Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 182, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A LIOUVILLE TYPE THEOREM FOR p-LAPLACE EQUATIONS

CRISTIAN ENACHE

$$
\begin{aligned}
& \text { AbSTRACT. In this note we study solutions defined on the whole space } \mathbb{R}^{N} \text { for } \\
& \text { the } p \text {-Laplace equation } \\
& \qquad \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f(u)=0
\end{aligned}
$$

Under an appropriate condition on the growth of f, which is weaker than conditions previously considered in McCoy 3] and Cuccu-Mhammed-Porru [1], we prove the non-existence of non-trivial positive solutions.

1. Introduction

In this note we improve some Liouville type results previously obtained in McCoy [3] and Cuccu-Mohammed-Porru [1] for solutions to the p-Laplace equation

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f(u)=0 \quad \text { in } \mathbb{R}^{N}, p>1 \tag{1.1}
\end{equation*}
$$

where the nonlinearity f is a real differentiable function.
The classical Liouville Theorem states that any harmonic function on the whole Euclidian space $\mathbb{R}^{N}, N \geq 2$, which is bounded from one side, must be identically constant. Nowadays it is already known that this property is not anymore a prerogative of harmonic functions, since it is also shared by bounded (from below and/or above) entire solutions to many other differential equations (we refer the reader to the survey paper of Farina [2] for an overview on Liouville type theorems in PDEs). For instance, when $p=2$ in (1.1), McCoy [3] has proved that if f is differentiable and satisfies

$$
\begin{equation*}
f^{\prime}(t) \leq \frac{N+1}{N-1} \frac{f(t)}{t} \quad \text { for all } t>0 \tag{1.2}
\end{equation*}
$$

then any positive solution of (1.1) must be a constant. Later, this result was extended to the more general case $p>1$ by Cuccu, Mohammed and Porru [1], as follows: if f is differentiable and satisfies

$$
\begin{equation*}
f^{\prime}(t) \leq(p-1) \frac{N+1}{N-1} \frac{f(t)}{t} \quad \text { for all } t>0 \tag{1.3}
\end{equation*}
$$

then any positive solution of (1.1) must be a constant.
Adapting the main idea from the above mentioned works, we are going to show that, under a weaker condition on the growth of f, the above Liouville type results still hold. More precisely, we have:

[^0]Theorem 1.1. Assume that $u(\mathbf{x})>0$ satisfies 1.1. If f is differentiable and satisfies

$$
\begin{equation*}
f^{\prime}(t) \leq \beta(p-1) \frac{N+1}{N-1} \frac{f(t)}{t} \quad \text { for all } t>0 \tag{1.4}
\end{equation*}
$$

where

$$
\beta \in \begin{cases}{\left[1, \frac{N-1}{N-p}\right),} & \text { when } 1<p<N \tag{1.5}\\ {[1, \infty),} & \text { when } p \geq N\end{cases}
$$

then $u(\mathbf{x})$ must be a constant. As a consequence, if $f(t)=0$ has no positive roots, then (1.1) has no positive weak solutions.

2. Proof of Theorem 1.1

We first state a lemma which plays some role in the proof of Theorem 1.1.
Lemma 2.1 (Cuccu-Mohammed-Porru [1]). Let $p>1$ be a real number and $N \geq 2$. If $u(x)$ is a C^{2} function and u_{i} denotes partial differentiation with respect to x_{i}, then

$$
\begin{equation*}
(p-1) u_{11}^{2}+\sum_{i=2}^{N} u_{i i}^{2} \geq \frac{(p-1)(N-1)+1}{N-1} u_{11}^{2}-\frac{2}{N-1} \Delta u u_{11}+\frac{1}{N-1}(\Delta u)^{2} \tag{2.1}
\end{equation*}
$$

Let us now introduce the auxiliary function

$$
\begin{equation*}
P(u ; \mathbf{x}):=\frac{|\nabla u(\mathbf{x})|^{2}}{u^{2 \beta}(\mathbf{x})} \tag{2.2}
\end{equation*}
$$

