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Lp-CONTINUITY OF SOLUTIONS TO PARABOLIC FREE
BOUNDARY PROBLEMS

ABDESLEM LYAGHFOURI, EL MEHDI ZAOUCHE

Abstract. In this article, we consider a class of parabolic free boundary prob-
lems. We establish some properties of the solutions, including L∞-regularity in

time and a monotonicity property, from which we deduce strong Lp-continuity
in time.

1. Introduction

In this work, we study the following weak formulation which describes a class of
nonstationary free boundary problems:
Problem (p). Find (u, χ) ∈ L2(0, T ;H1(Ω))× L∞(Q) such that

(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Q;
(ii) u = φ on Σ2;

(iii)∫
Q

[(
a(x)∇u+ χH(x)

)
· ∇ξ − (αu+ χ)ξt

]
dx dt ≤

∫
Ω

(χ0(x) + αu0(x))ξ(x, 0) dx

for all ξ ∈ H1(Q), ξ = 0 on Σ3, ξ ≥ 0 on Σ4, ξ(x, T ) = 0 for a.e. x ∈ Ω,
where α, T are positive numbers, Ω is a bounded domain in Rn(n ≥ 2) with Lips-
chitz boundary ∂Ω = Γ1 ∪ Γ2, Q = Ω× (0, T ), Σ1 = Γ1 × (0, T ), Σ2 = Γ2 × (0, T ),
Σ3 = Σ2 ∩ {φ > 0} and Σ4 = Σ2 ∩ {φ = 0}, with φ a nonnegative Lipschitz contin-
uous function defined in Q. For a.e. x ∈ Ω, a(x) = (aij(x))ij is an n × n matrix,
H : Ω→ Rn is a vector function satisfying for some positive constants λ,Λ and H:

∀ξ ∈ Rn, a.e. x ∈ Ω λ|ξ|2 ≤ a(x)ξ · ξ, (1.1)

∀ξ ∈ Rn, a.e. x ∈ Ω |a(x)ξ| ≤ Λ|ξ|, (1.2)

|H(x)| ≤ H a.e. x ∈ Ω. (1.3)

Moreover, we assume that
div(H(x)) ∈ L2(Ω), (1.4)

and the functions u0, χ0 : Ω→ R satisfying

u0, χ0 ∈ L∞(Ω), (1.5)

u0(x) ≥ 0 for a.e. x ∈ Ω, (1.6)
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0 ≤ χ0(x) ≤ 1 for a.e. x ∈ Ω. (1.7)

Note that problem (p) describes in particular the weak formulation of the non-
steady state dam problem [1, 2, 3, 7, 9]. For the heterogeneous stationary dam
problem, we refer for example to [5, 11]. Another free boundary problem described
by the above formulation is the one-phase Stefan problem (see for example [15, 16]).

Under assumptions (1.1)-(1.7), existence of a solution is proved in [18]. The proof
is based on the Tychonoff fixed theorem and combines technics from [1, 9], where
existence was established for the unsteady filtration problem in a homogeneous
porous medium respectively in the incompressible and compressible cases. Another
approach with quasi-variational inequalities was adopted in [17] for rectangular
domains.

Uniqueness of the solution was proved for dams with general geometry and rect-
angular dams respectively in [2] and [7] with different methods. Extensions to a
quasilinear operator modeling incompressible fluid flow governed by a generalized
nonlinear Darcy’s law with Dirichlet, Neuman, or generalized boundary conditions
were considered in [4, 12, 13, 14].

In this article, we are concerned with the Lp(Ω)-continuity in time of the func-
tions u and χ. We recall that regularity of the solution was investigated in [3, 2],
when a(x) = In and H(x) = e = (0, . . . , 0, 1) ∈ Rn, where it was proved that
χ ∈ C0([0, T ], Lp(Ω)) for all p ≥ 1 in both incompressible and compressible cases,
and that u ∈ C0([0, T ], Lp(Ω)) for all 1 ≤ p ≤ 2, in the compressible case. Exten-
sions to the quasilinear case were obtained in [12, 13, 14] in both homogeneous and
nonhomogeneous frameworks.

2. Properties

We shall denote by (u, χ) a solution of the problem (p).

Proposition 2.1. We have

αu+ χ ∈ C0([0, T ];V ′), where V = {v ∈ H1(Ω) : v = 0 on Γ2}.

