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A LIOUVILLE TYPE THEOREM FOR p-LAPLACE EQUATIONS

CRISTIAN ENACHE

Abstract. In this note we study solutions defined on the whole space RN for
the p-Laplace equation

div(|∇u|p−2∇u) + f(u) = 0.

Under an appropriate condition on the growth of f , which is weaker than

conditions previously considered in McCoy [3] and Cuccu-Mhammed-Porru

[1], we prove the non-existence of non-trivial positive solutions.

1. Introduction

In this note we improve some Liouville type results previously obtained in McCoy
[3] and Cuccu-Mohammed-Porru [1] for solutions to the p-Laplace equation

div(|∇u|p−2∇u) + f(u) = 0 in RN , p > 1, (1.1)

where the nonlinearity f is a real differentiable function.
The classical Liouville Theorem states that any harmonic function on the whole

Euclidian space RN , N ≥ 2, which is bounded from one side, must be identically
constant. Nowadays it is already known that this property is not anymore a prerog-
ative of harmonic functions, since it is also shared by bounded (from below and/or
above) entire solutions to many other differential equations (we refer the reader to
the survey paper of Farina [2] for an overview on Liouville type theorems in PDEs).
For instance, when p = 2 in (1.1), McCoy [3] has proved that if f is differentiable
and satisfies

f ′(t) ≤ N + 1
N − 1

f(t)
t

for all t > 0, (1.2)

then any positive solution of (1.1) must be a constant. Later, this result was ex-
tended to the more general case p > 1 by Cuccu, Mohammed and Porru [1], as
follows: if f is differentiable and satisfies

f ′(t) ≤ (p− 1)
N + 1
N − 1

f(t)
t

for all t > 0, (1.3)

then any positive solution of (1.1) must be a constant.
Adapting the main idea from the above mentioned works, we are going to show

that, under a weaker condition on the growth of f , the above Liouville type results
still hold. More precisely, we have:
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Theorem 1.1. Assume that u(x) > 0 satisfies (1.1). If f is differentiable and
satisfies

f ′(t) ≤ β(p− 1)
N + 1
N − 1

f(t)
t

for all t > 0, (1.4)

where

β ∈

{
[1, N−1

N−p ), when 1 < p < N,

[1,∞), when p ≥ N,
(1.5)

then u(x) must be a constant. As a consequence, if f(t) = 0 has no positive roots,
then (1.1) has no positive weak solutions.

2. Proof of Theorem 1.1

We first state a lemma which plays some role in the proof of Theorem 1.1.

Lemma 2.1 (Cuccu-Mohammed-Porru [1]). Let p > 1 be a real number and N ≥ 2.
If u(x) is a C2 function and ui denotes partial differentiation with respect to xi,
then

(p− 1)u2
11 +

N∑
i=2

u2
ii ≥

(p− 1)(N − 1) + 1
N − 1

u2
11−

2
N − 1

∆uu11 +
1

N − 1
(∆u)2. (2.1)

Let us now introduce the auxiliary function

P (u; x) :=
|∇u(x)|2

u2β(x)
. (2.2)

Let us also consider a point x∗ where |∇u| > 0. From a seminal work of Tolksdorf
[4] we know that u(x) is smooth in ω := {x ∈ Ω : |∇u|(x) > 0}. Therefore, we may
compute in ω, successively, the following derivatives:

Pk =
2
u2β

uikui −
2β

u2β+1
|∇u|2uk (2.3)

Pkl =
2
u2β

uikuil +
2
u2β

uiklui −
4β

u2β+1
uikuiul −

4β
u2β+1

uiluiuk

+
2β(2β + 1)
u2β+2

|∇u|2ukul −
2β

u2β+1
|∇u|2ukl.

