Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 182, pp. 1-7.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

A LIOUVILLE TYPE THEOREM FOR p-LAPLACE EQUATIONS
CRISTIAN ENACHE

ABSTRACT. In this note we study solutions defined on the whole space RN for
the p-Laplace equation
div(|VulP~2Vu) 4 f(u) = 0.

Under an appropriate condition on the growth of f, which is weaker than
conditions previously considered in McCoy [3] and Cuccu-Mhammed-Porru
[d], we prove the non-existence of non-trivial positive solutions.

1. INTRODUCTION

In this note we improve some Liouville type results previously obtained in McCoy
[B] and Cuccu-Mohammed-Porru [I] for solutions to the p-Laplace equation

div(|VuP™2Vu) + f(u) =0 in RY, p>1, (1.1)

where the nonlinearity f is a real differentiable function.

The classical Liouville Theorem states that any harmonic function on the whole
Fuclidian space RN, N > 2, which is bounded from one side, must be identically
constant. Nowadays it is already known that this property is not anymore a prerog-
ative of harmonic functions, since it is also shared by bounded (from below and/or
above) entire solutions to many other differential equations (we refer the reader to
the survey paper of Farina [2] for an overview on Liouville type theorems in PDEs).
For instance, when p = 2 in , McCoy [3] has proved that if f is differentiable

and satisfies
N+1 f(t
() < Nii_ly for all ¢ > 0, (1.2)
then any positive solution of (1.1) must be a constant. Later, this result was ex-
tended to the more general case p > 1 by Cuccu, Mohammed and Porru [I], as
follows: if f is differentiable and satisfies

, N+1f(t)
) <(p 1)N —1 for all £ > 0, (1.3)
then any positive solution of must be a constant.
Adapting the main idea from the above mentioned works, we are going to show
that, under a weaker condition on the growth of f, the above Liouville type results

still hold. More precisely, we have:
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Theorem 1.1. Assume that u(x) > 0 satisfies (L.1). If f is differentiable and
satisfies
N+1f(t)

i) <pp- 1)ﬁ . for allt >0, (1.4)

where

1, M= hen 1 N
ﬂe{[,Np) when 1< p < N, L5)

1,00),  whenp> N,
then u(x) must be a constant. As a consequence, if f(t) =0 has no positive roots,
then (1.1) has no positive weak solutions.

2. PROOF oF THEOREM [L.1]
We first state a lemma which plays some role in the proof of Theorem

Lemma 2.1 (Cuccu-Mohammed-Porru [I]). Let p > 1 be a real number and N > 2.
If u(x) is a C? function and u; denotes partial differentiation with respect to x;,
then

—1H)(N-1)+1 2 1
—1u11—|—z u?, > )157—1) ufl—N_ Auuny + 55— (Au)?. (2.1)

Let us now introduce the auxiliary function
[Vu(x)?
u(x) -

Let us also consider a point x* where |Vu| > 0. From a seminal work of Tolksdorf

[4] we know that u(x) is smooth in w := {x € Q : |Vu|(x) > 0}. Therefore, we may
compute in w, successively, the following derivatives:

P(u;x) := (2.2)

2 23
Py = gkt = uzﬁﬂ’w“‘%k (2:3)
2 2 3 483
P = 2B Uikt g Uikils — —ogy ikUitln — g Uil Uilk
2525+ 1), 23 24
2 2
+ WIVU‘ UpU] — W|VU| Ukl -

Now, performing eventually a translation and/or rotation if necessary, we choose
the coordinate axes such that at x* we have

[Vul=u; u;=0 fori=2,...,N. (2.5)

Using (2.5 in (2.4) we find that

2
P = Qﬁuuuu + UTBUulUl - W”duu%
2.6
82041 28 20
T g T ppp vt
respectively
2 2 86
AP = 2[3 7 Uik Uik + (Au)1u1 28+1 ’LL11'LL1
(2.7)

+2ﬁ<2‘ﬂ+1>4 26

w2tz T 2R
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It then it follows that
AP + (p — 2)P11

- u%ﬁ[(Au)l + (p — 2)ur11]ur + i[Uikuik +(p = 2)urjuay] (2.8)

2 2(3(2 1
266“ [Au + (5p — 6)uqi|ui + %(p — 1Duj.

