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ADJOINT SYSTEMS AND GREEN FUNCTIONALS FOR
SECOND-ORDER LINEAR INTEGRO-DIFFERENTIAL

EQUATIONS WITH NONLOCAL CONDITIONS

ALI SIRMA

Abstract. In this work, we generalize so called Green’s functional concept

in literature to second-order linear integro-differential equation with nonlocal
conditions. According to this technique, a linear completely nonhomogeneous

nonlocal problem for a second-order integro-differential equation is reduced to

one and one integral equation to identify the Green’s solution. The coefficients
of the equation are assumed to be generally nonsmooth functions satisfying

some general properties such as p-integrability and boundedness. We obtain

new adjoint system and Green’s functional for second-order linear integro-
differential equation with nonlocal conditions. An application illustrate the

adjoint system and the Green’s functional. Another application shows when

the Green’s functional does not exist.

1. Introduction

Let R be the set of real numbers. Let G = (x0, x1) be an open bounded interval
in R. Let Lp(G) with 1 ≤ p <∞ be the space of p−integrable functions on G and
let W 2,p(G) with 1 ≤ p < ∞ be the space of all classes of functions u ∈ Lp(G)
of x having derivatives dk/dxk ∈ Lp(G), where k = 1, 2. The norm on the space
W 2,p(G) is defined as

‖u‖W 2,p(G) =
k=2∑
k=0

‖d
ku

dxk
‖Lp(G).

We consider the second-order integro-differential equation

(V2)(x) ≡ u′′(x) +A1(x)u′(x) +A0(x)u(x)

+
∫ x1

x0

[B1(x, ξ)u′(ξ) +B0(x, ξ)u(ξ)]dξ = z2(x), x ∈ G
(1.1)
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subject to the nonlocal boundary conditions

V1u ≡ a1u(x0) + b1u
′(x0) +

∫ x1

xo

g1(ξ)u′′(ξ)dξ = z1,

V0u ≡ a0u(x0) + b0u
′(x0) +

∫ x1

xo

g0(ξ)u′′(ξ)dξ = z0.

(1.2)

We investigate for a solution to the problem in the space Wp = W 2,p(G). Fur-
thermore, we assume that the following conditions are satisfied: Ai ∈ Lp(G),
Bi ∈ L1(G×G) and gi ∈ Lp(G) for i = 0, 1 are given functions with B0

i ∈ Lp(G),
where B0

i (x) =
∫ x1

x0
|Bi(x, ξ)|dξ; ai, bi for i = 0, 1 are given real numbers; z2 ∈ Lp(G)

is a given function and zi for i = 0, 1 are given real numbers.

Remark 1.1. In [1], second-order linear integro-differential equation (1.1) is stud-
ied with the generally nonlocal multipoint conditions

Vi ≡
n∑
k=0

[ai,ku(βk) + bi,ku
′(βk)] = zi, i = 0, 1

where ai,k and bi,k are given numbers; βk ∈ Ḡ are given points with x0 = β0 <
· · · < βn = x1 and z0 and z1 are given real numbers.

In the nonlocal boundary conditions (1.2) if we take

ai =
n∑
k=0

ai,k, bi =
n∑
k=1

ai,k(βk − x0) +
n∑
k=0

bi,k,

gi(ξ) =
n∑
k=1

ai,k(βk − ξ)H(βk − ξ) +
n∑
k=0

bi,kH(βk − ξ)

whereH(x) is the heaviside function on R, then (1.1)-(1.2) is reduced to the problem
studied in [1]. Therefore (1.1)-(1.2) is a generalization of the problem studied in
[1].

Remark 1.2. In (1.1) if we take B1 = B2 ≡ 0, then (1.1)-(1.2) is reduced to the
problem studied in [5].

Remark 1.3. In [8], the ordinary differential equation

u′′(x) +A0(x)u(x) +A2(x)u(x0) = z2(x), x ∈ G (1.3)

is studied with the nonlocal boundary conditions (1.2). In (1.1) if we take A1 ≡ 0,
B1(x, ξ) = A2(x)(ξ−x1)

(x0−x1)
and B0(x, ξ) = A2(x), then (1.1)-(1.2) is reduced to the

problem studied in [8].