For a proof of the above proposition see [18].

Proposition 2.2. If α > 0, then we have

u ∈ L∞(0, T ;L2(Ω)). (2.1)

Proof. Let ζ be a smooth function such that d(supp(ζ),Σ2) > 0 and supp(ζ) ⊂
Rn × (0, T ). Then there exists 0 < τ0 < T such that:

∀τ ∈ (−τ0, τ0), (x, t) 7→ ±ζ(x, t− τ) are test functions for (p).

Then we have that for all τ ∈ (−τ0, τ0),∫
Q

[
(a(x)∇u(x, t) + χ(x, t)H(x)).∇ζ(x, t− τ)

− (αu(x, t) + χ(x, t))ζt(x, t− τ)
]
dx dt = 0

which can be written as∫
Q

(a(x)∇u(x, t+ τ) + χ(x, t+ τ)H(x)).∇ζ(x, t) dx dt

= − ∂

∂τ

(∫
Q

(αu(x, t+ τ) + χ(x, t+ τ))ζ(x, t) dx dt
)
∀τ ∈ (−τ0, τ0).

(2.2)
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Moreover (2.2) remains true for all ζ ∈ L2(0, T ;H1(Ω)) such that ζ = 0 on Σ2 and
ζ = 0 on Ω × ((0, τ0) ∪ (T − τ0, T )). Therefore for ξ ∈ D(Ω × (τ0, T − τ0)) with
ξ ≥ 0, (2.2) is true for the function

ζ(x, t) = (u(x, t+ τ)− φ(x, t+ τ))ξ(x, t)

and we have that for all τ ∈ (−τ0, τ0),∫
Q

(a(x)∇u(x, t+ τ) + χ(x, t+ τ)H(x)).∇((u(x, t+ τ)− φ(x, t+ τ))ξ(x, t)) dx dt

= − ∂

∂τ

(∫
Q

(αu(x, t+ τ) + χ(x, t+ τ))(u(x, t+ τ)− φ(x, t+ τ))ξ(x, t) dx dt
)
.

(2.3)
Since∫

Q

(a(x)∇u(x, t+ τ) + χ(x, t+ τ)H(x)).∇((u(x, t+ τ)− φ(x, t+ τ))ξ(x, t)) dx dt

=
∫
Q

(a(x)∇u(x, t) + χ(x, t)H(x)).∇((u(x, t)− φ(x, t))ξ(x, t− τ)) dx dt

the integral in the left hand side of (2.3) is continuous in (−τ0, τ0). We deduce that
the function

G(τ) =
∫
Q

(αu(x, t+ τ) + χ(x, t+ τ))(u(x, t+ τ)− φ(x, t+ τ))ξ(x, t) dx dt

belongs to C1(−τ0, τ0). Hence for τ = 0 we obtain∫
Q

(a(x)∇u(x, t) + χ(x, t)H(x)).∇((u(x, t)− φ(x, t))ξ(x, t)) dx dt = −G′(0). (2.4)

Note that

G(τ) =
∫
Q

(αu(x, t+ τ) + χ(x, t+ τ))(u(x, t+ τ)− φ(x, t+ τ))ξ(x, t) dx dt

=
∫
Q

(αu(x, t) + χ(x, t))(u(x, t)− φ(x, t))ξ(x, t− τ) dx dt

and then

G′(0) = −
∫
Q

(αu(x, t) + χ(x, t))(u(x, t)− φ(x, t))ξt(x, t) dx dt. (2.5)

It follows from (2.4) and (2.5) that∫
Q

(a(x)∇u+ χH(x)).∇(u− φ)ξ) dx dt =
∫
Q

(αu+ χ)(u− φ)ξt dx dt. (2.6)

Now∫
Q

(αu+ χ)(u− φ)ξt dx dt =
∫
Q

(αu2 − αφ+ u− χφ)ξt dx dt

=
∫
Q

α
(
u2 +

1− αφ
α

u− χφ

α

)
ξt dx dt

=
∫
Q

α
(
u+

1− αφ
2α

)2

− α
(1− αφ

2α

)2

− χφ

α

)
ξt dx dt

=
∫
Q

[
α
(
u+

1− αφ
2α

)2

− (1− αφ)2

4α
− χφ

]
ξt dx dt .
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From (2.6) we obtain∫
Q