Let us also consider a point \mathbf{x}^{*} where $|\nabla u|>0$. From a seminal work of Tolksdorf [4] we know that $u(\mathbf{x})$ is smooth in $\omega:=\{\mathbf{x} \in \Omega:|\nabla u|(\mathbf{x})>0\}$. Therefore, we may compute in ω, successively, the following derivatives:

$$
\begin{gather*}
P_{k}=\frac{2}{u^{2 \beta}} u_{i k} u_{i}-\frac{2 \beta}{u^{2 \beta+1}}|\nabla u|^{2} u_{k} \tag{2.3}\\
P_{k l}=\frac{2}{u^{2 \beta}} u_{i k} u_{i l}+\frac{2}{u^{2 \beta}} u_{i k l} u_{i}-\frac{4 \beta}{u^{2 \beta+1}} u_{i k} u_{i} u_{l}-\frac{4 \beta}{u^{2 \beta+1}} u_{i l} u_{i} u_{k} \tag{2.4}\\
+\frac{2 \beta(2 \beta+1)}{u^{2 \beta+2}}|\nabla u|^{2} u_{k} u_{l}-\frac{2 \beta}{u^{2 \beta+1}}|\nabla u|^{2} u_{k l}
\end{gather*}
$$

Now, performing eventually a translation and/or rotation if necessary, we choose the coordinate axes such that at \mathbf{x}^{*} we have

$$
\begin{equation*}
|\nabla u|=u_{1} \quad u_{i}=0 \quad \text { for } i=2, \ldots, N \tag{2.5}
\end{equation*}
$$

Using (2.5) in (2.4) we find that

$$
\begin{align*}
P_{11}= & \frac{2}{u^{2 \beta}} u_{1 i} u_{1 i}+\frac{2}{u^{2 \beta}} u_{111} u_{1}-\frac{8 \beta}{u^{2 \beta+1}} u_{11} u_{1}^{2} \tag{2.6}\\
& +\frac{2 \beta(2 \beta+1)}{u^{2 \beta+2}} u_{1}^{4}-\frac{2 \beta}{u^{2 \beta+1}} u_{11} u_{1}^{2}
\end{align*}
$$

respectively

$$
\begin{align*}
\Delta P= & \frac{2}{u^{2 \beta}} u_{i k} u_{i k}+\frac{2}{u^{2 \beta}}(\Delta u)_{1} u_{1}-\frac{8 \beta}{u^{2 \beta+1}} u_{11} u_{1}^{2} \tag{2.7}\\
& +\frac{2 \beta(2 \beta+1)}{u^{2 \beta+2}} u_{1}^{4}-\frac{2 \beta}{u^{2 \beta+1}} u_{1}^{2} \Delta u
\end{align*}
$$

It then it follows that

$$
\begin{align*}
& \Delta P+(p-2) P_{11} \\
& =\frac{2}{u^{2 \beta}}\left[(\Delta u)_{1}+(p-2) u_{111}\right] u_{1}+\frac{2}{u^{2 \beta}}\left[u_{i k} u_{i k}+(p-2) u_{1 j} u_{1 j}\right] \tag{2.8}\\
& \quad-\frac{2 \beta}{u^{2 \beta+1}}\left[\Delta u+(5 p-6) u_{11}\right] u_{1}^{2}+\frac{2 \beta(2 \beta+1)}{u^{2 \beta+2}}(p-1) u_{1}^{4} .
\end{align*}
$$

On the other hand, differentiating (1.1) with respect to x_{1} and evaluating the result making use of 2.5 , we obtain that at \mathbf{x}^{*} we have

$$
\begin{align*}
& u_{1}^{p-1}\left[(\Delta u)_{1}+(p-2) u_{111}+2(p-2) \sum_{j=2}^{N} u_{1 j}^{2} u_{1}^{-1}\right] \tag{2.9}\\
& \quad+(p-2)\left[\Delta u+(p-2) u_{11}\right] u_{11} u_{1}^{p-3}+f^{\prime} u_{1}=0
\end{align*}
$$

Also, evaluating equation (1.1) at x^{*} we have

$$
\begin{equation*}
\Delta u+(p-2) u_{11}=-f(u) u_{1}^{2-p} \tag{2.10}
\end{equation*}
$$

Inserting 2.10 in 2.9 we obtain

$$
\begin{equation*}
(\Delta u)_{1}+(p-2) u_{111}=2(2-p) \sum_{j=2}^{N} u_{1 j}^{2} u_{1}^{-1}+(p-2) u_{11} f u_{1}^{1-p}-f^{\prime} u_{1}^{3-p} \tag{2.11}
\end{equation*}
$$

Making now use of Lemma 2.1. we also have

$$
\begin{align*}
& u_{i j} u_{i j}+(p-2) u_{1 j} u_{1 j} \\
& \geq(p-1) u_{11}^{2}+\sum_{i=2}^{N} u_{i i}^{2}+p \sum_{j=2}^{N} u_{1 j}^{2} \tag{2.12}\\
& \geq \frac{(p-1)(N-1)+1}{N-1} u_{11}^{2}-\frac{2}{N-1} \Delta u u_{11}+\frac{1}{N-1}(\Delta u)^{2}+p \sum_{j=2}^{N} u_{1 j}^{2}
\end{align*}
$$

