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PIECEWISE WEIGHTED PSEUDO ALMOST PERIODIC
SOLUTIONS OF IMPULSIVE INTEGRO-DIFFERENTIAL

EQUATIONS VIA FRACTIONAL OPERATORS

ZHINAN XIA, DINGJIANG WANG

Abstract. In this article, we show sufficient conditions for the existence,
uniqueness and attractivity of piecewise weighted pseudo almost periodic clas-

sical solution of nonlinear impulsive integro-differential equations. The work-

ing tools are based on the fixed point theorem and fractional powers of oper-
ators. An application to impulsive integro-differential equations is presented.

1. Introduction

It is well known that impulsive integro-differential equations or impulsive dif-
ferential equations create an important subject of numerous mathematical investi-
gations and constitute a significant branch of differential equations. It has great
applications in actual modeling such as population dynamics, epidemic, engineer-
ing, optimal control, neural networks, economics, etc. With the help of several tools
of functional analysis, topology and fixed point theorems, many authors have made
important contributions to this theory [3, 5, 11, 15, 16, 20].

The concept of pseudo almost periodic function, which was introduced by Zhang
[23, 24], is a natural and good generalization of the classical almost periodic func-
tions in the sense of Bohr. Recently, weighted pseudo almost periodic function is
investigated in [6] by the weighted function, which was more tricky and changeable
than those of the classical functions. Many authors have made important contribu-
tions to this function. For more details on weighted pseudo almost periodic function
and related topics, one can see [1, 4, 7, 8, 13] and the references therein.

For the integro-differential equations, the asymptotic properties of mild solutions
have been studied from differential points, such as almost periodicity, almost au-
tomorphy, asymptotic stability, oscillation and so on. However, for the weighted
pseudo almost periodicity of classical solutions, it is rarely investigated, particu-
larly for the integro-differential equations with impulsive effects. The existence,
uniqueness and attractivity of piecewise weighted pseudo almost periodic classical
solutions for impulsive integro-differential equations is an untreated topic in the
literature and this fact is the motivation of the present work.
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This article is organized as follows. In Section 2, we recall some fundamental
results about the notion of piecewise almost periodic function. In Section 3, we
introduce the concept of piecewise weighted pseudo almost periodic function and
explore its properties. Sections 4 is devoted to the existence, uniqueness and at-
tractivity of classical solution of (4.1) by fixed point theorem and fractional powers
of operators. In Section 5, an application to impulsive integro-differential equations
is presented to illustrate the main findings.

2. Preliminaries

Let (X, ‖ · ‖), (Y, ‖ · ‖) be Banach spaces, Ω be a subset of X and N, Z and R
stand for the set of natural numbers, integers and real numbers, respectively. For
A being a linear operator on X, D(A) stands for the domain of A. Let T be the
set consisting of all real sequences {ti}i∈Z such that κ = infi∈Z(ti+1 − ti) > 0. It is
immediate that this condition implies that limi→∞ ti =∞ and limi→−∞ ti = −∞.

To facilitate the discussion below, we further introduce the following notation:
• C(R, X): the set of continuous functions from R to X.
• PC(R, X) : the space formed by all piecewise continuous functions f : R→
X such that f(·) is continuous at t for any t /∈ {ti}i∈Z, f(t+i ), f(t−i ) exist,
and f(t−i ) = f(ti) for all i ∈ Z.
• PC(R × Ω, X) : the space formed by all piecewise continuous functions
f : R × Ω → X such that for any x ∈ Ω, f(·, x) ∈ PC(R, X) and for any
t ∈ R, f(t, ·) is continuous at x ∈ Ω.

It is possible to define fractional powers of A if −A is the infinitesimal generator
of an analytic semigroup T (t) in a Banach space and 0 ∈ ρ(A). For α > 0, define
the fractional power A−α of A by

A−α =
1

Γ(α)

∫ ∞
0

tα−1T (t)dt.

Operator A−α is bounded, bijective and Aα = (A−α)−1 is a closed linear operator,
D(Aα) = R(A−α), A0 is the identity operator in X. For 0 ≤ α ≤ 1, Xα = D(Aα)
with norm ‖x‖α = ‖Aαx‖ is a Banach space.

Lemma 2.1 ([17]). Let −A be an infinitesimal operator of an analytic semigroup
T (t), then

(i) T (t) : X → D(Aα) for every t > 0 and α ≥ 0.
(ii) For every x ∈ D(Aα), it follows that T (t)Aαx = AαT (t)x.
(iii) For every t > 0, the operator AαT (t) is bounded and

‖AαT (t)‖ ≤Mαt
−αe−λt, Mα > 0, λ > 0. (2.1)

(iv) For 0 < α ≤ 1 and x ∈ D(Aα), we have

‖T (t)x− x‖ ≤ Cαtα‖Aαx‖, Cα > 0.

Now, we recall the concepts of discrete almost periodic function, discrete weighted
pseudo almost periodic function, piecewise almost periodic function.

Definition 2.2 ([10]). A function f ∈ C(R, X) is said to be almost periodic if
for each ε > 0, there exists an l(ε) > 0, such that every interval J of length l(ε)
contains a number τ with the property that ‖f(t + τ) − f(t)‖ < ε for all t ∈ R.
Denote by AP (R, X) the set of such functions.
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Definition 2.3 ([19]). A sequence {xn} is called almost periodic if for any ε > 0,
there exists a relatively dense set of its ε-periods, i.e. there exists a natural number
l = l(ε), such that for k ∈ Z, there is at least one number p in [k, k + l], for which
inequality ‖xn+p − xn‖ < ε holds for all n ∈ N. Denote by AP (Z, X) the set of
such sequences.

Let Ud denote the collection of functions (weights) ρ : Z→ (0,+∞). For ρ ∈ Ud
and m ∈ Z+ = {n ∈ Z, n ≥ 0}, set µ(m, ρ) :=

∑m
k=−m ρk. Denote Ud,∞ := {ρ ∈

Ud : limm→∞ µ(m, ρ) =∞}.
For ρ ∈ Ud,∞, define

AAP0(Z, X) = {xn ∈ l∞(Z, X) : lim
n→∞

‖xn‖ = 0}.

WPAP0(Z, X, ρ) := {xn ∈ l∞(Z, X), lim
m→∞

1
µ(m, ρ)

m∑
k=−m

‖xk‖ρk = 0}.