(a(x)∇u+ χH(x)).∇((u− φ)ξ) dx dt =

=
∫
Q

[
α
(
u+

1− αφ
2α

)2

− (1− αφ)2

4α
− χφ

]
ξt dx dt

or by taking ξ ∈ D(0, T ),∫ T

0

ξdt

∫
Ω

(a(x)∇u+ χH(x)).∇(u− φ)dx

=
∫ T

0

ξtdt

∫
Ω

[
α
(
u+

1− αφ
2α

)2

− (1− αφ)2

4α
− χφ

]
dx

which leads in the distributional sense in D′(0, T ) to

d

dt

∫
Ω

[
α
(
u+

1− αφ
2α

)2

− (1− αφ)2

4α
− χφ

]
dx

= −
∫

Ω

(a(x)∇u+ χH(x)).∇(u− φ)dx.

Therefore, the function

t 7→
∫

Ω

[
α
(
u+

1− αφ
2α

)2

− (1− αφ)2

4α
− χφ

]
dx

is in ∈ W 1,1(0, T ) ⊂ C0([0, T ]). Given that χ, φ ∈ L∞(Q) and α > 0, we conclude
that u ∈ L∞(0, T ;L2(Ω)), which is (2.1). �

The following result will be used to establish a monotonicity property of χ which
is the key point to prove the main result of the paper.

Proposition 2.3. We have

div(χH(x))− χ{u>0} div(H(x))− χt ≤ 0 in D′(Q). (2.7)

Proof. Arguing as in the beginning of the proof of Proposition 2.2, we have for any
ζ ∈ L2(0, T ;H1(Ω)) such that ζ = 0 on Σ2 and ζ = 0 on Ω× ((0, τ0)∪ (T − τ0, T )),
with τ0 > 0∫

Q

(a(x)∇u(x, t+ τ) + χ(x, t+ τ)H(x)).∇ζ(x, t) dx dt

= − ∂

∂τ

(∫
Q

(αu(x, t+ τ) + χ(x, t+ τ))ζ(x, t) dx dt
)
∀τ ∈ (−τ0, τ0).

(2.8)

Now, let us consider ε > 0, ξ ∈ D(Ω × (τ0, T − τ0)) such that ξ ≥ 0, and choose
ζ(x, t) = min

(u(x,t+τ)
ε , 1

)
ξ in (2.8). We obtain∫

Q

(a(x)∇u(x, t+ τ) + χ(x, t+ τ)H(x)).∇
(

min
(u(x, t+ τ)

ε
, 1
)
ξ(x, t)

)
dx dt

= − ∂

∂τ

(∫
Q

(αu(x, t+ τ) + χ(x, t+ τ)) min
(u(x, t+ τ)

ε
, 1
)
ξ(x, t) dx dt

)
(2.9)
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for all τ ∈ (−τ0, τ0). Obviously the integral at the left hand side of (2.9) is contin-
uous in (−τ0, τ0). Consequently the function

G(τ) =
∫
Q

(αu(x, t+ τ) + χ(x, t+ τ)) min
(u(x, t+ τ)

ε
, 1
)
ξ(x, t) dx dt

is a C1 function in (−τ0, τ0). For τ = 0, we obtain∫
Q

(a(x)∇u+ χH(x)).∇
(

min
(u
ε
, 1
)
ξ
)
dx dt = −G′(0). (2.10)

Since

G(τ) =
∫
Q

(αu(x, t) + χ(x, t)) min
(u(x, t)

ε
, 1
)
ξ(x, t− τ) dx dt

=
∫
Q

(αu(x, t) + 1) min
(u(x, t)

ε
, 1
)
ξ(x, t− τ) dx dt,

we obtain

G′(0) = −
∫
Q

(αu+ 1) min
(u
ε
, 1
)
ξt dx dt. (2.11)

Hence from (2.10) and (2.11) we obtain∫
Q

(a(x)∇u+ χH(x)) · ∇
(

min
(u
ε
, 1
)
ξ
)
dx dt

=
∫
Q

(αu+ 1) min
(u
ε
, 1
)
ξt dx dt

which leads to∫
Q

a(x)∇u · ∇
(

min
(u
ε
, 1
)
ξ
)
− αumin

(u
ε
, 1
)
ξt dx dt

= −
∫
Q

χH(x).∇
(

min
(u
ε
, 1
)
ξ
)
dx dt+ α

∫
Q

umin
(u
ε
, 1
)
ξt dx dt

= −
∫
Q

H(x).∇
(

min
(u
ε
, 1
)
ξ
)
dx dt+ α

∫
Q

umin
(u
ε
, 1
)
ξt dx dt.