Therefore, inserting 2.11 and 2.12 in 2.8 leads to

$$
\begin{align*}
& \Delta P+(p-2) P_{11} \\
& \geq \\
& \frac{2}{u^{2 \beta}}\left\{(4-p) \sum_{j=2}^{N} u_{1 j}^{2}+(p-2) u_{11} f u^{2-p}-f^{\prime} u_{1}^{4-p}\right. \tag{2.13}\\
& \quad+\frac{(p-1)(N-1)+1}{N-1} u_{11}^{2}-\frac{2}{N-1} \Delta u u_{11}+\frac{1}{N-1}(\Delta u)^{2} \\
& \left.\quad-\beta\left[\Delta u+(5 p-6) u_{11}\right] \frac{u_{1}^{2}}{u}+\beta(2 \beta+1)(p-1) \frac{u_{1}^{4}}{u^{2}}\right\} .
\end{align*}
$$

From (2.3) and (2.5) we have

$$
\begin{equation*}
P_{i}=\frac{2}{u^{2 \beta}} u_{i 1} u_{1} \quad \text { for } i=2, \ldots, N \tag{2.14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{4}{u^{4 \beta}} u_{1}^{2} \sum_{i=2}^{N} u_{i 1} u_{i 1}=\sum_{i=2}^{N} P_{i}^{2} \leq|\nabla P|^{2} \tag{2.15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{2}{u^{2 \beta}}(4-p) \sum_{j=2}^{N} u_{1 j}^{2} \geq-|4-p| \frac{|\nabla P|^{2}}{2 P} \tag{2.16}
\end{equation*}
$$

Finally, since

$$
\begin{gather*}
\frac{(p-1)(N-1)+1+2(p-2)+(p-2)^{2}}{N-1}=\frac{(p-1)(p+N-2)}{N-1} \tag{2.17}\\
\frac{2}{N-1}+\frac{2(p-2)}{N-1}=\frac{2(p-1)}{N-1}
\end{gather*}
$$

using 2.10 and 2.16 in 2.13 we are lead to

$$
\begin{align*}
\Delta P & +(p-2) P_{11} \\
\geq & -|4-p| \frac{|\nabla P|^{2}}{2 P}+\frac{2}{u^{2 \beta}}\left\{-f^{\prime} u_{1}^{4-p}+\frac{(p-1)(p+N-2)}{N-1} u_{11}^{2}\right. \\
& +\left(p-2+\frac{2(p-1)}{N-1}\right) f u_{1}^{2-p} u_{11}+\frac{1}{N-1}\left(f u_{1}^{2-p}\right)^{2} \tag{2.18}\\
& \left.-\beta\left[4(p-1) u_{11}-f u_{1}^{2-p}\right] \frac{u_{1}^{2}}{u}+\beta(2 \beta+1)(p-1) \frac{u_{1}^{4}}{u^{2}}\right\}
\end{align*}
$$

Now, evaluating (2.3) at x^{*}, by using 2.5, we have

$$
\begin{equation*}
P_{1}=\frac{2}{u^{2 \beta}} u_{11} u_{1}-\frac{2 \beta}{u^{2 \beta+1}} u_{1}^{3} \tag{2.19}
\end{equation*}
$$

so that

$$
\begin{equation*}
u_{11}=\frac{P_{1} u^{2 \beta}}{2 u_{1}}+\beta \frac{u_{1}^{2}}{u} \tag{2.20}
\end{equation*}
$$

Inserting 2.20 into 2.18 we obtain

$$
\begin{align*}
\Delta P & +(p-2) P_{11} \\
\geq & -|4-p| \frac{|\nabla P|^{2}}{2 P}+\frac{2}{u^{2 \beta}}\left\{-f^{\prime} u_{1}^{4-p}\right. \\
& +\frac{(p-1)(p+N-2)}{N-1}\left(\frac{P_{1} u^{2 \beta}}{2 u_{1}}+\beta \frac{u_{1}^{2}}{u}\right)^{2} \\
& +\left(p-2+\frac{2(p-1)}{N-1}\right) f u_{1}^{2-p}\left(\frac{P_{1} u^{2 \beta}}{2 u_{1}}+\beta \frac{u_{1}^{2}}{u}\right) \tag{2.21}\\
& +\frac{1}{N-1}\left(f u_{1}^{2-p}\right)^{2}-\beta\left[4(p-1)\left(\frac{P_{1} u^{2 \beta}}{2 u_{1}}+\beta \frac{u_{1}^{2}}{u}\right)-f u_{1}^{2-p}\right] \frac{u_{1}^{2}}{u} \\
& \left.+\beta(2 \beta+1)(p-1) \frac{u_{1}^{4}}{u^{2}}\right\} .
\end{align*}
$$