Definition 2.4 ([18]). A sequence {xn}n∈Z ∈ l∞(Z, X) is called discrete asymp-
totically almost periodic if xn = x1

n+x2
n, where x1

n ∈ AP (Z, X), x2
n ∈ AAP0(Z, X).

Denote by AAP (Z, X) the set of such sequences.

Definition 2.5 ([9]). Let ρ ∈ Ud,∞. A sequence {xn}n∈Z ∈ l∞(Z, X) is called
discrete weighted pseudo almost periodic if it can be expressed as xn = x1

n + x2
n,

where x1
n ∈ AP (Z, X) and x2

n ∈ WPAP0(Z, X, ρ). The set of such functions
denoted by WPAP (Z, X, ρ).

For {ti}i∈Z ∈ T , {tji} defined by {tji = ti+j − ti}, i ∈ Z, j ∈ Z.

Definition 2.6 ([19]). A function f ∈ PC(R, X) is said to be piecewise almost
periodic if the following conditions are fulfilled:

(1) {tji = ti+j− ti}, i, j ∈ Z are equipotentially almost periodic, that is, for any
ε > 0, there exists a relatively dense set in R of ε-almost periods common
for all of the sequences {tji}.

(2) For any ε > 0, there exists a positive number δ = δ(ε) such that if the points
t′ and t′′ belong to the same interval of continuity of f and |t′ − t′′| < δ,
then ‖f(t′)− f(t′′)‖ < ε.

(3) For any ε > 0, there exists a relatively dense set Ωε in R such that if τ ∈ Ωε,
then

‖f(t+ τ)− f(t)‖ < ε

for all t ∈ R which satisfy the condition |t− ti| > ε, i ∈ Z.

We denote by APp(R, X) the space of all piecewise almost periodic functions.
Throughout the rest of this paper, we always assume that {tji} are equipotentially
almost periodic. Let UPC(R, X) be the space of all functions f ∈ PC(R, X) such
that f satisfies the condition (2) in Definition 2.6.

Definition 2.7. f ∈ PC(R × Ω, X) is said to be piecewise almost periodic in t
uniformly in x ∈ Ω if for each compact set K ⊆ Ω, {f(·, x) : x ∈ K} is uniformly
bounded, and given ε > 0, there exists a relatively dense set Ωε such that ‖f(t +
τ, x) − f(t, x)‖ ≤ ε for all x ∈ K, τ ∈ Ωε and t ∈ R, |t − ti| > ε. Denote by
APp(R× Ω, X) the set of all such functions.
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Lemma 2.8 ([19]). If the sequences {tji} are equipotentially almost periodic, then
for each j > 0, there exists a positive integer N such that on each interval of length
j, there are no more than N elements of the sequence {ti}, i.e.,

i(s, t) ≤ N(t− s) +N,

where i(s, t) is the number of the points {ti} in the interval [s, t].

Lemma 2.9 ([19]). Assume that f ∈ APp(R, X), {xi}i∈Z ∈ AP (Z, X), and {tji},
j ∈ Z are equipotentially almost periodic. Then for each ε > 0, there exist relatively
dense sets Ωε of R and Qε of Z such that

(i) ‖f(t+ τ)− f(t)‖ < ε for all t ∈ R, |t− ti| > ε, τ ∈ Ωε and i ∈ Z.
(ii) ‖xi+q − xi‖ < ε for all q ∈ Qε and i ∈ Z.
(iii) |tqi − τ | < ε for all q ∈ Qε, τ ∈ Ωε and i ∈ Z.

Now, we give the generalized Gronwall-Bellman inequality which will be used
later, one can see [12, Theorem 2.1] for more details.

Lemma 2.10 (generalized Gronwall-Bellman inequality). Let a nonnegative func-
tion u(t) ∈ PC(R, X) satisfy for t ≥ t0

u(t) ≤ n(t) +
∫ t

t0

v(τ)u(τ)dτ +
∑

t0<ti<t

βiu(τi),

with n(t) a positive nondecreasing function for t ≥ t0, βi ≥ 0, v(τ) ≥ 0 and τi are
the first kind discontinuity points of the functions u(t). Then the following estimate
holds for the function u(t),

u(t) ≤ n(t)
∏

t0<ti<t

(1 + βi)e
R t
t0
v(τ)dτ

.

3. Piecewise weighted pseudo almost periodicity

In this section, we introduce the concept of piecewise weighted pseudo almost
periodic function, explore its properties and establish the composition theorem.

Let U be the set of all functions ρ : R → (0,∞) which are positive and locally
integrable over R. For a given r > 0 and each ρ ∈ U , set

µ(r, ρ) :=
∫ r

−r
ρ(t)dt.

Define

U∞ := {ρ ∈ U : lim
r→∞

µ(r, ρ) =∞},

UB := {ρ ∈ U∞ : ρ is bounded and inf
x∈R

ρ(x) > 0}.

It is clear that UB ⊂ U∞ ⊂ U .

Definition 3.1. Let ρ1, ρ2 ∈ U∞, ρ1 is said to be equivalent to ρ2 (i.e. ρ1 ∼ ρ2) if
ρ1
ρ2
∈ UB
It is trivial to show that “∼” is a binary equivalence relation on U∞. The

equivalence class of a given weight ρ ∈ U∞ is denoted by cl(ρ) = {% ∈ U∞ : ρ ∼ %}.
It is clear that U∞ =

⋃
ρ∈U∞ cl(ρ).

For ρ ∈ U∞, define

PC0
p(R, X) = {f ∈ PC(R, X) : lim

t→∞
‖f(t)‖ = 0},
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WPAP 0
p (R, X, ρ) := {f ∈ PC(R, X) : lim

r→∞

1
µ(r, ρ)

∫ r

−r
ρ(t)‖f(t)‖dt = 0},

WPAP 0
p (R× Ω, X, ρ)

=
{
f ∈ PC(R× Ω, X) : lim

r→∞

1
µ(r, ρ)

∫ r

−r
ρ(t)‖f(t, x)‖dt = 0 uniformly with

respect to x ∈ K, where K is an arbitrary compact subset of Ω
}
.

Definition 3.2. A function f ∈ PC(R, X) is said to be piecewise asymptotically
almost periodic if it can be decomposed as f = g + ϕ, where g ∈ APp(R, X) and
ϕ ∈ PC0

p(R, X). Denote by AAPp(R, X) the set of all such functions.

