since mk → 0 by Lemma 3.5 and p2,k → 1 by Lemma 3.7 it follows
that W and W ′ is increasing on (0, 1). Thus we may define W (1) ≡ limρ→1−W (ρ),
W ′(1) ≡ limρ→1−W

′(ρ) and W (0) ≡ limρ→0+ W (ρ), W ′(0) ≡ limρ→0+ W ′(ρ). And
so there is a corresponding function H such that Hk → H, H ′k → H ′, and H ′′k → H ′′

uniformly on compact subsets of (0, 1). We have similar definitions for H(0), H ′(0),
H(1), and H ′(1).

It now follows from (1.15) that W ′′′k is uniformly bounded in a neighborhood of
any ρ0 with 0 < ρ0 < 1 where H(ρ0) > 0. Along with the boundedness of Wk, W ′k,
and W ′′k in this neighborhood, it follows that W satisfies (1.15) at any 0 < ρ0 < 1
for which H(ρ0) > 0.

Suppose now that there exists ρ0 with 0 < ρ0 < 1 such that H(ρ0) = 0 and
H(ρ) > 0 for ρ0 < ρ < 1. This would contradict Theorem 1.1 and so it must be
the case that either H > 0 on (0, 1) or H ≡ 0 on (0, 1).

Case 1: Suppose first that H > 0 on (0, 1). Next we note that after multiplying
(3.24) by ρ and using the fact that Wk(Mk) ≤ C we see that W ′k and hence H ′k
is uniformly bounded, say by T , on (mk,Mk). Thus, integrating the inequality
H ′k ≤ T on (mk, ρ) and using Theorem 1.1 gives 0 < Hk(ρ) ≤ Hk(mk)+T (ρ−mk).
We know Hk(mk) → 0 by Lemma 3.2 and mk → 0 by Lemma 3.5, so taking
limits as k → −∞ we see that 0 < H(ρ) ≤ Tρ on (0, 1). Thus, we see H(0) ≡
limρ→0+ H(ρ) = 0.

Now integrating (1.15) on (ρ, ρ1) where 0 < ρ < ρ1 < 1 we see that

W ′′(ρ1) +
W ′(ρ1)
ρ1

+
XY

1− ρ2
1

= W ′′(ρ) +
W ′(ρ)
ρ

+
XY

1− ρ2
+
∫ ρ1

ρ

Zt

H2(t)
dt.

Therefore,

lim
ρ→0+

(
W ′′(ρ) +

W ′(ρ)
ρ

+
∫ ρ1

ρ

Zt

H2(t)
dt
)

exists and is finite. (3.25)

Now since 0 < H(ρ) ≤ Tρ it follows that∫ ρ1

ρ

Zt

H2(t)
dt ≥

∫ ρ1

ρ

Zt

T 2t2
dt =

Z

T 2
ln
(ρ1

ρ

)
→∞ as ρ→ 0+

which along with the fact that W ′ ≥ 0 and W ′′ ≥ 0 contradicts (3.25). Thus the
assumption that H > 0 on (0, 1) must be false.

Case 2: Next suppose that H ≡ 0 on (0, 1). We first show that Hk cannot be
decreasing on (mk, 1). Integrating (1.15) on (mk, ρ) gives

H ′′k +
H ′k
ρ

+
XY

1− ρ2
= H ′′k (mk) +

H ′k(mk)
mk

+
XY

1−m2
k

+
∫ ρ

mk

Zt

H2
k

dt. (3.26)
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Substituting H ′k(mk) +
√

2Z
XY mk = W ′k(mk) = 0, H ′′k (mk) +

√
2Z
XY = W ′′k (mk) ≥ 0,

and assuming Hk is decreasing on (mk, 1) gives

H ′′k +
H ′k
ρ

+
XY

1− ρ2
≥ −2

√
2Z
XY

+
Z

2H2
k(mk)

(ρ2 −m2
k). (3.27)

Multiplying by ρ and integrating again on (mk, ρ) gives

ρH ′k ≥ −
√

2Z
XY

ρ2 +
XY

2
ln
(

1− ρ2

1−m2
k

)
+

Z

2H2
k(mk)

∫ ρ

mk

t(t2 −m2
k) dt. (3.28)

Dividing by ρ and integrating again on (mk, ρ) gives

Hk ≥ Hk(mk)− 1
2

√
2Z
XY

(ρ2 −m2
k) +

∫ ρ

mk

XY

2t
ln
(

1− t2

1−m2
k

)
dt

+
Z

2H2
k(mk)

∫ ρ

mk

1
s

∫ s

mk

t(t2 −m2
k) dt ds.

