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TWO TYPES OF GROUND STATE SOLUTIONS FOR A
PERIODIC SCHRÖDINGER EQUATIONS WITH ZERO ON THE

BOUNDARY OF THE SPECTRUM

DONGDONG QIN, XIANHUA TANG

Abstract. This article concerns the Schrödinger equation

−∆u+ V (x)u = f(x, u), for x ∈ RN ,

u(x)→ 0, as |x| → ∞ .

Assuming that V and f are periodic in x, and 0 is a boundary point of the

spectrum σ(−∆ + V ), two types of ground state solutions are obtained with

some super-quadratic conditions.

1. Introduction and main results

We consider the Schrödinger equation

−∆u+ V (x)u = f(x, u), for x ∈ RN ,
u(x)→ 0, as |x| → ∞,

(1.1)

where V : RN → R and f : RN × R → R is superlinear as |u| → ∞. (1.1) has
been widely investigated in the literature over the past several decades for both its
importance in applications and mathematical interest, see, e.g., [3, 4, 5, 7, 8, 9, 12,
13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38,
39, 40] and the references therein. In this paper, we mainly study the case that V
and f are periodic in x and 0 is a boundary point of the spectrum σ(−∆ + V ), i.e.

(V1) V ∈ C(RN ,R) is 1-periodic in each of x1, x2, . . . , xN , 0 ∈ σ(−∆ + V ), and
there exists a b0 > 0 such that (0, b0] ∩ σ(−∆ + V ) = ∅;

Compared to the situation that 0 lies in a gap of σ(−∆ + V ), this case is very
difficult because H1(RN ) is no longer the working space on which the variational
functional associated with (1.1) defines. Indeed, the working space is only a Banach
space, not a Hilbert space. In particular, there are considerably fewer results, see
[3, 21, 24, 25, 33, 37, 39].

Bartsch and Ding [3] obtained a weak solution with a stronger version of the
classic condition
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(AR) there exist constants µ > 2 such that

0 < µF (x, t) ≤ tf(x, t), ∀(x, t) ∈ RN × (R \ {0}).
Their main idea is to use an approximation argument to construct some kind of
Palais-Smale sequence and show that after translations a subsequence converges
in certain sense to a weak solution u of (1.1). Later, this result was improved
by Willem and Zou [37] by using an generalized weak link theorem. In a recent
publication, Yang et al.[39] established existence of one weak solution of (1.1) with
the following Nehari type assumption:

(Ne) t 7→ f(x,t)
|t| is strictly increasing on (−∞, 0) ∪ (0,∞).

Their main technique is the same as that used in [3, 37]. Later, this result was
improved by authors’s recent paper [25] by using a generalized linking theorem
established in [15, 18]. The following condition seems to be necessary to obtain the
existence of one weak solution of (1.1) in [3, 37, 39].

(F0) there exist constants c0 > 0, 2 < % < 2∗ such that

tf(x, t) ≥ c0|t|%, ∀(x, t) ∈ RN × R.
However, (F0) it is a severe restriction, since it strictly controls the growth of

f(x, t) as |t| → ∞. There are functions which are superlinear at both zero and
infinity, but do not satisfy the condition (F0). For example f(x, t) = at|t|α−2 ln(1+
|t|1/N ) with a > 0 and α ∈ (2, 2∗ − 1/N). Recently, with the aid of a proper
variational framework, Tang [33] weakened (AR), (F0) and (Ne) to the following
assumptions:

(F1) f ∈ C(RN+1,R) is 1-periodic in each of x1, x2, . . . , xN , and there exist
constants c1, c2 > 0 and 2 < % ≤ p < 2∗ such that

c1 min{|t|%, |t|2} ≤ tf(x, t) ≤ c2(|t|% + |t|p), ∀(x, t) ∈ RN × R;

(F2) lim|t|→∞ F (x, t)/t2 =∞, a.e. x ∈ RN .
(DL) F(x, t) := 1

2 tf(x, t)−F (x, t) > 0 for all x ∈ RN , t ∈ R\{0}, and there exist
r0 > 0, c0 > 0 and σ > max{1, N/2} such that

|f(x, t)|σ ≤ c0|t|σF(x, t), ∀(x, t) ∈ RN × R, |t| ≥ r0;

(Ta) there exists a θ0 ∈ (0, 1) such that

1− θ2

2
tf(x, t) ≥

∫ t

θt

f(x, s)ds = F (x, t)− F (x, θt), ∀θ ∈ [0, θ0], (x, t) ∈ RN × R.