Definition 3.3. A function f ∈ PC(R, X) is said to be piecewise weighted pseudo
almost periodic if it can be decomposed as f = g + ϕ, where g ∈ APp(R, X) and
ϕ ∈WPAP 0

p (R, X, ρ). Denote by WPAPp(R, X, ρ) the set of all such functions.

Definition 3.4. Let WPAPp(R×Ω, X, ρ) consist of all functions f ∈ PC(R×Ω, X)
such that f = g + ϕ, where g ∈ APp(R× Ω, X) and ϕ ∈WPAP 0

p (R× Ω, X, ρ).

Let ρ ∈ U∞, τ ∈ R, and defined ρτ by ρτ (t) = ρ(t+ τ) for t ∈ R. Define [25]

UT = {ρ ∈ U∞ : ρ ∼ ρτ for each τ ∈ R}.
It is easy to see that UT contains many of weights, such as 1, (1 + t2)/(2 + t2), et,
and 1 + |t|n with n ∈ N et al.

It is obvious that (WPAPp(R, X, ρ), ‖·‖∞) (resp. (WPAPp(R×Y,X, ρ), ‖·‖∞)),
ρ ∈ UT is a Banach space when endowed with the sup norm.

Remark 3.5. (i) For ρ ∈ UT , WPAP 0
p (R, X, ρ) is a translation invariant set

of PC(R, X).
(ii) PC0

p(R, X) ⊂WPAP 0
p (R, X, ρ) and AAPp(R, X) ⊂WPAPp(R, X, ρ)

Similarly as the proof of [7, Lemma 2.5], one has the following lemma.

Lemma 3.6. Let {fn}n∈N ⊂ WPAP 0
p (R, X, ρ) be a sequence of functions. If fn

converges uniformly to f , then f ∈WPAP 0
p (R, X, ρ).

Similarly as the proof of [14], the following results and the composition theorems
are hold for piecewise weighted pseudo almost periodic function.

Theorem 3.7. Suppose the sequence of vector-valued functions {Ii}i∈Z is weighted
pseudo almost periodic, i.e, for any x ∈ Ω, {Ii(x), i ∈ Z} is a weighted pseudo
almost periodic sequence. Assume that the following conditions hold:

(i) {Ii(x), i ∈ Z, x ∈ K} is bounded for every bounded subset K ⊂ Ω.
(ii) Ii(x) is uniformly continuous in x ∈ Ω uniformly in i ∈ Z.

If φ ∈WPAPp(R, X, ρ)∩UPC(R, X) such that R(φ) ⊂ Ω, then Ii(φ(ti)) is weighted
pseudo almost periodic.

Corollary 3.8. Assume that the sequence of vector-valued functions {Ii}i∈Z is
weighted pseudo almost periodic, and there exists a constant L1 > 0 such that

‖Ii(u)− Ii(v)‖ ≤ L1‖u− v‖, for all u, v ∈ Ω, i ∈ Z.
if φ ∈WPAPp(R, X, ρ)∩UPC(R, X) such that R(φ) ⊂ Ω, then Ii(φ(ti)) is weighted
pseudo almost periodic.
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Theorem 3.9. Suppose f ∈ WPAPp(R × Ω, X, ρ). Assume that the following
conditions hold:

(i) {f(t, u) : t ∈ R, u ∈ K} is bounded for every bounded subset K ⊆ Ω.
(ii) f(t, ·) is uniformly continuous in each bounded subset of Ω uniformly in

t ∈ R.
If ϕ ∈WPAPp(R, X, ρ) such that R(ϕ) ⊂ Ω, then f(·, ϕ(·)) ∈WPAPp(R, X, ρ).

Corollary 3.10. Let f ∈WPAPp(R×Ω, X, ρ), ϕ ∈WPAPp(R, X, ρ) and R(ϕ) ⊂
Ω. Assume that there exists a constant Lf > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, t ∈ R, u, v ∈ Ω,

then f(·, ϕ) ∈WPAPp(R, X, ρ).

4. Impulsive integro-differential equations

In this section, we investigate the existence, uniqueness and attractivity of
piecewise weighted pseudo almost periodic classical solution of nonlinear impul-
sive integro-differential equations:

du(t)
dt

+Au(t) = f(t, u(t), (Ku)(t)), t ∈ R, t 6= ti, i ∈ Z,

(Ku)(t) =
∫ t

−∞
k(t− s)g(s, u(s))ds,

∆u(ti) := u(t+i )− u(t−i ) = Ii(u(ti)),

(4.1)

First, we make the following assumptions:
(H1) −A is the infinitesimal generator of an analytic semigroup T (t) such that

‖T (t)‖ ≤Me−ωt for t ≥ 0 and 0 ∈ ρ(A).
(H2) k ∈ C(R+,R) and |k(t)| ≤ Cke−ηt for some positive constants Ck, η.
(H3) g ∈WPAPp(R×Xα, X, ρ), ρ ∈ UT and there exists a constant Lg > 0 such

that

‖g(t, u)− g(t, v)‖ ≤ Lg‖u− v‖α, t ∈ R, u, v ∈ Xα.

(H4) f ∈WPAPp(R×Xα×Xα, X, ρ), ρ ∈ UT and there exists constants Lf > 0,
0 < θ < 1 such that

‖f(t1, u1, v1)− f(t2, u2, v2)‖ ≤ Lf (|t1 − t2|θ + ‖u1 − u2‖α + ‖v1 − v2‖α),

for each (ti, ui, vi) ∈ R×Xα ×Xα, i = 1, 2.
(H5) Ii ∈WPAP (Z, X, ρ) and there exists a constant L1 > 0 such that

‖Ii(u)− Ii(v)‖ ≤ L1‖u− v‖α, t ∈ R, u, v ∈ Xα, i ∈ Z.

Before starting our main results, we recall the definition of the mild solution of
(4.1).

Definition 4.1 ([19]). A function u : R → X is called a mild solution of (4.1) if
for any t ∈ R, t > σ, σ 6= ti, i ∈ Z,

u(t) = T (t− σ)u(σ) +
∫ t

σ

T (t− s)f(s, u(s), (Ku)(s))ds+
∑

σ<ti<t

T (t− ti)Ii(u(ti)),

(4.2)
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Note that if (H1) holds, then (4.2) can be rewritten as

u(t) =
∫ t

−∞
T (t− s)f(s, u(s), (Ku)(s))ds+

∑
ti<t

T (t− ti)Ii(u(ti)).