(3.29)

Next, making the substitution u = 1−t
1−mk we observe that∫ 1

mk

1
t
| ln
( 1− t2

1−m2
k

)
| dt ≤

∫ 1

mk

1
t
| ln[2

( 1− t
1−mk

)
]| dt

≤
∫ 1

0

| ln(2u)|
1− u

du <∞.
(3.30)

Thus we see that 1
t ln

(
1−t2
1−m2

k

)
is uniformly integrable on (mk, 1). Combining this

with the fact that Hk(mk) → 0 by Lemma 3.2 and mk → 0 by Lemma 3.5 we
see that for fixed ρ > 0 and k sufficiently negative that the right-hand side of
(3.29) goes to +∞. However, the left-hand side of (3.29) is bounded (because by
assumption

0 < Hk = Wk +

√
Z

2XY
(1− ρ2) ≤Wk(Mk) +

√
Z

2XY
≤ C +

√
Z

2XY
.

This is a contradiction and so the assumption that Hk is decreasing on (mk, 1) must
be false. Thus Hk has a minimum, nk, with mk < nk < 1 and H ′k ≤ 0 on (0, nk).
Also, by Lemma 3.2 we have

0 < Hk(nk) ≤ Hk(mk)→ 0. (3.31)

We next claim that nk → 1 as k → −∞. Repeating the above argument with
mk being replaced by nk in (3.26) and using that H ′k(nk) = 0 and H ′′k (nk) ≥ 0
gives:

H ′′k +
H ′k
ρ

+
XY

1− ρ2
≥
∫ ρ

nk

Zt

H2
k

dt.

Multiplying by ρ and integrating on (nk, ρ) gives:

ρH ′k ≥
XY

2
ln
( 1− ρ2

1− n2
k

)
+
∫ ρ

nk

s

∫ s

nk

Zt

H2
k

dt ds.

Dividing by ρ and integrating again gives

Hk(ρ) ≥ Hk(nk) +
∫ ρ

nk

XY

2ρ
ln
( 1− ρ2

1− n2
k

)
+
∫ ρ

nk

1
t

∫ t

nk

s

∫ s

nk

Zx

H2
k

dx ds dt. (3.32)
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We know Hk(nk)→ 0 by (3.31). Suppose now that nk → n where 0 ≤ n < 1. Then
for fixed ρ with 0 < ρ < 1 we have Hk(ρ)→ H(ρ) ≡ 0 and similarly as in (3.30) the
term 1

ρ ln
(

1−ρ2
1−n2

k

)
is uniformly integrable on (nk, 1) but the last term on the right

in (3.32) goes to infinity since Hk → H ≡ 0 uniformly on compact subsets of (n, ρ)
yielding a contradiction. Thus it must be the case that nk → 1. Next, taking limits
in (3.29) for fixed ρ and using that mk → 0 also yields a contradiction because
1
ρ ln

(
1−ρ2
1−m2

k

)
is uniformly integrable on (mk, 1) and so the right-hand side goes to

infinity while the left-hand side is bounded. Thus the assumption that H ≡ 0 must
also be false and therefore it must be that Wk(Mk) → ∞. This completes the
proof. �

Lemma 3.9. Suppose Wk satisfies (3.1)-(3.2). Then either zk → 0 as k → −∞
(for some subsequence of k’s) or zk → 1 as k → −∞ (for some subsequence of k’s).

Proof. Suppose not. Then there is a u0 and a v0 with 0 < u0 ≤ v0 < 1 such that
0 < u0 ≤ zk ≤ v0 < 1 for all k. From Lemma 3.8 we know that Wk(Mk) → ∞ as
k → −∞.

We now define

Qk(ρ) =
Wk(ρ)
Wk(Mk)

.

Note that Qk ≤ 1 on [0,Mk] and since Wk(ρ) ≥ −
√

Z
2XY (1 − ρ2) ≥ −

√
Z

2XY (by
Theorem 1.1) it follows that Qk is bounded from below independent of k. Thus the
Qk are uniformly bounded on [0,Mk]. It follows then from (3.24) that on [ρ,Mk]
we have

(1− ρ)2
(
Q′′k +

Q′k
ρ

)
+ 2(1− ρ)Q′k +

2
ρ
Qk

≤ 2
Mk

+
1

Wk(Mk)

∫ Mk

ρ

2XY t
(1 + t)2

dt+
∫ Mk

ρ

2
t2
Qk dt.