On the other hand, differentiating (1.1]) with respect to 1 and evaluating the result
making use of (2.5)), we obtain that at x* we have

N

ufH(Au)1 + (p = 2)uan +2(p — 2) ;2 uijuy '] 2.9)

+ (p - 2)[AU + (p — 2)u11]u11u11773 + f'u1 =0.
Also, evaluating equation (L.1)) at x* we have

Au+ (p—2ury = —f(uyui P (2.10)
Inserting (2.10)) in (2.9)) we obtain
N
(Au)y + (p — 2)u111 = 2(2 — p) Zufjul_l +(p—2ui fu; P — fludTP (2.11)
j=2

Making now use of Lemma we also have

uijuij + (p — 2)urjus,

N N
Duf, + Zuzzz —|—pZufj
i—2 j=2

(2.12)
> (pfl)(Nfl)leuz B LAuu +;(Au)2—|—p2u24
- N-1 HoN-—1T TN =
Therefore, inserting (2.11]) and (2.12] - in - ) leads to
AP —+ (p — 2)P11
N RS
(2.13)
(p—l)(N—1)+1 9 2 1 9
— A — (A
- N-1 i oAt (A
ui ui
— BlAu+ (5p — 6)uni) "L + 528+ 1)(p — 1) 5 }.
From ([2.3) and (2.5) we have
2
Pi = 2BU11U1 fOI‘i:2,...7N. (214)
Therefore

N N
4
Tﬁu% Zuiluil = ZPZQ S ‘VP|2, (2.15)
=2 =2
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so that

=

2> u > gl (216)

u

j=2
Finally, since

(P-DIN-1)+14+20p-2)+(p-2°> (@-HE+N-2)

N-1 N -1 ’
2.17
> -3 2p-1) 210
N -1 N-1 N-1"
using ([2.10) and (2.16) in ([2.13)) we are lead to
AP + (p - 2)P11
IVPI2 ip , (P=1)p+N -2
> —a-pll by gty LRI
2( —1) B 1 B (2.18)
+(p-2+ N1 )fﬁ Puig + ﬁ(fuf P2
2—p u% %
— BlA(p — Vun — ful 715+ BB+ V(- 1)L
Now, evaluating (2.3) at x*, by using (2.5]), we have
2 2
P1 = 25 —zUi1ur — 255_’_1’&?, (219)
so that
Pu? u?
Uy = ;ul + ﬁﬂl' (2.20)
Inserting (2.20)) into (2.18]) we obtain
AP + (p — 2)P11
‘VP|2 / 4 p
ST N
—1)( + N — 2
L@ p )( )
P8 2 (2.21)
+(P 2+ ) (1“ )
u?? u? ] ul
==y o) ]S
u u
ut
+ 826+ 1)( 4}
Next, using the restriction on f we note that
2(p—1
= flutP + (p -2+ M)ﬁiu‘{"’ + ﬁfu‘f‘p
N-1 U U 9,99
4 , N+1f (222)
=yt P - —n=—"-I71>0.
WP f 4 B - )3 2] 2 0
We also note that 5
(P—1(p+N—2) Pu*?\2
N -1 ( 2u1 ) 20 (2.23)
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Therefore
VP|?
AP+ (p—2)Pn > —|4 - p|| |
-1 N -2 P
N-1 25+2
25~ 1) 2 (raimp
S 1—-p U )
+( It N )Pfl TNTT WP
4 it 257)_ 1
- 6(]9_ ) (p )(ﬁ ﬁ ) 2[3+2
Moreover, using the following two identities
2p-1)(p+N -2 2(p—1)(p—N)
—4p-1)= ——FF"—F——= 2.2
. (1= 2= (225)
2p—1)(p+ N -2 p—1
- L9 4 ap - 1)(8 - 267 = L= psp - ) + 288 - 1)),
N -1 N -1
(2.26)
one may easily see that (2.24]) becomes
AP+ (p—2)Pn [VP[? (p—D(p—N) Piu
> |4 —
P e N I R O
2(p—1) Plfu%_p 2 1—pro
-9 P 2.27
MRS ) e - e L
LoBlBp - N+ N Rl
N —1u?
Next, let us consider a point xo € RY and define
J(x) = (a* —r%)?P, (2.28)
where ¢ > 0 is a constant and r := |x — Xg|. Let us denote by B the ball centered
at xg and of radius a. Then we immediately notice that
J(x) >0in B, J(x)=0on JB. (2.29)

Consequently, J(x) must attain its maximum at some (interior) point x*.