Lemma 4.2. Assume that (H1)–(H3) hold, if u ∈WPAPp(R, Xα, ρ), then

K(A−αu)(t) :=
∫ t

−∞
k(t− s)g(s,A−αu(s))ds ∈WPAPp(R, X, ρ).

Proof. Since A−α is bounded, φ(·) = g(s,A−αu(s)) ∈ WPAPp(R, X, ρ) by Corol-
lary 3.10. Let φ = φ1 + φ2, where φ1 ∈ APp(R, X), φ2 ∈WPAP 0

p (R, X, ρ), then∫ t

−∞
k(t− s)g(s,A−αu(s))ds =

∫ t

−∞
k(t− s)φ1(s)ds+

∫ t

−∞
k(t− s)φ2(s)ds

:= Ψ1(t) + Ψ2(t),

where

Ψ1(t) =
∫ t

−∞
k(t− s)φ1(s)ds, Ψ2(t) =

∫ t

−∞
k(t− s)φ2(s)ds.

(i) Ψ1 ∈ APp(R, X). It is not difficult to see that Ψ1 ∈ UPC(R, X). Since
φ1 ∈ APp(R, X), for ε > 0, let Ωε be a relatively dense set of R formed by ε-periods
of φ1. If τ ∈ Ωε, t ∈ R, |t− ti| > ε, i ∈ Z, then

‖φ1(t+ τ)− φ1(t)‖ < ε.

Hence, by (H2), for t ∈ R, |t− ti| > ε, i ∈ Z, one has

‖Ψ1(t+ τ)−Ψ1(t)‖ = ‖
∫ t+τ

−∞
k(t+ τ − s)φ1(s)ds−

∫ t

−∞
k(t− s)φ1(s)ds‖

= ‖
∫ t

−∞
k(t− s)(φ1(s+ τ)− φ1(s))ds‖

≤
∫ t

−∞
Cke

−η(t−s)‖φ1(s+ τ)− φ1(s)‖ds

<
Ck
η
ε,

which implies that Ψ1 ∈ APp(R, X).
(ii) Ψ2 ∈WPAP 0

p (R, X, ρ). In fact, for r > 0, one has

1
µ(r, ρ)

∫ r

−r
ρ(t)‖Ψ2(t)‖dt =

1
µ(r, ρ)

∫ r

−r
ρ(t)‖

∫ t

−∞
k(t− s)φ2(s)ds‖dt

=
1

µ(r, ρ)

∫ r

−r
ρ(t)‖

∫ ∞
0

k(s)φ2(t− s)ds‖dt

≤ 1
µ(r, ρ)

∫ r

−r

∫ ∞
0

Cke
−ηsρ(t)‖φ2(t− s)‖dsdt

≤
∫ ∞

0

Cke
−ηsΦr(s)ds,

where

Φr(s) =
1

µ(r, ρ)

∫ r

−r
ρ(t)‖φ2(t− s)‖dt.
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Since φ2 ∈ WPAP 0
p (R, X, ρ), ρ ∈ UT it follows that φ2(· − s) ∈ WPAP 0

p (R, X, ρ)
for each s ∈ R by Remark 3.5, hence limr→∞Φr(s) = 0 for all s ∈ R. By using the
Lebesgue dominated convergence theorem, we have Ψ2 ∈ WPAP 0

p (R, X, ρ). This
completes the proof. �

Lemma 4.3. Assume that (H1)–(H4) hold, if u ∈WPAPp(R, X, ρ), then

(Λu)(t) :=
∫ t

−∞
AαT (t− s)f(s,A−αu(s),K(A−αu(s)))ds ∈WPAAp(R, X, ρ).

Proof. We first show that Λu is well defined. In fact, if u ∈ WPAAp(R, X, ρ), one
has K(A−αu) ∈WPAAp(R, X, ρ) by Lemma 4.2, and f(·, A−αu(·),K(A−αu(·))) ∈
WPAAp(R, X, ρ) by Corollary 3.10. Hence h(·) = f(·, A−αu(·),K(A−αu(·))) ∈
WPAAp(R, X, ρ), then ‖h‖ := supt∈R ‖h(t)‖ <∞. By Lemma 2.1, one has

‖AαT (t− s)f(s,A−αu(s),K(A−αu(s)))‖ ≤Mα(t− s)−αe−λ(t−s)‖h(s)‖

≤Mα(t− s)−αe−λ(t−s)‖h‖,
since ∫ t

−∞
(t− s)−αe−λ(t−s)ds = λα−1Γ(1− α),

where Γ is the classical Gamma function. Hence

AαT (t− s)f(s,A−αu(s),K(A−αu(s)))

is integrable over (−∞, t) for t ∈ R.
Now, let h = h1 + h2, where h1 ∈ APp(R, X), h2 ∈WPAP 0

p (R, X, ρ), then

(Λu)(t) =
∫ t

−∞
AαT (t− s)h1(s)ds+

∫ t

−∞
AαT (t− s)h2(s)ds

:= Λ1(t) + Λ2(t),

where

Λ1(t) =
∫ t

−∞
AαT (t− s)h1(s)ds, Λ2(t) =

∫ t

−∞
AαT (t− s)h2(s)ds.

(i) Λ1 ∈ UPC(R, X). Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′, then

Λ1(t′)− Λ1(t′′)

=
∫ t′

−∞
AαT (t′ − s)h1(s)ds−

∫ t′′

−∞
AαT (t′′ − s)h1(s)ds

=
∫ t′′

−∞
Aα(T (t′ − s)− T (t′′ − s))h1(s)ds+

∫ t′

t′′
AαT (t′ − s)h1(s)ds

=
∫ t′′

−∞
[T (t′ − t′′)− I]AαT (t′′ − s)h1(s)ds+

∫ t′

t′′
AαT (t′ − s)h1(s)ds,

It is easy to see that for any ε > 0, there exists

0 < δ <
( (1− α)ε

2Mα‖h1‖

)1/(1−α)

such that if t′, t′′ belongs to a same continuity and 0 < t′ − t′′ < δ, then

‖T (t′ − t′′)− I‖ ≤ ε

2Mα‖h1‖λα−1Γ(1− α)
.