(2.4)

Now, performing eventually a translation and/or rotation if necessary, we choose
the coordinate axes such that at x∗ we have

|∇u| = u1 ui = 0 for i = 2, . . . , N. (2.5)

Using (2.5) in (2.4) we find that

P11 =
2
u2β

u1iu1i +
2
u2β

u111u1 −
8β

u2β+1
u11u

2
1

+
2β(2β + 1)
u2β+2

u4
1 −

2β
u2β+1

u11u
2
1,

(2.6)

respectively

∆P =
2
u2β

uikuik +
2
u2β

(∆u)1u1 −
8β

u2β+1
u11u

2
1

+
2β(2β + 1)
u2β+2

u4
1 −

2β
u2β+1

u2
1∆u.

(2.7)
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It then it follows that
∆P + (p− 2)P11

=
2
u2β

[(∆u)1 + (p− 2)u111]u1 +
2
u2β

[uikuik + (p− 2)u1ju1j ]

− 2β
u2β+1

[∆u+ (5p− 6)u11]u2
1 +

2β(2β + 1)
u2β+2

(p− 1)u4
1.

(2.8)

On the other hand, differentiating (1.1) with respect to x1 and evaluating the result
making use of (2.5), we obtain that at x∗ we have

up−1
1 [(∆u)1 + (p− 2)u111 + 2(p− 2)

N∑
j=2

u2
1ju
−1
1 ]

+ (p− 2)[∆u+ (p− 2)u11]u11u
p−3
1 + f ′u1 = 0.

(2.9)

Also, evaluating equation (1.1) at x∗ we have

∆u+ (p− 2)u11 = −f(u)u2−p
1 . (2.10)

Inserting (2.10) in (2.9) we obtain

(∆u)1 + (p− 2)u111 = 2(2− p)
N∑
j=2

u2
1ju
−1
1 + (p− 2)u11fu

1−p
1 − f ′u3−p

1 . (2.11)

Making now use of Lemma 2.1, we also have

uijuij + (p− 2)u1ju1j

≥ (p− 1)u2
11 +

N∑
i=2

u2
ii + p

N∑
j=2

u2
1j

≥ (p− 1)(N − 1) + 1
N − 1

u2
11 −

2
N − 1

∆uu11 +
1

N − 1
(∆u)2 + p

N∑
j=2

u2
1j .

(2.12)

Therefore, inserting (2.11) and (2.12) in (2.8) leads to

∆P + (p− 2)P11

≥ 2
u2β

{
(4− p)

N∑
j=2

u2
1j + (p− 2)u11fu

2−p − f ′u4−p
1

+
(p− 1)(N − 1) + 1

N − 1
u2

11 −
2

N − 1
∆uu11 +

1
N − 1

(∆u)2

− β[∆u+ (5p− 6)u11]
u2

1

u
+ β(2β + 1)(p− 1)

u4
1

u2

}
.

(2.13)

From (2.3) and (2.5) we have

Pi =
2
u2β

ui1u1 for i = 2, . . . , N. (2.14)

Therefore
4
u4β

u2
1

N∑
i=2

ui1ui1 =
N∑
i=2

P 2
i ≤ |∇P |2, (2.15)
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so that
2
u2β

(4− p)
N∑
j=2

u2
1j ≥ −|4− p|

|∇P |2

2P
. (2.16)

Finally, since

(p− 1)(N − 1) + 1 + 2(p− 2) + (p− 2)2

N − 1
=

(p− 1)(p+N − 2)
N − 1

,

2
N − 1

+
2(p− 2)
N − 1

=
2(p− 1)
N − 1

,

(2.17)

using (2.10) and (2.16) in (2.13) we are lead to

∆P + (p− 2)P11

≥ −|4− p| |∇P |
2

2P
+

2
u2β

{
− f ′u4−p

1 +
(p− 1)(p+N − 2)

N − 1
u2

11

+
(
p− 2 +

2(p− 1)
N − 1

)
fu2−p

1 u11 +
1

N − 1
(fu2−p

1 )2

− β[4(p− 1)u11 − fu2−p
1 ]

u2
1

u
+ β(2β + 1)(p− 1)

u4
1

u2

}
.