Next, using the restriction 1.4 on f we note that

$$
\begin{align*}
& -f^{\prime} u^{4-p}+\left(p-2+\frac{2(p-1)}{N-1}\right) \beta \frac{f}{u} u_{1}^{4-p}+\beta \frac{f}{u} u_{1}^{4-p} \\
& =u^{4-p}\left[-f^{\prime}+\beta(p-1) \frac{N+1}{N-1} \frac{f}{u}\right] \geq 0 \tag{2.22}
\end{align*}
$$

We also note that

$$
\begin{equation*}
\frac{(p-1)(p+N-2)}{N-1}\left(\frac{P_{1} u^{2 \beta}}{2 u_{1}}\right)^{2} \geq 0 \tag{2.23}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\Delta P+(p-2) P_{11} \geq & -|4-p| \frac{|\nabla P|^{2}}{2 P} \\
& +\frac{(p-1)(p+N-2)}{N-1}\left(2 \beta \frac{P_{1} u_{1}}{u}+2 \beta^{2} \frac{u_{1}^{4}}{u^{2 \beta+2}}\right) \\
& +\left(p-2+\frac{2(p-1)}{N-1}\right) P_{1} f u_{1}^{1-p}+\frac{2}{N-1} \frac{\left(f u_{1}^{2-p}\right)^{2}}{u^{2 \beta}} \tag{2.24}\\
& -4 \beta(p-1) \frac{P_{1} u_{1}}{u}+2(p-1)\left(\beta-2 \beta^{2}\right) \frac{u_{1}^{4}}{u^{2 \beta+2}}
\end{align*}
$$

Moreover, using the following two identities

$$
\begin{gather*}
\frac{2(p-1)(p+N-2)}{N-1}-4(p-1)=\frac{2(p-1)(p-N)}{N-1} \tag{2.25}\\
\frac{2(p-1)(p+N-2)}{N-1} \beta^{2}+2(p-1)\left(\beta-2 \beta^{2}\right)=\frac{p-1}{N-1}\left[2 \beta^{2}(p-N)+2 \beta(N-1)\right] \tag{2.26}
\end{gather*}
$$

one may easily see that becomes

$$
\begin{align*}
\frac{\Delta P+(p-2) P_{11}}{P} \geq & -|4-p| \frac{|\nabla P|^{2}}{2 P^{2}}+2 \beta \frac{(p-1)(p-N)}{N-1} \frac{P_{1} u_{1}}{P u} \\
& +\left(p-2+\frac{2(p-1)}{N-1}\right) \frac{P_{1} f u_{1}^{1-p}}{P}+\frac{2}{N-1}\left(f u_{1}^{1-p}\right)^{2} \tag{2.27}\\
& +2 \beta[\beta(p-N)+N-1] \frac{p-1}{N-1} \frac{u_{1}^{2}}{u^{2}}
\end{align*}
$$

Next, let us consider a point $\mathbf{x}_{\mathbf{0}} \in \mathbb{R}^{N}$ and define

$$
\begin{equation*}
J(\mathbf{x})=\left(a^{2}-r^{2}\right)^{2} P \tag{2.28}
\end{equation*}
$$

where $a>0$ is a constant and $r:=\left|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right|$. Let us denote by B the ball centered at $\mathbf{x}_{\mathbf{0}}$ and of radius a. Then we immediately notice that

$$
\begin{equation*}
J(\mathbf{x}) \geq 0 \text { in } B, \quad J(\mathbf{x})=0 \text { on } \partial B \tag{2.29}
\end{equation*}
$$