Now, if |[Vu|(x*) = 0, then P = 0 in B. Since the ball was chosen arbitrarily,
P = 0 in every ball, so that Vu = 0 in RY and our theorem follows. It thus
remain to analyze the case |Vu|(x*) > 0. In such a case, we have the following
complementary inequality at z* (see Cuccu-Mohammed-Porru [I, p. 227] for the
proof; they used a different auxiliary function P, but the proof is identical, since
the form of P does not really play a role in the proof):

AP+(p—2)P11 < CCL2

C:=24+4N + 28|p — 2|. 2.30
P = (a2 —r2)2’ +4N + 28|p — 2| (2.30)
Combining (2.27)) and - we obtain
Ca2 |VP|? (p—1(p—-N) Piuy
>4 2
(@ = RS Y BT
2(p— 1)\ Pfu;? 2 L—p
_9 ) P (2.31)
-2 ) Ty e )
p—1uj

+26[6(p = N) + N —1]

N —1u?’
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On the other hand, differentiating (2.28]) we obtain that at x* (the point of maxi-
mum for J in B) we have

Ji = —2(a®> —r*)(r?);P + (a®* —r*)?P; = 0, (2.32)
so that 2) )
)1 P VrsP
PIZZW7 VP:2a2_r2. (233)

From (2.5) and (2.33)) we then conclude that
P1U1 VPYVu VTQVU
= =2 2.34
p P a? —r2’ (2.34)
[VP|  2|V(r?)] 4r
= = . 2.35
P a?—r2  a?—r? (2.35)
Now using (2.34)) and (2.35)) in (2.31)) we obtain
Ca? 8r? —1)(p—N 2
a > -yl T +4ﬁ(p )(p ) VrVu
(a? —12)? (a®? —12)? N -1 (a2 = 1?)u
2(p—1) 1—p V72V 2 1—pro
N-1 ) n ety (230
p—1 |Vul?
N—-1 u?
Moreover, by classical inequalities we have

7’2 u
4(p —1)(p — N)MZ_YQ)U

Vul|?
> —f*(p— 1)2| u2| —4(p—N)*

+2(p—2+

+28[6(p—N)+ N —1]

2 (2.37)

v(a® —r?)*’

and
2p—=1) . Vr2Vu
N—-17"1 a2—¢2
2(p—1) _
=) g
2 1— ~ 7‘2

P n_c—

- N—l(fu1 ) (a2 — r2)2’
with v > 0 to be chosen and C := 2[(N — 1)(p — 2) + 2(p — 1)]2/(N — 1). Inserting
now estimates (2.37)) and (2.38)) into (2.36) we find

2

G oy
(02—7‘2)2 —_| _p|

2(p—2) +

> —4(]p— 2|+ :

R (2.38)

472 c r?
v(a? = 1r2)2 (a — 12)2

ﬁ—‘l(p—N)Q

+[20%(p = N) +28(N — 1) = y(p — 1) 17—
Now let us analyze separately the following two cases:
Case 1. when 1 <p < N and § € [1, %—:11)), we have
26%(p — N) +2B(N — 1) > 0. (2.40)
Therefore, we can choose v small enough so that we have
[26%(p — N) +26(N — 1) = *y(p — 1)] > 0. (2.41)

smallskip
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Case 2. when p > N and 8 € [1,+00), as above, we can again choose a small

enough ~ so that (2.41)) holds.
In conclusion, for a well chosen +, there exists a constant K = K (N, p, 3, ) such

that
|Vul? - Ka?
uw? = (a2 —r2)2
Moreover, since u(x) is positive, there exists a constant L > 0 such that u?>=2% < L.
Therefore, at some point x* we have

(2.42)

o [Vul? 1
J(x*) = 3 22 (a? —r?)* < KLa*. (2.43)
But x* is a point of maximum for J(x) in B, so that we have
|[Vul?
J(xg) = 2 a* < KLa®. (2.44)
It follows that at x = x¢ we have
|Vul> KL
< (2.45)

Letting a — oo we find that Vu = 0 at xy. Since z( is arbitrary, we must have
Vu =0 in RY. The proof is thus achieved.
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