EJDE-2015/185 PSEUDO ALMOST PERIODIC SOLUTIONS 9

So

‖Λ1(t′)− Λ1(t′′)‖

≤
∫ t′′

−∞
‖[T (t′ − t′′)− I]AαT (t′′ − s)h1(s)‖ds+

∫ t′

t′′
‖AαT (t′ − s)h1(s)‖ds

≤
∫ t′′

−∞

ε

2Mαλα−1Γ(1− α)‖h1‖
Mα(t′′ − s)−αe−λ(t′′−s)‖h1‖ds

+
∫ t′

t′′
Mα(t′ − s)−αe−λ(t′−s)‖h1‖ds

≤ ε

2
+
Mα‖h1‖δ1−α

1− α
≤ ε

2
+
ε

2
= ε,

which implies that Λ1 ∈ UPC(R, X).
(ii) Λ1 ∈ APp(R, X). Since h1 ∈ APp(R, X), for ε > 0, there exists a relatively

dense set Ωε such that for τ ∈ Ωε, t ∈ R, |t− ti| > ε, i ∈ Z,

‖h1(t+ τ)− h1(t)‖ < ε.

Hence, by Lemma 2.1, for t ∈ R, |t− ti| > ε, i ∈ Z, one has

‖Λ1(t+ τ)− Λ1(t)‖

= ‖
∫ t+τ

−∞
AαT (t+ τ − s)h1(s)ds−

∫ t

−∞
AαT (t− s)h1(s)ds‖

= ‖
∫ t

−∞
AαT (t− s)(h1(s+ τ)− h1(s))ds‖

≤
∫ t

−∞
‖AαT (t− s)(h1(s+ τ)− h1(s))‖ds

≤
∫ t

−∞
Mα(t− s)−αe−λ(t−s)‖h1(s+ τ)− h1(s)‖ds

< Mαλ
α−1Γ(1− α)ε,

that is Λ1 ∈ APp(R, X).
(iii) Λ2 ∈WPAP 0

p (R, X). In fact, for r > 0, one has

1
µ(r, ρ)

∫ r

−r
ρ(t)‖Λ2(t)‖dt =

1
µ(r, ρ)

∫ r

−r
ρ(t)‖

∫ t

−∞
AαT (t− s)h2(s)ds‖dt

=
1

µ(r, ρ)

∫ r

−r
ρ(t)‖

∫ ∞
0

AαT (s)h2(t− s)ds‖dt

≤ 1
µ(r, ρ)

∫ r

−r

∫ ∞
0

ρ(t)‖AαT (s)h2(t− s)‖dsdt

≤ 1
µ(r, ρ)

∫ r

−r

∫ ∞
0

Mαs
−αe−λsρ(t)‖h2(t− s)‖dsdt

≤Mα

∫ ∞
0

s−αe−λsHr(s)ds,
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where

Hr(s) =
1

µ(r, ρ)

∫ r

−r
ρ(t)‖h2(t− s)‖dt.

Since h2 ∈ WPAP 0
p (R, X, ρ), ρ ∈ UT , it follows that h2(· − s) ∈ WPAP 0

p (R, X, ρ)
for each s ∈ R by Remark 3.5, hence limr→∞Hr(s) = 0 for all s ∈ R. By using the
Lebesgue dominated convergence theorem, we have Λ2 ∈WPAP 0

p (R, X, ρ). �

Theorem 4.4. Assume that (H1)–(H5) hold and if Θ < 1, where

Θ := Mαλ
α−1Γ(1− α)Lf

(
LgCkη

−1 + 1
)

+ 2MαNL1

(
m−α + (eλ − 1)−1

)
,

then (4.1) has a unique classical solution u ∈ WPAPp(R, X, ρ) and u(t) is an
attractor.

Proof. Let F : WPAPp(R, X, ρ)∩UPC(R, X)→ PC(R, X) be the operator defined
by

(Fu)(t) =
∫ t

−∞
AαT (t− s)f(s,A−αu(s),K(A−αu(s)))ds

+
∑
ti<t

AαT (t− ti)Ii(A−αu(ti)).
(4.3)

We will show that F has a fixed point in WPAPp(R, X, ρ)∩UPC(R, X) and divide
the proof into several steps.

(i) Fu ∈WPAPp(R, X, ρ)∩UPC(R, X). As in the proof of Lemma 4.3, it is not
difficult to see that Fu ∈ UPC(R, X). Next, we show that Fu ∈WPAPp(R, X, ρ).
For u ∈WPAPp(R, X, ρ), By Lemma 4.3, one has

(Λu)(t) =
∫ t

−∞
AαT (t− s)f(s,A−αu(s),K(A−αu(s)))ds ∈WPAPp(R, X, ρ),

It remains to show that∑
ti<t

AαT (t− ti)Ii(A−αu(ti)) ∈WPAPp(R, X, ρ). (4.4)

By Corollary 3.8, Ii(A−αu(ti)) ∈WPAP (Z, X, ρ), then let Ii(A−αu(ti)) = βi +
γi, where βi ∈ AP (Z, X) and γi ∈WPAP0(Z, X, ρ), so∑

ti<t

AαT (t− ti)Ii(A−αu(ti)) =
∑
ti<t

AαT (t− ti)βi +
∑
ti<t

AαT (t− ti)γi

:= Φ1(t) + Φ2(t).

Since {tji}, i, j ∈ Z are equipotentially almost periodic, then by Lemma 2.9, for
any ε > 0, there exists relative dense sets of real numbers Ωε and integers Qε, such
that for ti < t ≤ ti+1, τ ∈ Ωε, q ∈ Qε, |t− ti| > ε, |t− ti+1| > ε, j ∈ Z, one has

t+ τ > ti + ε+ τ > ti+q,

ti+q+1 > ti+1 + τ − ε > t+ τ,

that is, ti+q < t+ τ < ti+q+1; then

‖Φ1(t+ τ)− Φ1(t)‖

= ‖
∑

ti<t+τ

AαT (t+ τ − ti)βi −
∑
ti<t

AαT (t− ti)βi‖
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≤
∑
ti<t

‖AαT (t− ti)(βi+q − βi)‖

≤
∑
ti<t

Mα(t− ti)−αe−λ(t−ti)‖βi+q − βi‖

≤Mαε
∑
ti<t

(t− ti)−αe−λ(t−ti)

≤Mαε
( ∑

0<t−ti≤1

(t− ti)−αe−λ(t−ti) +
∞∑
j=1

∑
j<t−ti≤j+1

(t− ti)−αe−λ(t−ti)
)

≤Mαε
( ∑

0<t−ti≤1

(t− ti)−α +
∞∑
j=1

∑
j<t−ti≤j+1

e−λ(t−ti)
)

≤ 2MαNε(m−α + (eλ − 1)−1),

where m = min{t− ti, 0 < t− ti ≤ 1}, N is the constant in the Lemma 2.8. Hence
Φ1 ∈ APp(R, X).