Consequently, $J(\mathbf{x})$ must attain its maximum at some (interior) point \mathbf{x}^{*}.
Now, if $|\nabla u|\left(\mathbf{x}^{*}\right)=0$, then $P \equiv 0$ in B. Since the ball was chosen arbitrarily, $P \equiv 0$ in every ball, so that $\nabla u \equiv 0$ in \mathbb{R}^{N} and our theorem follows. It thus remain to analyze the case $|\nabla u|\left(\mathbf{x}^{*}\right)>0$. In such a case, we have the following complementary inequality at x^{*} (see Cuccu-Mohammed-Porru [1, p. 227] for the proof; they used a different auxiliary function P, but the proof is identical, since the form of P does not really play a role in the proof):

$$
\begin{equation*}
\frac{\Delta P+(p-2) P_{11}}{P} \leq \frac{C a^{2}}{\left(a^{2}-r^{2}\right)^{2}}, \quad C:=24+4 N+28|p-2| \tag{2.30}
\end{equation*}
$$

Combining (2.27) and 2.30 we obtain

$$
\begin{align*}
\frac{C a^{2}}{\left(a^{2}-r^{2}\right)^{2}} \geq & -|4-p| \frac{|\nabla P|^{2}}{2 P^{2}}+2 \beta \frac{(p-1)(p-N)}{N-1} \frac{P_{1} u_{1}}{P u} \\
& +\left(p-2+\frac{2(p-1)}{N-1}\right) \frac{P_{1} f u_{1}^{1-p}}{P}+\frac{2}{N-1}\left(f u_{1}^{1-p}\right)^{2} \tag{2.31}\\
& +2 \beta[\beta(p-N)+N-1] \frac{p-1}{N-1} \frac{u_{1}^{2}}{u^{2}}
\end{align*}
$$

On the other hand, differentiating 2.28 we obtain that at \mathbf{x}^{*} (the point of maximum for J in B) we have

$$
\begin{equation*}
J_{i}=-2\left(a^{2}-r^{2}\right)\left(r^{2}\right)_{i} P+\left(a^{2}-r^{2}\right)^{2} P_{i}=0, \tag{2.32}
\end{equation*}
$$

so that

$$
\begin{equation*}
P_{1}=2 \frac{\left(r^{2}\right)_{1} P}{a^{2}-r^{2}}, \quad \nabla P=2 \frac{\nabla r^{2} P}{a^{2}-r^{2}} \tag{2.33}
\end{equation*}
$$

From $\sqrt{2.5}$ and $\sqrt{2.33}$ we then conclude that

$$
\begin{align*}
& \frac{P_{1} u_{1}}{P}=\frac{\nabla P \nabla u}{P}=2 \frac{\nabla r^{2} \nabla u}{a^{2}-r^{2}}, \tag{2.34}\\
& \frac{|\nabla P|}{P}=\frac{2\left|\nabla\left(r^{2}\right)\right|}{a^{2}-r^{2}}=\frac{4 r}{a^{2}-r^{2}} . \tag{2.35}
\end{align*}
$$

Now using 2.34 and 2.35 in 2.31 we obtain

$$
\begin{align*}
\frac{C a^{2}}{\left(a^{2}-r^{2}\right)^{2}} \geq & -|4-p| \frac{8 r^{2}}{\left(a^{2}-r^{2}\right)^{2}}+4 \beta \frac{(p-1)(p-N)}{N-1} \frac{\nabla r^{2} \nabla u}{\left(a^{2}-r^{2}\right) u} \\
& +2\left(p-2+\frac{2(p-1)}{N-1}\right) f u_{1}^{1-p} \frac{\nabla r^{2} \nabla u}{a^{2}-r^{2}}+\frac{2}{N-1}\left(f u_{1}^{1-p}\right)^{2} \tag{2.36}\\
& +2 \beta[\beta(p-N)+N-1] \frac{p-1}{N-1} \frac{|\nabla u|^{2}}{u^{2}} .
\end{align*}
$$

Moreover, by classical inequalities we have

$$
\begin{align*}
& 4 \beta(p-1)(p-N) \frac{\nabla r^{2} \nabla u}{\left(a^{2}-r^{2}\right) u} \tag{2.37}\\
& \geq-\beta^{2} \gamma(p-1)^{2} \frac{|\nabla u|^{2}}{u^{2}}-4(p-N)^{2} \frac{4 r^{2}}{\gamma\left(a^{2}-r^{2}\right)^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& 2(p-2)+\frac{2(p-1)}{N-1} f u_{1}^{-p} \frac{\nabla r^{2} \nabla u}{a^{2}-r^{2}} \\
& \geq-4\left(|p-2|+\frac{2(p-1)}{N-1}\right)|f| u_{1}^{p-1} \frac{r}{a^{2}-r^{2}} \tag{2.38}\\
& \geq-\frac{2}{N-1}\left(f u_{1}^{1-p}\right)^{2}-\widetilde{C} \frac{r^{2}}{\left(a^{2}-r^{2}\right)^{2}},
\end{align*}
$$