So the second-order linear integro-differential equation (1.1) with nonlocal con-
ditions (1.2) is a generalization of the problems studied in [1, 5, 8]. For more
information about adjoint system and Green’s functional method we refer to the
references in this article and the references therein.

2. Adjoint space of the solution space

Problem (1.1)-(1.2) is a linear nonhomogeneous problem which can be considered
as an operator equation

V u = z (2.1)
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with the linear operator V = (V2, V1, V0) and z = (z2(x), z1, z0). In order that
the linear operator V defined from the normed space Wp into the Banach space
Ep ≡ Lp(G)×R2 have an adjoint operator, first of all the linear operator V should
be a bounded operator. Since

‖V2u‖Lp(G)

=
(∫ x1

x0

|V2u(x)|pdx
)1/p

=
(∫ x1

x0

∣∣∣u′′(x) +A1(x)u′(x) +A0(x)u(x)

+
∫ x1

x0

[B1(x, ξ)u′(ξ) +B0(x, ξ)u(ξ)]dξ
∣∣∣pdx)1/p

≤
(∫ x1

x0

[
|u′′(x)|+ |A1(x)u′(x)|+ |A0(x)u(x)|

+
∫ x1

x0

[|B1(x, ξ)u′(ξ)|+ |B0(x, ξ)u(ξ)|]dξ
]p
dx
)1/p

≤ ‖u‖Wp

(∫ x1

x0

[
1 + |A1(x)|+ |A0(x)|+

∫ x1

x0

[|B1(x, ξ)|+ |B0(x, ξ)|]dξ
]p
dx
)1/p

≤ ‖u‖Wp

((∫ x1

x0

|A1(x)|pdx
)1/p

+
(∫ x1

x0

|A0(x)|pdx
)1/p

+
(∫ x1

x0

[ ∫ x1

x0

|B1(x, ξ)|dξ
]p
dx
)1/p

+
(∫ x1

x0

[ ∫ x1

x0

|B0(x, ξ)|dξ
]p
dx
)1/p)

≤ ‖u‖Wp

((∫ x1

x0

|A1(x)|pdx
)1/p

+
(∫ x1

x0

|A0(x)|pdx
)1/p

+
(∫ x1

x0

[B0
1(x)]pdx

)1/p

+
(∫ x1

x0

[B0
0(x)]pdx

)1/p)
and B0

i ∈ Lp(G), Ai ∈ Lp(G), for i = 0, 1 then V2 is bounded in Lp(G). And, since

‖V u‖Ep
= ‖V2u‖Lp(G) + |V1u|+ |V0u|,

then V is bounded from Wp into the Banach space Ep ≡ Lp(G)× R2 consisting of
elements z = (z2(x), z1, z0) with norm

‖z‖Ep
= ‖z2‖Lp(G) + |z1|+ |z0|, 1 ≤ p <∞.

Problem (1.1)-(1.2) is studied by means of a new concept of the adjoint problem.
This concept is introduced in [5, 8] using the adjoint operator V ∗ of V . Some
isomorphic decompositions of the space Wp of solutions and its adjoint space W ∗p
are employed. Any function u ∈Wp can be represented as

u(x) = u(α) + u′(α)(x− α) +
∫ x

α

(x− ξ)u′′(ξ)dξ (2.2)

where α is a given point in Ḡ which is the set of closure points for G. Furthermore,
the trace or value operators D0u = u(γ), D1u = u′(γ) are bounded and surjective
from Wp onto R for a point γ of Ḡ. In addition, the values u(α), u′(α) and the
second derivative u′′(x) are unrelated elements of the function u ∈ Wp such that
for any real numbers ν0, ν1 and any function ν ∈ Lp(G), there exists one and only
one u ∈ Wp such that u(α) = ν0, u′(α) = ν1 and u′′(α) = ν2(x). Therefore, there
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exists a linear homeomorphism between Wp and EP . In other words, the space Wp

has the isomorphic decomposition Wp = Lp(G)× R× R.

Theorem 2.1 ([1]). If 1 ≤ p < ∞, then any linear bounded functional F ∈ W ∗p
can be expressed as

F (x) =
∫ x1

x0

u′′(x)ϕ2(x)dx+ u′(x0)ϕ1 + u(x0)ϕ0 (2.3)

with a unique element ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq where 1
p + 1

q = 1.