Next, we show that Φ2 ∈ WPAP 0
p (R, X, ρ). For a given i ∈ Z, define the

function η(t) by
η(t) = AαT (t− ti)γi, ti < t ≤ ti+1,

then

lim
t→∞

‖η(t)‖ = lim
t→∞

‖AαT (t− ti)γi‖ ≤ lim
t→∞

Mα(t− ti)−αe−λ(t−ti)‖γi‖ = 0,

then η ∈ PC0
p(R, X) ⊂WPAP 0

p (R, X, ρ). Define ηn : R→ X by

ηn(t) = AαT (t− ti−n)γi−n, ti < t ≤ ti+1, n ∈ N+,

so ηn ∈WPAP 0
p (R, X, ρ). Moreover,

‖ηn(t)‖ = ‖AαT (t− ti−n)γi−n‖

≤Mα sup
i∈Z
‖γi‖(t− ti−n)−αe−λ(t−ti−n)

≤Mα sup
i∈Z
‖γi‖(t− ti + nκ)−αe−λ(t−ti)e−λκn

≤Mα sup
i∈Z
‖γi‖κ−αn−αe−λκn,

therefore, the series
∑∞
n=1 ηn is uniformly convergent on R. By Lemma 3.6, one

has

Φ2(t) =
∑
ti<t

AαT (t− ti)γi =
∞∑
n=0

ηn ∈WPAP 0
p (R, X, ρ).

So (4.4) holds.
(ii) F is a contraction. For u, v ∈WPAPp(R, X, ρ) ∩ UPC(R, X),

‖(Fu)(t)− (Fv)(t)‖

≤
∫ t

−∞
‖AαT (t− s)[f(s,A−αu(s),K(A−αu(s)))− f(s,A−αv(s),K(A−αv(s)))]‖ds

+
∑
ti<t

‖AαT (t− ti)[Ii(A−αu(ti))− Ii(A−αv(ti))]‖
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≤
∫ t

−∞
Mα(t− s)−αe−λ(t−s)∥∥f(s,A−αu(s),K(A−αu(s)))

− f(s,A−αv(s),K(A−αv(s)))
∥∥ds

+
∑
ti<t

Mα(t− ti)−αe−λ(t−ti)‖Ii(A−αu(ti))− Ii(A−αv(ti))‖

≤
[
Mαλ

α−1Γ(1− α)Lf
(
LgCkη

−1 + 1
)

+ 2MαNL1

(
m−α + (eλ − 1)−1

) ]
‖u− v‖,

Since Θ < 1, F is a contraction.
By the Banach contraction mapping principle, F has a unique fixed point u0 ∈

WPAPp(R, X, ρ) such that

u0 =
∫ t

−∞
AαT (t− s)f(s,A−αu0(s),K(A−αu0(s)))ds

+
∑
ti<t

AαT (t− ti)Ii(A−αu0(ti)).
(4.5)

Since Aα is closed,

A−αu0 =
∫ t

−∞
T (t−s)f(s,A−αu0(s),K(A−αu0(s)))ds+

∑
ti<t

T (t−ti)Ii(A−αu0(ti)).

Which implies that A−αu0 is a mild solution of (4.1). Next, we show that it is a
classical solution.

(iii) u0 is Hölder continuous. Note that for every 0 < β < 1− α and h ∈ (0, κ),
t ∈ (ti, ti+1 − h], by Lemma 2.1, one has

‖(T (h)− I)AαT (t− s)‖ ≤ Cβhβ‖Aα+βT (t− s)‖
and

‖u0(t+ h)− u0‖

≤ ‖
∫ t

−∞
(T (h)− I)AαT (t− s)f(s,A−αu0(s),K(A−αu0(s)))ds‖

+ ‖
∫ t+h

t

AαT (t+ h− s)f(s,A−αu0(s),K(A−αu0(s)))ds‖

≤Mα+βMCβh
β

∫ t

−∞
(t− s)−(α+β)e−λ(t−s)ds+MαM

∫ t+h

t

T (t+ h− s)−αds

≤Mα+βMCβh
β

∫ t

−∞
(t− s)−(α+β)e−λ(t−s)ds+MαM

h1−α

1− α
,

where
M = sup

(t,u,v)∈R×Xα×Xα
‖f(t, u, v)‖.

It follows that there is a constant C > 0 such that

‖u0(t+ h)− u0‖ ≤ Chβ

and therefore u0 is Hölder continuous on R.
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Finally, it remains to prove that t → f(t, A−αu0(t),K(A−αu0(t))) is Hölder
continuous on R. By (H4), one has

‖f(t, A−αu0(t),K(A−αu0(t)))− f(s,A−αu0(s),K(A−αu0(s)))‖

≤ Lf (|t− s|θ + ‖u0(t)− u0(s)‖+ ‖K(A−αu0(t))−K(A−αu0(s))‖α).

Hence f(t, A−αu0(t),K(A−αu0(t))) is Hölder continuous on R. Let u0 be the solu-
tion of (4.5) and consider the equation

du(t)
dt

+Au(t) = f(t, A−αu0(t),K(A−αu0(t))), t ∈ R, t 6= ti, i ∈ Z,

∆u(ti) = Ii(A−αu0(ti)).

Then this equation has a unique classical solution given by [21]

u(t) =
∫ t

−∞
T (t− s)f(s,A−αu0(s),K(A−αu0(s)))ds+

∑
ti<t

T (t− ti)Ii(A−αu0(ti)).