=
∫
Q

div(H(x)).min
(u
ε
, 1
)
ξ dx dt+ α

∫
Q

umin
(u
ε
, 1
)
ξt dx dt

or ∫
Q

min
(u
ε
, 1
)
a(x)∇u.∇ξ − αumin

(u
ε
, 1
)
ξt dx dt

=
∫
Q

div(H(x)).min
(u
ε
, 1
)
ξ dx dt+ α

∫
Q

umin
(u
ε
, 1
)
ξt dx dt

−
∫
Q∩{u<ε}

ξa(x)∇u.∇u dx dt

≤
∫
Q

div(H(x)).min
(u
ε
, 1
)
ξ dx dt+ α

∫
Q

umin
(u
ε
, 1
)
ξt dx dt.

(2.12)

Letting ε→ 0 in (2.12), we obtain∫
Q

a(x)∇u.∇ξ − αuξt dx dt ≤
∫
Q

χ{u>0} div(H(x))ξ dx dt
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or
div(a(x)∇u) + χ{u>0} div(H(x))− αut ≥ 0 in D′(Q). (2.13)

Now using ±ξ as a test function in (p), we obtain

div(a(x)∇u+ χH(x))− αut − χt = 0 in D′(Q). (2.14)

Taking into account (2.13) and (2.14), we obtain

div(χH(x))− χ{u>0} div(H(x))− χt
= −div(a(x)∇u)− χ{u>0} div(H(x)) + αut ≤ 0 in D′(Q),

which is (2.7). �

3. Monotonicity property

In all what follows, we shall assume that

H(x) = (h1(x), . . . , hn(x)) ∈ C0,1(Ω,Rn) (3.1)

div(H(x)) ≥ 0 a.e. x ∈ Ω (3.2)

and for two positive constants h and h,

0 < h ≤ hn(x) ≤ h, |hi(x)| ≤ h ∀x ∈ Ω, i = 1, . . . , n− 1. (3.3)

Since H ∈ C0,1(Ω), there exists by Kirszbraun’s theorem (see [8, Theorem 2.10.43
p. 210]) an extension H̃ ∈ C0,1(Rn) of H with the same Lipschitz constant. Then
the function H = (H1, . . . ,Hn−1, Hn) defined by

Hi = min(h̄,max(H̃i,−h̄)) i = 1, . . . , n− 1

Hn = min(h̄,max(H̃n, h))

satisfies H ∈ C0,1(Rn), H/Ω = H, and

0 < h ≤ Hn(x) ≤ h, |Hi(x)| ≤ h ∀x ∈ Rn, i = 1, . . . , n− 1.

For simplicity, we will denote H by H.
Let h0 ∈ R such that Ω is located strictly above the hyperplane xn = h0. We

consider for each ω ∈ Rn−1 the differential equation

X ′(s, ω) = H(X(s, ω))

X(0, ω) = (ω, h0).
(3.4)

Then we have the following proposition.

Proposition 3.1. There exists a unique maximal solution x(·, ω) of (3.4) defined
on (−∞,∞). Moreover x is of class C0,1 with respect to ω, C1,1 with respect to s,
and we have

lim
s→±∞

xn(s, ω) = ±∞. (3.5)

Proof. By the classical theory of ordinary differential equations there exists a unique
maximal solution x(·, ω) of (3.4) defined on (α−(ω), α+(ω)). Moreover since H is
of class C0,1, x is of class C0,1 with respect to ω, C1,1 with respect to s. For (3.5),
we refer to the proof of (2.4) in [14]. �
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Theorem 3.2. The mappings T : Rn → Rn defined by T (s, ω) = x(s, ω) is a
C0,1-homeomorphism from Rn to Rn. Moreover

Y (s, ω) = J T (s, ω) = (−1)n+1hn(ω, h0) exp
(∫ s

0

(divH)(x(σ, ω)) dσ
)
6= 0,

where J denotes the Jacobian.

Proof. We refer to the proof of [6, Theorem 2.2] and to the proof of [14, Theorem
2.1]. �

Remark 3.3. Let O = T −1(Ω). Then O is a domain of Rn and T : O → Ω is a
C0,1-homeomorphism.