with $\gamma>0$ to be chosen and $\widetilde{C}:=2[(N-1)(p-2)+2(p-1)]^{2} /(N-1)$. Inserting now estimates 2.37 and 2.38 into 2.36 we find

$$
\begin{align*}
\frac{C a^{2}}{\left(a^{2}-r^{2}\right)^{2}} \geq & -|4-p| \frac{8 r^{2}}{\left(a^{2}-r^{2}\right)^{2}}-4(p-N)^{2} \frac{4 r^{2}}{\gamma\left(a^{2}-r^{2}\right)^{2}}-\widetilde{C} \frac{r^{2}}{\left(a^{2}-r^{2}\right)^{2}} \tag{2.39}\\
& +\left[2 \beta^{2}(p-N)+2 \beta(N-1)-\beta^{2} \gamma(p-1)\right] \frac{p-1}{N-1} \frac{|\nabla u|^{2}}{u^{2}}
\end{align*}
$$

Now let us analyze separately the following two cases:
Case 1. when $1<p<N$ and $\beta \in\left[1, \frac{N-1}{N-p}\right)$, we have

$$
\begin{equation*}
2 \beta^{2}(p-N)+2 \beta(N-1)>0 \tag{2.40}
\end{equation*}
$$

Therefore, we can choose γ small enough so that we have

$$
\begin{equation*}
\left[2 \beta^{2}(p-N)+2 \beta(N-1)-\beta^{2} \gamma(p-1)\right]>0 \tag{2.41}
\end{equation*}
$$

smallskip

Case 2. when $p \geq N$ and $\beta \in[1,+\infty)$, as above, we can again choose a small enough γ so that 2.41 holds.

In conclusion, for a well chosen γ, there exists a constant $K=K(N, p, \beta, \gamma)$ such that

$$
\begin{equation*}
\frac{|\nabla u|^{2}}{u^{2}} \leq \frac{K a^{2}}{\left(a^{2}-r^{2}\right)^{2}} \tag{2.42}
\end{equation*}
$$

Moreover, since $u(\mathbf{x})$ is positive, there exists a constant $L>0$ such that $u^{2-2 \beta} \leq L$. Therefore, at some point \mathbf{x}^{*} we have

$$
\begin{equation*}
J\left(\mathbf{x}^{*}\right)=\frac{|\nabla u|^{2}}{u^{2}} \frac{1}{u^{2 \beta-2}}\left(a^{2}-r^{2}\right)^{2} \leq K L a^{2} \tag{2.43}
\end{equation*}
$$

But \mathbf{x}^{*} is a point of maximum for $J(\mathbf{x})$ in B, so that we have

$$
\begin{equation*}
J\left(\mathbf{x}_{0}\right)=\frac{|\nabla u|^{2}}{u^{2 \beta}} a^{4} \leq K L a^{2} \tag{2.44}
\end{equation*}
$$

It follows that at $\mathbf{x}=\mathbf{x}_{0}$ we have

$$
\begin{equation*}
\frac{|\nabla u|^{2}}{u^{2 \beta}} \leq \frac{K L}{a^{2}} \tag{2.45}
\end{equation*}
$$

Letting $a \rightarrow \infty$ we find that $\nabla u=0$ at x_{0}. Since x_{0} is arbitrary, we must have $\nabla u=0$ in \mathbb{R}^{N}. The proof is thus achieved.

Acknowledgments. This work was supported by a CNCSIS (Romania) research grant (PN-II-ID-PCE-2012-4-0021 : Variable Exponent Analysis: Partial Differential Equations and Calculus of Variations).

References

[1] F. Cuccu, A. Mohammed, G. Porru; Extensions of a theorem of Cauchy-Liouville, J. Math. Anal. Appl., 369 (2011), 222-231.
[2] A. Farina; Liouville-type theorems for elliptic problems, Handbook of differential equations: stationary partial differential equations, 4 (2007), 61-116.
[3] J. A. McCoy; Bernstein properties of solutions to some higher order equations, Diff. Int. Equ., 20 (2007), 1153-1166.
[4] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.

Cristian Enache
Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702,
Bucharest, Romania
E-mail address: cenache23@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 70H25.
 Key words and phrases. p-Laplace equation; Liouville theorem; entire solutions.
 (C) 2015 Texas State University - San Marcos.

 Submitted October 18, 2014. Published July 1, 2015.