Moreover, we have u(t) ∈ D(A) and u(t) ∈ D(Aα). Therefore, it follows that

Aαu(t) =
∫ t

−∞
AαT (t− s)f(s,A−αu0(s),K(A−αu0(s)))ds

+
∑
ti<t

AαT (t− ti)Ii(A−αu0(ti))

= u0(t),

which implies that u(t) = A−αu0(t) is the classical solution of (4.1), which is a
piecewise weighted almost periodic solution.

Next, we show the attractivity of u(t). Since u(t) ∈ D(Aα) is the WPAPp mild
solution, so if t > σ, σ 6= ti, i ∈ Z,

u(t) = T (t− σ)u(σ) +
∫ t

σ

T (t− s)f(s, u(s), (Ku)(s))ds+
∑

σ<ti<t

T (t− ti)Ii(u(ti)).

Let u(t) = u(t, σ, ϕ) and v(t) = v(t, σ, ψ) be two mild solution of (4.1), then

u(t) = T (t− σ)ϕ+
∫ t

σ

T (t− s)f(s, u(s), (Ku)(s))ds+
∑

σ<ti<t

T (t− ti)Ii(u(ti)),

v(t) = T (t− σ)ψ +
∫ t

σ

T (t− s)f(s, v(s), (Kv)(s))ds+
∑

σ<ti<t

T (t− ti)Ii(v(ti)).

So

‖u(t)− v(t)‖α ≤ ‖AαT (t− σ)[ϕ− ψ]‖

+ ‖
∫ t

σ

AαT (t− s)[f(s, u(s), (Ku)(s))− f(s, v(s), (Kv)(s))]ds‖

+ ‖
∑

σ<ti<t

AαT (t− ti)[Ii(u(ti))− Ii(v(ti))]‖

≤Mα(t− σ)−αe−λ(t−σ)‖ϕ− ψ‖

+
∫ t

σ

Mα(t− s)−αe−λ(t−s)Lf (LgCkη−1 + 1)‖u(s)− v(s)‖αds
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+
∑

σ<ti<t

Mα(t− ti)−αe−λ(t−ti)L1‖u(t)− v(t)‖α.

For Mακ
−αLf (LgCkη−1 + 1) < λ, one has e[Mακ

−αLf (LgCkη
−1+1)−λ](t−σ) → 0,

and (t − σ)−α → 0, (t − ti)−α → 0 as t → ∞, hence for ε > 0, there exist
T > max(0, σ + κ), such that for t > T ,

e[Mακ
−αLf (LgCkη

−1+1)−λ](t−σ) < ε, (t− σ)−α < ε, (t− ti)−α < ε.

Hence for t > T , one has

‖u(t)− v(t)‖α ≤Mα(t− σ)−αe−λ(t−σ)‖ϕ− ψ‖

+
∫ t−κ

σ

Mα(t− s)−αe−λ(t−s)Lf (LgCkη−1 + 1)‖u(s)− v(s)‖αds

+
∫ t

t−κ
Mα(t− s)−αe−λ(t−s)Lf (LgCkη−1 + 1)‖u(s)− v(s)‖αds

+
∑

σ<ti<t

Mα(t− ti)−αe−λ(t−ti)L1‖u(t)− v(t)‖α

≤Mαεe
−λ(t−σ)‖ϕ− ψ‖

+
∫ t−κ

σ

Mακ
−αe−λ(t−s)Lf (LgCkη−1 + 1)‖u(s)− v(s)‖αds

+MαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)
∫ t

t−κ
(t− s)−αds

+
∑

σ<ti<t

Mαεe
−λ(t−ti)L1‖u(t)− v(t)‖α

≤Mαεe
−λ(t−σ)‖ϕ− ψ‖

+
∫ t

σ

Mακ
−αe−λ(t−s)Lf (LgCkη−1 + 1)‖u(s)− v(s)‖αds

+MαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

+
∑

σ<ti<t

Mαεe
−λ(t−ti)L1‖u(t)− v(t)‖α.

Let y(t) = eλt‖u(t)− v(t)‖α, then

y(t) ≤Mαεy(σ) + eλtMαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

+
∫ t

σ

Mακ
−αLf (LgCkη−1 + 1)y(s)ds+

∑
σ<ti<t

MαεL1y(ti).

By the generalized Gronwall-Bellman inequality (Lemma 2.10), one has

‖y(t)‖ ≤
[
Mαεy(σ) + eλtMαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

]
×

∏
σ<ti<t

(1 +MαL1ε)eMακ
−αLf (LgCkη

−1+1)(t−σ)

=
[
Mαεy(σ) + eλtMαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

]
× (1 +MαL1ε)i(σ,t)eMακ

−αLf (LgCkη
−1+1)(t−σ),
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where i(σ, t) defined in Lemma 2.8. That is

‖u(t)− v(t)‖α
≤
[
Mαε‖ϕ− ψ‖+MαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

]
× (1 +MαL1ε)i(σ,t)e[Mακ

−αLf (LgCkη
−1+1)−λ](t−σ)

≤
[
Mαε‖ϕ− ψ‖+MαLf (LgCkη−1 + 1)(‖u‖α,∞ + ‖v‖α,∞)κ1−α(1− α)−1

]
× (1 +MαL1ε)i(σ,t)ε,

so u(t) is an attractor. �

Remark 4.5. Consider the nonlinear impulsive integro-differential equations with
delay:

du(t)
dt

+Au(t) = f(t, u(t− τ), (Ku)(t)), t ∈ R, t 6= ti, i ∈ Z,

(Ku)(t) =
∫ t

−∞
k(t− s)g(s, u(s))ds,

∆u(ti) := u(t+i )− u(t−i ) = Ii(u(ti)),

(4.6)

where τ ∈ R+. Note that if u = u1+u2 ∈WPAPp(R, X, ρ), where u1 ∈ APp(R, X),
u2 ∈WPAP 0

p (R, X, ρ). For given τ ∈ R+, it is not difficult to see that u1(t− τ) ∈
APp(R, X). For r > 0, we see that

1
µ(r, ρ)

∫ r

−r
ρ(t)‖u2(t− τ)‖dt

=
1

µ(r, ρ)

∫ r−τ

−r−τ
ρ(t+ τ)‖u2(t)‖dt

≤ µ(r + τ, ρ)
µ(r, ρ)

× 1
µ(r + τ, ρ)

∫ r+τ

−r−τ

ρ(t+ τ)
ρ(t)

ρ(t)‖u2(t)‖dt.