(2.18)

Now, evaluating (2.3) at x∗, by using (2.5), we have

P1 =
2
u2β

u11u1 −
2β

u2β+1
u3

1, (2.19)

so that

u11 =
P1u

2β

2u1
+ β

u2
1

u
. (2.20)

Inserting (2.20) into (2.18) we obtain

∆P + (p− 2)P11

≥ −|4− p| |∇P |
2

2P
+

2
u2β

{
− f ′u4−p

1

+
(p− 1)(p+N − 2)

N − 1

(P1u
2β

2u1
+ β

u2
1

u

)2

+
(
p− 2 +

2(p− 1)
N − 1

)
fu2−p

1

(P1u
2β

2u1
+ β

u2
1

u

)
+

1
N − 1

(fu2−p
1 )2 − β

[
4(p− 1)

(P1u
2β

2u1
+ β

u2
1

u

)
− fu2−p

1

]u2
1

u

+ β(2β + 1)(p− 1)
u4

1

u2

}
.

(2.21)

Next, using the restriction (1.4) on f we note that

− f ′u4−p +
(
p− 2 +

2(p− 1)
N − 1

)
β
f

u
u4−p

1 + β
f

u
u4−p

1

= u4−p[− f ′ + β(p− 1)
N + 1
N − 1

f

u

]
≥ 0.

(2.22)

We also note that
(p− 1)(p+N − 2)

N − 1

(P1u
2β

2u1

)2

≥ 0. (2.23)
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Therefore

∆P + (p− 2)P11 ≥ −|4− p|
|∇P |2

2P

+
(p− 1)(p+N − 2)

N − 1

(
2β
P1u1

u
+ 2β2 u4

1

u2β+2

)
+
(
p− 2 +

2(p− 1)
N − 1

)
P1fu

1−p
1 +

2
N − 1

(fu2−p
1 )2

u2β

− 4β(p− 1)
P1u1

u
+ 2(p− 1)(β − 2β2)

u4
1

u2β+2
.

(2.24)

Moreover, using the following two identities
2(p− 1)(p+N − 2)

N − 1
− 4(p− 1) =

2(p− 1)(p−N)
N − 1

, (2.25)

2(p− 1)(p+N − 2)
N − 1

β2 + 2(p− 1)(β − 2β2) =
p− 1
N − 1

[2β2(p−N) + 2β(N − 1)],

(2.26)

one may easily see that (2.24) becomes

∆P + (p− 2)P11

P
≥ −|4− p| |∇P |

2

2P 2
+ 2β

(p− 1)(p−N)
N − 1

P1u1

Pu

+
(
p− 2 +

2(p− 1)
N − 1

)P1fu
1−p
1

P
+

2
N − 1

(fu1−p
1 )2

+ 2β[β(p−N) +N − 1]
p− 1
N − 1

u2
1

u2
.

(2.27)

Next, let us consider a point x0 ∈ RN and define

J(x) = (a2 − r2)2P, (2.28)

where a > 0 is a constant and r := |x− x0|. Let us denote by B the ball centered
at x0 and of radius a. Then we immediately notice that

J(x) ≥ 0 in B, J(x) = 0 on ∂B. (2.29)

Consequently, J(x) must attain its maximum at some (interior) point x∗.
Now, if |∇u|(x∗) = 0, then P ≡ 0 in B. Since the ball was chosen arbitrarily,

P ≡ 0 in every ball, so that ∇u ≡ 0 in RN and our theorem follows. It thus
remain to analyze the case |∇u|(x∗) > 0. In such a case, we have the following
complementary inequality at x∗ (see Cuccu-Mohammed-Porru [1, p. 227] for the
proof; they used a different auxiliary function P , but the proof is identical, since
the form of P does not really play a role in the proof):

∆P + (p− 2)P11

P
≤ Ca2

(a2 − r2)2
, C := 24 + 4N + 28|p− 2|. (2.30)

Combining (2.27) and (2.30) we obtain

Ca2

(a2 − r2)2
≥ −|4− p| |∇P |

2

2P 2
+ 2β

(p− 1)(p−N)
N − 1

P1u1

Pu

+
(
p− 2 +

2(p− 1)
N − 1

)P1fu
1−p
1

P
+

2
N − 1

(fu1−p
1 )2

+ 2β[β(p−N) +N − 1]
p− 1
N − 1

u2
1

u2
.