Proof. To give the proof, a bounded linear bijective operator

Nu = (u′′(x), u′(x0), u(x0))

is constructed from the space Wp into the space Ep. Since the adjoint operator N∗

is also a bounded linear bijective operator from the space E∗p to the space W ∗p then
using the fact that E∗p = Eq for 1

p + 1
q = 1, the conclusion follows. For the detail of

the proof, see [1]. �

3. Adjoint operator and adjoint system of integro-algebraic
equations

In this section we consider an explicit form for the adjoint operator V ∗ of V . To
this end, we take any linear bounded functional f = (f2(x), f1, f0) ∈ Eq. We can
also assume that

f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+ f1(V1u) + f0(V0u), u ∈Wp. (3.1)

By substituting expressions (1.1)-(1.2) and expression (2.2) (for α = x0) of u ∈Wp

into (3.1), we obtain the equation

f(V u) ≡
∫ x1

x0

f2(x)
{
u′′(x) +A1(x)

[
u′(x0) +

∫ x

x0

u′′(ξ)dξ
]

+A0(x)
[
u(x0) + u′(x0)(x− x0) +

∫ x

x0

(x− ξ)u′′(ξ)dξ
]

+
∫ x1

x0

B1(x, s)
[
u′(x0) +

∫ s

x0

u′′(ξ)dξ
]
ds

+
∫ x1

x0

B0(x, s)
[
u(x0) + u′(x0)(s− x0) +

∫ s

x0

(s− ξ)u′′(ξ)dξ
]
ds
}
dx

+ f1

{
a1u(x0) + b1u

′(x0) +
∫ x1

x0

g1(ξ)u′′(ξ)dξ
}

+ f0

{
a0u(x0) + b0u

′(x0) +
∫ x1

x0

g0(ξ)u′′(ξ)dξ
}
.

After some calculations, we obtain

f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+ f1(V1u) + f0(V0u)

=
∫ x1

x0

(ω2f)(ξ)u′′(ξ)dξ + (ω1f)u′(x0) + (ω0f)u(x0)

≡ (ωf)(u), for any f ∈ Eq and any u ∈Wp, 1 ≤ p ≤ ∞,

(3.2)
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where

(ω2f)(ξ) = f2(ξ) + f1g1(ξ) + f0g0(ξ) +
∫ x1

ξ

f2(s)[A0(s)(s− ξ) +A1(s)]ds

+
∫ x1

x0

f2(x)
[∫ x1

ξ

B1(x, s)ds+
∫ x1

ξ

B0(x, s)(s− ξ)ds
]
dx,

ω1f = b1f1 + b0f0 +
∫ x1

x0

f2(x)[A0(x)(x− x0) +A1(x)]dx

+
∫ x1

x0

∫ x1

x0

f2(x)[B0(x, s)(s− x0) +B1(x, s)]dsdx,

ω0f = a1f1 + a0f0 +
∫ x1

x0

f2(x)A0(x)dx+
∫ x1

x0

∫ x1

x0

f2(x)B0(x, s)dsdx.

(3.3)

As shown in the beginning of the second section, the linear operator V defined
from the normed space Wp into the Banach space Ep is bounded, its adjoint should
be also be linear and bounded. As in the section two, the boundedness of the
linear operators ω2, ω1, ω0 from the space Eq of the triples f = (f2(x), f1, f0)
into the spaces Lq(G), R, R, respectively, can be shown. Therefore, the operator
ω = (ω2, ω1, ω0) : Eq → Eq represented by ωf = (ω2f, ω1f, ω0f) is linear and
bounded. By (3.2) and Theorem 2.1, the operator ω is an adjoint operator for the
operator V when 1 ≤ p <∞, in other words, V ∗ = ω.

Following the articles [1, 5, 8], equation (2.1) can be transformed into the equiv-
alent equation

V Sh = z, (3.4)

with an unknown h = (h2, h1, h0) ∈ EP by the transformation u = Sh where
S = N−1. If u = Sh, then u′′(x) = h2(x), u′(x0) = h1, u(x0) = h0. Hence, (3.2)
can be written as

f(V Sh) ≡
∫ x1

x0

f2(x)(V2Sh)(x)dx+ f1(V1Sh) + f0(V0Sh)

=
∫ x1

x0

(ω2f)(ξ)h2(ξ)dξ + (ω1f)h1 + (ω0f)h0

≡ (ωf)(h) for any f ∈ Eq, for any u ∈Wp, 1 ≤ p ≤ ∞.