Let f(s, ω, t) = χ(T (s, ω), t). In the following theorem we show that f satisfies
a monotonicity result similar to the one in [6, Theorem 2.1] for the stationary case
and to [14, Theorem 2.2] for the nonstationary case. This extends the well known
monotonicity in the homogeneous case i.e. χn − χt ≥ 0 in D′(Q) when a(x) = In
(see [2, 3]). This result will be the key point for the proof of the Lp-continuity of χ
and u.

Theorem 3.4. Let (u, χ) be a solution of (p). We have

(
∂

∂s
− ∂

∂t
)f ≤ 0 in D′(O × (0, T )). (3.6)

Proof. Let φ ∈ D(O × (0, T )), φ ≥ 0. Since T −1 ∈ C0,1(Ω), by approximation we
can use φ ◦ T −1 as a test function in (2.7). So we have∫

T (O)×(0,T )

{
χH(x).∇(φ ◦ T −1) + χ{u>0} div(H(x)).φ ◦ T −1

− χ(φ ◦ T −1)t
}
dx dt ≥ 0.

(3.7)

Since T is a C0,1-homeomorphism from O to Ω, we can use the change of variables
formula [19, p. 52] to obtain, from (3.7),∫

O×(0,T )

(
χ ◦ T .∂φ

∂s
+ χ{u◦T>0}(div(H)) ◦ T .φ− χ ◦ T .∂φ

∂t

)
|Y | ds dω dt ≥ 0

which, given that ∂|Y |
∂s = |Y |.(div(H)) ◦ T , leads to∫

O×(0,T )

(
χ ◦ T .∂(|Y |.φ)

∂s
− χ ◦ T .∂(|Y |.φ)

∂t

)
ds dω dt

=
∫
O×(0,T )

(
χ ◦ T .∂φ

∂s
|Y |+ χ ◦ T .(div(H)) ◦ T .φ|Y | − χ ◦ T .∂φ

∂t
|Y |
)
ds dω dt

≥
∫
O×(0,T )

(
χ ◦ T .∂φ

∂s
+ χ{u◦T>0}.(div(H)) ◦ T .φ− χ ◦ T .∂φ

∂t

)
|Y | ds dω dt

≥ 0.
(3.8)

By approximation, (3.8) holds for any nonnegative function φ with compact support
such that φs, φt ∈ L1(O × (0, T )). Since Y, Ys ∈ L∞(O × (0, T )), one can choose
φ = ψ

|Y | , with ψ ∈ D(O × (0, T )) and ψ ≥ 0. Thus we get the result. �
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4. Continuity of χ and αu

The main result of the this article is the following theorem.

Theorem 4.1. Let (u, χ) be a solution of problem (p). Then we have

χ ∈ C0([0, T ];Lp(Ω)) ∀p ∈ [1,∞), (4.1)

If α > 0, then u ∈ C0([0, T ];Lp(Ω)) ∀p ∈ [1, 2]. (4.2)

Proof. Let v = uoT −1. Since T is a C0,1-homeomorphism, we get from Propositions
2.1 and 2.2

f + αv ∈ C0([0, T ];H−1(O)), (4.3)

v ∈ L∞([0, T ];L2(O)). (4.4)

Taking into account (4.3)-(4.4), the monotonicity of f in (3.6), and arguing as
in the proof [2, Theorem 2.4], we obtain

f ∈ C0([0, T ];Lp(O)) ∀p ∈ [1,∞),

which by using the change of variables T leads to

χ ∈ C0([0, T ];Lp(T (O))) = C0
(
[0, T ], Lp(Ω)

)
∀p ∈ [1,∞). (4.5)

Assume that α > 0. Since χ, φ ∈ C0([0, T ], L2(Ω)), we deduce from the last part of
the proof of Proposition 2.2 that u ∈ C0(0, T ;L2(Ω)), and since Ω is bounded (4.2)
follows. �

Remark 4.2. If α > 0 and u ∈ L∞(0, T ;Lp(Ω)) for some p > 2, we have, u ∈
C0([0, T ];Lp(Ω)). In particular, if u ∈ L∞(Q), we have

u ∈ C0([0, T ];Lp(Ω)) ∀p ≥ 1.

If α = 0, in general, u /∈ C0([0, T ];Lp(Ω)) (see [3, Remark 3.9]).
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