(2.31)
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On the other hand, differentiating (2.28) we obtain that at x∗ (the point of maxi-
mum for J in B) we have

Ji = −2(a2 − r2)(r2)iP + (a2 − r2)2Pi = 0, (2.32)

so that

P1 = 2
(r2)1P
a2 − r2

, ∇P = 2
∇r2P
a2 − r2

. (2.33)

From (2.5) and (2.33) we then conclude that

P1u1

P
=
∇P∇u
P

= 2
∇r2∇u
a2 − r2

, (2.34)

|∇P |
P

=
2|∇(r2)|
a2 − r2

=
4r

a2 − r2
. (2.35)

Now using (2.34) and (2.35) in (2.31) we obtain

Ca2

(a2 − r2)2
≥ −|4− p| 8r2

(a2 − r2)2
+ 4β

(p− 1)(p−N)
N − 1

∇r2∇u
(a2 − r2)u

+ 2
(
p− 2 +

2(p− 1)
N − 1

)
fu1−p

1

∇r2∇u
a2 − r2

+
2

N − 1
(fu1−p

1 )2

+ 2β[β(p−N) +N − 1]
p− 1
N − 1

|∇u|2

u2
.

(2.36)

Moreover, by classical inequalities we have

4β(p− 1)(p−N)
∇r2∇u

(a2 − r2)u

≥ −β2γ(p− 1)2
|∇u|2

u2
− 4(p−N)2

4r2

γ(a2 − r2)2
,

(2.37)

and

2(p− 2) +
2(p− 1)
N − 1

fu−p1

∇r2∇u
a2 − r2

≥ −4(|p− 2|+ 2(p− 1)
N − 1

)|f |up−1
1

r

a2 − r2

≥ − 2
N − 1

(fu1−p
1 )2 − C̃ r2

(a2 − r2)2
,

(2.38)

with γ > 0 to be chosen and C̃ := 2[(N − 1)(p− 2) + 2(p− 1)]2/(N − 1). Inserting
now estimates (2.37) and (2.38) into (2.36) we find

Ca2

(a2 − r2)2
≥ −|4− p| 8r2

(a2 − r2)2
− 4(p−N)2

4r2

γ(a2 − r2)2
− C̃ r2

(a2 − r2)2

+ [2β2(p−N) + 2β(N − 1)− β2γ(p− 1)]
p− 1
N − 1

|∇u|2

u2
.

(2.39)

Now let us analyze separately the following two cases:
Case 1. when 1 < p < N and β ∈ [1, N−1

N−p ), we have

2β2(p−N) + 2β(N − 1) > 0. (2.40)

Therefore, we can choose γ small enough so that we have

[2β2(p−N) + 2β(N − 1)− β2γ(p− 1)] > 0. (2.41)

smallskip
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Case 2. when p ≥ N and β ∈ [1,+∞), as above, we can again choose a small
enough γ so that (2.41) holds.

In conclusion, for a well chosen γ, there exists a constant K = K(N, p, β, γ) such
that

|∇u|2

u2
≤ Ka2

(a2 − r2)2
. (2.42)

Moreover, since u(x) is positive, there exists a constant L > 0 such that u2−2β ≤ L.
Therefore, at some point x∗ we have

J(x∗) =
|∇u|2

u2

1
u2β−2

(a2 − r2)2 ≤ KLa2. (2.43)

But x∗ is a point of maximum for J(x) in B, so that we have

J(x0) =
|∇u|2

u2β
a4 ≤ KLa2. (2.44)

It follows that at x = x0 we have
|∇u|2

u2β
≤ KL

a2
. (2.45)

Letting a → ∞ we find that ∇u = 0 at x0. Since x0 is arbitrary, we must have
∇u = 0 in RN . The proof is thus achieved.
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