(3.33)

In addition, since Q′k ≥ 0 and Q′′k ≥ 0 on (mk, p2,k) and p2,k → 1 by Lemma 3.7, it
follows from (3.33) that Qk, Q′k, and Q′′k are uniformly bounded on compact subsets
of (mk, v0].

Since Wk ≥ 0 on [zk,Mk] we see from (1.15) that (W ′′k + W ′k
ρ )′ ≤ 0 on [zk,Mk].

In particular, since zk ≤ v0 it follows that

W ′′k +
W ′k
ρ
≤W ′′k (v0) +

W ′k(v0)
v0

for v0 ≤ ρ ≤Mk.

Therefore

Q′′k +
Q′k
ρ
≤ Q′′k(v0) +

Q′k(v0)
v0

for v0 ≤ ρ ≤Mk. (3.34)

Since 0 ≤ Qk ≤ 1 on [zk,Mk] and also [v0,Mk] ⊂ [zk,Mk] it follows from (3.33)
and since v0 < 1 that Q′′k(v0) + Q′k(v0)

v0
is bounded independent of k. Since Q′k ≥ 0

and Q′′k ≥ 0 on (mk, p2,k) then it follows from (3.34) that Qk, Q′k, and Q′′k are also
uniformly bounded on [v0, p2,k]. In addition, earlier in this proof we showed that
Qk, Q′k, and Q′′k are uniformly bounded on compact subsets of (mk, v0]. Combining
these results we see that Qk, Q′k, and Q′′k are uniformly bounded on compact subsets
of (mk, p2,k].

From Lemmas 3.5 and 3.7 we know that mk → 0 and p2,k → 1 as k → −∞
and so by the Arzela-Ascoli theorem there is a further subsequence (again labeled
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k) such that Qk → Q and Q′k → Q′ uniformly on compact subsets of (0, 1). In
particular, Q and Q′ are continuous on (0, 1). Further, since Qk ≥ 0 and Q′k ≥ 0
on (mk, p2,k) and mk → 0 and p2,k → 1, it follows that Q ≥ 0 and Q′ ≥ 0 on (0, 1).

Now let ρ and ρ0 satisfy zk < ρ < ρ0 < 1. Then on [zk, ρ0] we know that Wk ≥ 0

so Hk ≥
√

Z
2XY (1 − ρ2

0) > 0 on this set and so we see that 1
H2
k

is bounded on
[zk, ρ0]. Also since u0 ≤ zk ≤ v0 there is a subsequence (still labeled k) so that
zk → z with 0 < u0 ≤ z ≤ v0 < 1. Therefore it follows from (1.15) that Q′′′k is
uniformly bounded on compact subsets of (z, 1). Thus Q′′k is equicontinuous on
compact subsets of (zk, 1) and thus Q′′k → Q′′ uniformly (for some subsequence) on
compact subsets of (z, 1). From (1.15) it then follows that Q′′′k → Q′′′ (for some
subsequence) on (zk, 1). Since(

Q′′k +
Q′k
ρ

)′
=

1
Wk(Mk)

−2XY ρ
(1− ρ2)2

+
1

Wk(Mk)
Zρ

H2
k

for z < ρ < 1,

it follows by Lemma 3.8 that(
Q′′ +

Q′

ρ

)′
= 0 for z < ρ < 1. (3.35)

In addition, since Qk is increasing on [mk,Mk], mk → 0 by Lemma 3.5, Mk → 1
by Lemma 3.7, and p2,k ≤ Mk ≤ 1, it follows that Q is increasing on (0, 1). In
particular, we define Q(0) ≡ limρ→0+ Q(ρ) and Q(1) ≡ limρ→1− Q(ρ). So Q is
continuous on [0, 1]. Similarly, Q′k is increasing on (mk, p2,k), mk → 0 by Lemma
3.5, and p2,k → 1 by Lemma 3.7, so Q′ is increasing on (0, 1). Therefore we may also
define Q′(0) ≡ limρ→0+ Q′(ρ) and Q′(1) ≡ limρ→1− Q

′(ρ). Thus Q′k is continuous
on [0, 1].