(3.5)

Therefore the operator V S is the adjoint of the operator ω. Consequently, the
equation

ωf = ϕ (3.6)

with an unknown function f = (f2(x), f1, f0) ∈ Eq and a given function ϕ =
(ϕ2(x), ϕ1, ϕ0) ∈ Eq can be considered as an adjoint equation of (2.1) and (3.4)
for all 1 ≤ p ≤ ∞. Equation (3.6) can be written in explicit form as the system of
equations

(ω2f)(ξ) = ϕ2(ξ), ξ ∈ G,
ω1f = ϕ1,

ω0f = ϕ0.

(3.7)
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4. Solvability conditions for the completely nonhomogeneous
problem

Using the argument in the articles [1, 3], we consider the operator Q = ω − Iq,
where Iq is the identity operator on Eq. This operator can also be defined as
Q = (Q2, Q1, Q0) with

(Q2f)(ξ) = (ω2f)(ξ)− f2(ξ), ξ ∈ G;
Q1f = ω1f − f1,
Q0f = ω0f − f0.

(4.1)

The expressions in (3.3) and the conditions imposed on Ai and bi show that Q2 is
a compact operator from Eq into Lq(G) and also Q1 and Q0 are compact operators
from Eq into R, where 1 < p <∞. Therefore, Q : Eq → Eq is a compact operator
and therefore has a compact adjoint operator Q∗ : Ep → Ep. Since ω = Q+ Iq and
V S = Q∗+ Ip, where Ip = I∗q , we have that (3.4) and (3.6) are canonical Fredholm
type equations. Consequently, we have the following result.

Theorem 4.1 ([1]). Assume that 1 < p < ∞. Then the homogenous equation
V u = 0 has either only the trivial solution or a finite number of linearly independent
solutions in Wp:

(1) If V u = 0 has only the trivial solution in Wp then also ωf = 0 has only the
trivial solution in Eq. Then the operators V : Wp → Ep and ω : Eq → Eq become
linear homeomorphisms.

(2) If V u = 0 has m linear independent solutions u1, u2, . . . , um in Wp, then the
equation ωf = 0 also has m linear independent solutions

f (1) = (f (1)
2 (x), f (1)

1 , f
(1)
0 ), . . . , f (m) = (f (m)

2 (x), f (m)
1 , f

(m)
0 )

in Eq. In this case, (2.1) and (3.6) have solutions u ∈ Wp and f ∈ Eq for given
z ∈ Ep and ϕ ∈ Eq if and only if the conditions∫ x1

x0

f
(i)
2 (ξ)z2(ξ)dξ + f

(i)
1 z1 + f

(i)
0 z0 = 0, i = 1, 2, . . . ,m, (4.2)∫ x1

x0

ϕ2(ξ)u′′1(ξ)dξ + ϕ1u
′
i(x0) + ϕ0ui(x0) = 0, i = 1, 2, . . . ,m, (4.3)

are satisfied.

5. Green’s functional

Consider the equation

(ωf)(u) = u(x), ∀u ∈Wp, (5.1)

given in the form of a functional identity, where f = (f2(ξ), f1, f0) ∈ Eq is an
unknown triple and x ∈ Ḡ is a parameter.

Definition 5.1 ([1]). Suppose that f(x) = (f2(ξ, x), f1(x), f0(x)) ∈ Eq is a triple
with a parameter x ∈ Ḡ. If for a given x ∈ Ḡ, f = f(x) is a solution of functional
equation (5.1) then f(x) is called a Green’s functional of V or a Green’s functional
of (2.1).
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Due to the operator IWp,C of the imbedding ofWp into the space C(Ḡ) of continu-
ous functions on Ḡ is bounded, the linear functional η(x) defined by η(x)(u) = u(x)
is bounded on Wp for a given x ∈ Ḡ. On the other hand, (ωf)(u) = (V ∗f)(u).
Thus, (5.1) can also be written as, [2, 3],

(V ∗f) = η(x).

In other words, (5.1) can be considered as a special case of the adjoint equation
V ∗f = ψ for some ψ = η(x).