Since ρ ∈ UT , it implies that there exists η > 0 such that ρ(t+τ)
ρ(t) ≤ η, ρ(t−τ)

ρ(t) ≤ η,
for r > τ ,

µ(r + τ, ρ) =
∫ r−τ

−r−τ
ρ(t)dt+

∫ r+τ

r−τ
ρ(t)dt

≤
∫ r−τ

−r−τ
ρ(t)dt+

∫ r+τ

−r+τ
ρ(t)dt

=
∫ r

−r
ρ(t− τ)dt+

∫ r

−r
ρ(t+ τ)dt ≤ 2ηµ(r, ρ),

then by u2 ∈WPAP 0
p (R, X, ρ), one has

1
µ(r, ρ)

∫ r

−r
ρ(t)‖u2(t− τ)‖dt ≤ 2η2

µ(r + τ, ρ)

∫ r+τ

−r−τ
ρ(t)‖u2(t)‖dt→ 0

as →∞. Hence u2(t− τ) ∈ WPAP 0
p (R, X, ρ), that is u(t− τ) ∈ WPAPp(R, X, ρ)

for τ ∈ R+. Thus the conclusion of Theorem 4.4 holds for (4.6).
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Remark 4.6. If (Ku)(t) = 0, then impulsive integro-differential equations (4.1)
become nonlinear impulsive differential equations:

du(t)
dt

+Au(t) = f(t, u(t)), t ∈ R, t 6= ti, i ∈ Z,

∆u(ti) = Ii(u(ti)),
(4.7)

By Theorem 4.4, one has the following corollary.

Corollary 4.7. Assume that (H1), (H5) hold and satisfy the condition:
(H4’) f ∈ WPAPp(R × Xα, X, ρ), ρ ∈ UT and there exists constants Lf > 0,

0 < θ < 1 such that

‖f(t1, u)− f(t2, v)‖ ≤ Lf (|t1 − t2|θ + ‖u− v‖α), t ∈ R, u, v ∈ Xα,

then (4.7) has a unique classical solution u ∈WPAPp(R, X, ρ) which is an attractor
if

ϑ := Mαλ
α−1Γ(1− α)Lf + 2MαNL1

(
m−α + (eλ − 1)−1

)
< 1.

5. Example

Consider the integro-differential equation with impulsive effects

∂w(t, x)
∂t

− ∂2w(t, x)
∂x2

= f(t, x, w(t, x),Kw(t, x)), t ∈ R, t 6= ti, i ∈ Z, x ∈ (0, 1),

Kw(t, x) =
∫ t

−∞
e−η(t−s)g(s, x, w(s, x))ds,

∆w(ti, x) = βiw(ti, x), i ∈ Z, x ∈ [0, 1],

w(t, 0) = w(t, 1) = 0,
(5.1)

where ti = i + 1
4 | sin i + sin

√
2i|, βi ∈ WPAP (Z,R, ρ), ρ ∈ UT . Note that {tji},

i ∈ Z, j ∈ Z are equipotentially almost periodic and κ = infi∈Z(ti+1 − ti) > 0, one
can see [14, 19] for more details.

Define the operator A by

Au := −u′′, u ∈ D(A),

where
D(A) := {u ∈ H1

0 ((0, 1),R) ∩H2((0, 1),R) : u′′ ∈ H}.
The operator A is the infinitesimal generator of an analytic semigroup (T (t))t≥0

and also self adjoint [17]. Let α = 1/2, so D(A1/2) is a Banach space endowed with
the norm

‖u‖1/2 = ‖A1/2u‖, u ∈ D(A1/2).

We call this space X1/2. For more details about X1/2, one can see [2].
Let u(t)x = w(t, x), t ∈ R, x ∈ [0, 1] and

f(t, u(t), (Ku)(t))(x) = f(t, x, w(t, x),Kw(t, x)).

Then (5.1) can be rewritten as the abstract form (4.1). Since Ii(u) = βiu and
βi ∈WPAP (Z,R, ρ), then (H5) hold with L1 = supi∈Z ‖βi‖. By Theorem 4.4, one
has the following result.

Theorem 5.1. Assume that
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(A1) g ∈ WPAPp(R × X1/2, X, ρ), ρ ∈ UT and there exists a constant Lg > 0
such that

‖g(t, u)− g(t, v)‖ ≤ Lg‖u− v‖1/2, t ∈ R, u, v ∈ X1/2.

(A2) f ∈ WPAPp(R × X1/2 × X1/2, X, ρ), ρ ∈ UT and there exists constants
Lf > 0, 0 < θ < 1 such that

‖f(t1, u1, v1)− f(t2, u2, v2)‖ ≤ Lf (|t1 − t2|θ + ‖u1 − u2‖1/2 + ‖v1 − v2‖1/2),

for each (ti, ui, vi) ∈ R×X1/2 ×X1/2, i = 1, 2.
(A3) βi ∈WPAP (Z,R, ρ), ρ ∈ UT .

then (5.1) has a unique WPAPp solution which is an attractor if ϑ < 1, where

ϑ := Mαλ
− 1

2 Γ
(1

2
)
Lf
(
Lgη

−1 + 1
)

+ 2MαN
(
m−

1
2 + (eλ − 1)−1

)
sup
i∈Z
‖βi‖.

Conclusion. The notion of almost periodic function AP (R, X) introduced by Bohr
in 1925. Since then, there have various important generalization of this concept,
like:

(i) Asymptotically almost periodic function AAP (R, X);
(ii) Weakly almost periodic function WAP (R, X);
(iii) Pseudo almost periodic function PAP (R, X);
(iv) Weighted pseudo almost periodic function WPAP (R, X, ρ);

and many more. For origin references, details of these functions, one can see [22]
and the relationship between these functions as follows:

AP (R, X) ⊂ AAP (R, X) ⊂WAP (R, X) ⊂ PAP (R, X) ⊂WPAP (R, X, ρ).

The application of these functions in the context of various kinds of abstract dif-
ferential equations attracted many mathematicians. In this paper, by the fixed
point theorem and fractional powers of operators, we investigate the applications
of weighted pseudo almost periodic functions to the impulsive integro-differential
equations. The existence, uniqueness and attractivity of piecewise WPAP classical
solutions of nonlinear impulsive integro-differential equations are given.
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