Also, as mentioned earlier in this proof, Qk → Q and Q′k → Q′ uniformly on com-
pact subsets of (0, 1) and since 0 < z < 1 it follows that Q(z) = limk→−∞Qk(zk) =
0. In addition, Q′(z) is defined and in fact Q′(z) = 0 for if Q′(z) 6= 0 then Q
would get negative somewhere in a neighborhood of z contradicting that Q ≥ 0 on
(0, 1). If Q′′(z) < 0 then Q would get negative somewhere in a neighborhood of z
contradicting that Q ≥ 0. If Q′′(z) > 0 then Q′ < 0 on (z − δ, z) for some δ > 0
contradicting Q′ ≥ 0. Thus it must be that Q′′(z) = 0. Solving (3.35) along with
the conditions Q(z) = Q′(z) = Q′′(z) = 0 implies Q ≡ 0.

Next recall from earlier in the proof that Q′k is uniformly bounded, say by L, on
(mk,Mk). Thus

0 ≤ 1−Qk(ρ) = Qk(Mk)−Qk(ρ) =
∫ Mk

ρ

Q′k(t) dt ≤ L(Mk − ρ).

So taking limits as k → −∞ gives

0 ≤ 1−Q(ρ) ≤ L(1− ρ).

Now taking the limit as ρ → 1−, it follows that Q(1) = 1. But we showed earlier
that Q ≡ 0 so we obtain a contradiction. Therefore, it must be the case that either
zk → 0 or zk → 1. This completes the proof. �

Lemma 3.10. Suppose Wk satisfies (3.1)-(3.2). Then zk → 0 as k → −∞ (for
some subsequence of k’s).

Proof. From Lemma 3.9, we know that zk → 0 or zk → 1 as k → −∞. Let us
assume that zk → 1 as k → −∞.
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First, since mk → 0 by Lemma 3.5 and zk → 1 by assumption we may choose a
δ > 0 such that mk ≤ 1 − 2δ and 1 − zk ≤ δ

2 for k sufficiently negative. Then by
the mean value theorem −Wk(1− δ) = Wk(zk)−Wk(1− δ) = W ′k(ck)(zk − (1− δ))
for some ck with 1− δ < ck < zk. Thus, for k sufficiently negative,

0 ≤W ′k(ck) =
−Wk(1− δ)
zk − (1− δ)

≤

√
2Z
XY

δ

since 0 ≤ −Wk(1− δ) ≤
√

Z
2Y and 1

zk−(1−δ) ≤
2
δ .

Also, since W ′′k ≥ 0 on (mk, zk) we see that for ρ with mk ≤ ρ ≤ 1− δ we have

0 ≤W ′k ≤W ′k(ck) ≤

√
2Z
XY

δ
on (mk, 1− δ). (3.36)

Then by the mean value theorem there is an xk with for 1− 2δ < xk < 1− δ such
that √

2Z
XY

δ
≥W ′k(1− δ)−W ′k(1− 2δ) = W ′′k (xk)δ.

Thus

0 ≤W ′′k (xk) ≤

√
2Z
XY

δ2
.

In addition, by (3.36) we have

0 ≤W ′k(xk) ≤

√
2Z
XY

δ
, (3.37)

0 ≤ W ′k(xk)
xk

≤

√
2Z
XY

δ(1− 2δ)
. (3.38)

It follows then from (3.23) that for mk < xk < ρ < zk,

(1− ρ)2
(
W ′′k +

W ′k
ρ

)
+ 2(1− ρ)W ′k +

2
ρ
Wk

≤ (1− xk)2
(
W ′′k (xk) +

W ′k(xk)
xk

)
+ 2(1− xk)W ′k(xk) +

2
xk
Wk(xk).

(3.39)

Multiplying (3.39) by ρ and using (3.37)-(3.38) we see that Wk, Wk,
′ and W ′′k are

uniformly bounded on compact subsets of (mk, 1− 2δ] and so by the Arzela-Ascoli
theorem there is a subsequence (again labeled k) and functions W and H such that
Wk → W , W ′k → W ′, Hk → H, and H ′k → H ′ uniformly on compact subsets of
(0, 1 − 2δ]. Since δ is arbitrary we see that Wk and W ′k converge uniformly on
compact subsets of (0, 1) to W and W ′.