By substituting α = x0 into (2.2) and using (3.2), we can write (5.1) as∫ x1

x0

(ω2f)(ξ)u′′(ξ)dξ + (ω1f)u′(x0) + (ω0f)u(x0)

=
∫ x

x0

(x− ξ)u′′(ξ)dξ + u′(x0)(x− x0) + u(x0),
(5.2)

for any f ∈ Eq and any u ∈ Wp. The elements u′′ ∈ Lp(G), u′(x0) ∈ R and
u(x0) ∈ R of the function u ∈ Wp are unrelated. Then, we can construct the
system

(ω2f)(ξ) = (x− ξ)H(x− ξ), ξ ∈ G,
(ω1f) = (x− x0),

(w0f) = 1,
(5.3)

where H(x− ξ) is the Heaviside function on R.
Equation (5.1) is equivalent to the system (5.3) which is a special case for the

adjoint system (3.7) when ϕ2(ξ) = (x − ξ)H(x − ξ), ϕ1 = x − x0 and ϕ0 = 1.
Therefore, f(x) is a Green’s functional if and only if f(x) is a solution of the
system (5.3) for an arbitrary x ∈ Ḡ. For a solution u ∈Wp of (2.1), we can rewrite
(3.2) as ∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0

=
∫ x1

x0

(x− ξ)H(x− ξ)u′′(ξ)dξ + u′(x0)(x− x0) + u(x0).
(5.4)

The right side of (5.4) is equal to u(x). Therefore, we can state the following
theorem.

Theorem 5.2 ([1]). If (2.1) has at least one Green’s functional f(x), then any
solution u ∈Wp of (2.1) can be represented by

u(x) =
∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0. (5.5)

In particular the homogenous equation V u = 0 has only the trivial solution.

Since one of the operators V : Wp → Ep and ω : Eq → Eq is a homeomorphism,
so the other. Therefore, for 1 ≤ p < ∞ there exists a unique Green’s functional.
For 1 < p <∞ the necessary and sufficient condition for the existence of a Green’s
functional can be given in the following theorem.

Theorem 5.3 ([1]). If there exists a Green’s functional, then it is unique. Ad-
ditionally, a Green’s functional exists if and only if V u = 0 has only the trivial
solution.
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6. Applications

In this section we present some applications of the theory investigated above.

Example 6.1. First let us consider the problem

u′′(x) + xu(
1
2

) = g(x), x ∈ G = (0, 1) (6.1)

u(0) =
1
4
u′(

1
3

), u′(0) =
1
5
u(

1
6

) (6.2)

where g ∈ Lp(G). Using the identities

u(α) =
∫ 1

0

1
α
H(α− ξ)ξu′(ξ)dξ +

∫ 1

0

1
α
H(α− ξ)u(ξ)dξ, α ∈ G = (0, 1),

u(c) = u(0) + cu′(0) +
∫ 1

0

(c− ξ)H(c− ξ)u′′(ξ)dξ, c ∈ G = (0, 1),

u′(c) = u′(0) +
∫ 1

0

H(c− ξ)u′′(ξ)dξ, c ∈ G = (0, 1),

for x ∈ G = (0, 1). We can rewrite this problem as

(V2u)(x) = u′′(x) +
∫ 1

0

[2xξu′(ξ) + 2xu(ξ)]H(
1
2
− ξ)dξ = g(x) = z2(x),

(V1u) = u(0)− 1
4
u′(0)−

∫ 1

0

1
4
H(

1
3
− ξ)u′′(ξ)dξ = 0 = z1,

(V0u) = −1
5
u(0) +

29
30
u′(0) +

∫ 1

0

(
1
6
− ξ)H(

1
6
− ξ)u′′dξ = 0 = z0.

Therefore, we have

A1(x) = A0(x) = 0, B1(x, ξ) = 2xξH(
1
2
− ξ),

B0(x, ξ) = 2xH(
1
2
− ξ), a1 = 1, b1 = −1

4
,

g1(ξ) = −1
4
H(

1
3
− ξ),

a0 = −1
5
, b0 =

29
30
, g0(ξ) = (

1
6
− ξ)H(

1
3
− ξ),

z2(x) = g(x), z1 = z0 = 0.