Since W ′k ≥ 0 on (mk,Mk) and mk → 0 by Lemma 3.5 and also Mk → 1 by
Lemma 3.7, it follows that W ′ ≥ 0 on (0, 1). It also follows that W ≤ 0 on (0, 1)
since Wk ≤ 0 on (mk, zk) where mk → 0 by Lemma 3.5 and zk → 1 by assumption.

Next it follows from (1.15) that W ′′′k is uniformly bounded in a neighborhood
of any ρ0 with 0 < ρ0 < 1 such that H(ρ0) > 0. Along with the boundedness
of Wk, W ′k, and W ′′k in this neighborhood it follows that W solves (1.15) in this
neighborhood.

Suppose now that there exists ρ0 with 0 < ρ0 < 1 such that H(ρ0) = 0 and
H(ρ) > 0 for ρ0 < ρ < 1. This would contradict Theorem 1.1 and so it must be
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the case that either H > 0 on (0, 1) or H ≡ 0 on (0, 1). If H > 0 on (0, 1) then it
actually follows that W ′(0) = 0. To see this, we first observe that since W ′ ≥ 0 and
W ′′ ≥ 0 on (0, 1) it follows that limρ→0+ W ′(ρ) = A ≥ 0. We would like to show
A = 0 so we will assume A > 0. Multiplying (1.15) by ρ2 and taking the limits
as ρ → 0+ gives limρ→0+(ρ2W ′′′ + ρW ′) = A. Thus for small positive ρ we have
(ρW ′′)′ ≥ A

2ρ . Integrating on (ρ, ρ0) gives ρW ′′ ≤ A
2 ln(ρ)+C0 for some constant C0.

Dividing by ρ and integrating again on (ρ, ρ0) gives W ≥ A
4

ln2(ρ)
ρ + C0 ln(ρ) + C1

for some constant C1. This implies W → ∞ as ρ → 0+ which contradicts that
W (ρ) is bounded. Thus we see that W ′(0) ≡ limρ→0+ W ′(ρ) = 0. Then by Lemma
2.3 we see that this implies that W must get positive on (0, 1) but this contradicts
that W ≤ 0 on (0, 1). On the other hand, if H ≡ 0 on (0, 1) then using a nearly
identical argument as in Case 2 of Lemma 3.7, we can arrive at equation (3.29)
and from this it follows that Hk must get large and hence a minimum, nk, with
mk < nk must exist. The rest of the argument is the same and so again this leads
to a contradiction. Thus we see that zk 6→ 1 as k → −∞ and consequently by
Lemma 3.9 we see that zk → 0 as k → −∞. This completes the proof. �

Proof Theorem 1.3. If there is such a solution then we know from Lemma 3.10 that
there is a subsequence (again labeled k) such that zk → 0. Integrating (1.15) on
(mk, ρ) gives

W ′′k +
W ′k
ρ

+
XY

1− ρ2
= W ′′k (mk) +

XY

1−m2
k

+
∫ ρ

mk

Zt

H2
k

dt ≥ 0.

Multiplying by ρ, integrating on (mk, ρ), and using that mk is a local minimum so
that W ′′k (mk) ≥ 0 gives

0 ≥ ρW ′k ≥ ln
( 1− ρ2

1−m2
k

)
.

Suppose now that Wk(z2,k) = 0 with Wk > 0 on (zk, z2,k). Then we know that
W ′k ≤ 0 on (Mk, z2,k) by Lemma 2.2. Thus, on (Mk, z2,k) we have

W ′2k ≤
ln2
(

1−ρ2
1−m2

k

)
ρ2

.

Recall that mk → 0 by Lemma 3.5 and Mk → 1 by Lemma 3.7. Thus for some
positive constant A independent of k we have:∫ z2,k

Mk

W ′2k dt ≤
∫ z2,k

Mk

ln2
(

1−ρ2
1−m2

k

)
ρ2

dρ ≤
∫ 1

Mk

ln2
(

1−ρ2
1−m2

k

)
ρ2

dρ ≤ A <∞.

Thus, ∫ z2,k

Mk

Q′2k dt =
1

W 2
k (Mk)

∫ z2,k

Mk

W ′2k dt→ 0 as k → −∞. (3.40)

Finally by Holder’s inequality and (3.40) we have

1 = |0− 1| = |Qk(z2,k)−Qk(Mk)| = |
∫ z2,k

Mk

Q′k(t) dt|

≤
√
z2,k −Mk

√∫ z2,k

Mk

Q′2k dt→ 0 as k → −∞

which is impossible. This completes the proof. �
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