Thus, the adjoint system corresponding to the problem (6.1)-(6.2) is

(ω2f)(ξ) = f2(ξ)− f1
1
4
H(

1
3
− ξ) + f0(

1
6
− ξ)H(

1
3
− ξ)

+
∫ 1

0

f2(x)
[∫ 1

ξ

2xsH(
1
2
− s)ds+

∫ 1

ξ

2xH(
1
2
− s)(s− ξ)ds

]
dx

= ϕ2(ξ),

ω1f = −1
4
f1 +

29
30
f0 +

∫ 1

0

∫ 1

0

f2(x)4xsH(
1
2
− s)dsdx = ϕ1(ξ),

ω0f = f1 −
1
5
f0 +

∫ 1

0

∫ 1

0

f2(x)2xH(
1
2
− s)dsdx = ϕ0(ξ),

(6.3)
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where f = (f2(x), f1, f0) ∈ Eq is unknown function and ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq
is a given function. In (6.3), if we take ϕ2(x) = (x − ξ)H(x − ξ), ϕ1 = x and
ϕ0 = 1 then we can obtain the special adjoint system corresponding to the problem
(6.1)-(6.2) as

f2(ξ)− 1
4
H(

1
3
− ξ)f1 + (

1
6
− ξ)H(

1
3
− ξ)f0

+
∫ 1

0

∫ 1

ξ

f2(x)[4xs− 2xξ]H(
1
2
− s)dsdx = (x− ξ)H(x− ξ),

(6.4)

−1
4
f1 +

29
30
f0 +

∫ 1

0

∫ 1

0

f2(x)4xsH(
1
2
− s)dsdx = x, (6.5)

f1 −
1
5
f0 +

∫ 1

0

∫ 1

0

f2(x)2xH(
1
2
− s)dsdx = 1, (6.6)

where ξ ∈ (0, 1). To solve the system of equations (6.4), (6.5)), (6.6), first we solve
the equations (6.5) and (6.6) to determine f0 and f1 with respect to f2, then we
find that

f0 =
3
11

(4x+ 1)− 9
11
K(x),

f1 =
1
55

(12x+ 58)− 64
55
K(x),

where K(α) =
∫ 1

0
xf2(x, α)dx. After substituting f1 and f0 into the equation (6.4),

f2(ξ) can be found as

f2(ξ) =
(
− 14

55
+

19
110
− 17

110
K(x) +

3
11

(4x+ 1)− 9ξ
11
K(x)

)
H(

1
3
− ξ)

−
∫ 1

0

∫ 1

ξ

f2(x)[4xs− 2xξ]H(
1
2
− s)dsdx+ (x− ξ)H(x− ξ),

(6.7)

Thus, the Green’s functional f(x) = (f2(ξ, x), f1(x), f0(x)) for the problem has
been determined. Therefore, by Theorem 5.2, a solution u ∈ Wp of the problem
(6.1)-(6.2) can be represented as

u(x) =
∫ x1

x0

f2(ξ, x)g(ξ)dξ.

Example 6.2. Now, let us consider the problem

u′′(x) + u(x)− 1
2
u(0) = g(x), x ∈ G = (0, π) (6.8)

u(π) = 0 u′(0) = 0 (6.9)

where g ∈ Lp(G). Using the identities given in Example 6.1, for x ∈ G = (0, π) the
problem (6.8)-(6.9) can be written as

u′′(x) + u(x)− 1
2

∫ 1

0

[ξu′(ξ) + u(ξ)]dξ = g(x) = z2(x), (6.10)

u(0) + πu′(0) +
∫ π

0

(π − ξ)u′′(ξ)dξ = 0 = z1, u′(0) = 0 = z0. (6.11)

As is given in Theorem 5.3, in order for problem (6.8)-(6.9) or (6.10)-(6.11) to have
a Green’s functional, the corresponding homogenous problem should have only the
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trivial solution. But, the corresponding homogenous problem

u′′(x) + u(x)− 1
2

∫ 1

0

[ξu′(ξ) + u(ξ)]dξ = 0, x ∈ G = (0, π), (6.12)

u(0) + πu′(0) +
∫ π

0

(π − ξ)u′′(ξ)dξ = 0, u′(0) = 0, (6.13)

has a solution u(x) = 5 cosx+ 5, other than the trivial solution. So problem (6.8)-
(6.9) or problem (6.10)-(6.11) does not have any Green’s functionals in accordance
with Definition 5.1.
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