Under basic assumptions (V1), (F1) and (F2), assuming moreover (DL) or (Ta)
holds, least energy solutions were obtained by Tang [33], i.e. a nontrivial solution
u0 ∈ E such that Φ(u0) = infM Φ, where

M = {u ∈ E \ {0} : Φ′(u) = 0}, (1.2)

E is the working space on which the energy functional Φ associated with (1.1)
defines. In recent paper [21], Mederski studied (1.1) under (Ne) by using the gen-
eralized Nehari manifold method due to Szulkin and Weth [28, 29], moreover (F0)
was weakened to a similar version of (F1) there. For multiple results of (1.1), we
refer to papers [3, 21, 24].

Condition (DL) was introduced by Ding and Lee [7], and it is commonly used
instead of condition (AR), see for instance [9, 23, 31, 32, 33] and the references
therein. Clearly, (AR) is much stronger than (DL), (F2) and (Ta). On the other
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hand, (Ta) was introduced by Tang [30] and is weaker than the following mild
version of (Ne):

(WN) t 7→ f(x,t)
|t| is non-decreasing on (−∞, 0) ∪ (0,∞).

In addition, (F1) weakens (F0) greatly and is satisfied by many functions, such as
f(x, t) = at|t|α−2 ln(1 + |t|1/N ) with a > 0 and α ∈ (2, 2∗ − 1/N). We point out
that Liu [16] first uses (WN) to replace of (Ne) for the case that 0 lies in a gap of
σ(−∆ + V ), and obtains a least energy solution. Later, this result is improved by
Tang in [30] by taking advantage of (Ta).

It is well known that for periodic potential V , the operator A := −∆ + V has
purely continuous spectrum σ(A) which is bounded below and consists of closed
disjoint intervals (see [27, Theorem XIII.100]). Before stating our main results, we
first present the following weaker version of (DL) which was introduced by Tang in
recent paper [35]:

(F3) F(x, t) ≥ 0, and there exist constants c3 > 0, δ0 ∈ (0,Λ0) and σ >
max{1, N/2} such that

f(x, t)
t
≥ (Λ0 − δ0) =⇒

(f(x, t)
t

)σ ≤ c3F(x, t),

where Λ0 := inf[σ(−∆ + V ) ∩ (0,∞)].

Clearly, Λ0 ≥ b0 by (V1), and (DL) implies (F3) under (F1). More precisely, (F3)
holds under (DL) and basic conditions that f ∈ C(RN+1,R) is 1-periodic in each
of x1, x2, . . . , xN and f(x, t) = o(|t|) as |t| → 0 uniformly in x ∈ RN . Thus (F3)
weakens (DL), and there are some functions satisfying (F3), but not (DL), see
Example 1.6 and 1.7. Moreover, it is more convenient to use, see Lemma 3.6.

In this article, we continue to study problem (1.1), and construct two types
of ground state solutions of (1.1), i.e. the least energy solution and the Nehari-
Pankov type. We first weaken (Ne) to (WN), and establish the existence of a
ground state solution of Nehari-Pankov type. The generalized Nehari manifold
method introduced by Szulkin and Weth [28, 29] can not be adopted due to the lack
of strict monotonicity, see Remark 1.3. So a new method is looked forward to being
introduced which is the right issue this paper intends to address. Inspired by the
works [3, 20, 22, 26, 28, 32, 33, 34, 35], a more direct approach is used in the present
paper. The main ingredient in our approach is the observation that a minimizing
Cerami sequence for the energy functional can be found outside the Nehari-Pankov
manifold N− by using the diagonal method, see Lemma 3.5, part of which derives
from recent papers of Tang [32, 34]. Moreover, under weaker condition (F3), a least
energy solution is obtained with the aid of a generalized linking theorem established
in [33].

Let E, E− be the Banach space defined in Section 2. Under assumptions (V1)
and (F1), the functional

Φ(u) =
∫

RN

(|∇u|2 + V (x)u2)dx−
∫

RN

F (x, u)dx, (1.3)

is well defined for all u ∈ E, moreover Φ ∈ C1(E,R), see Lemma 2.2. Denote the
Nehari-Pankov manifold by

N− = {u ∈ E \ E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0, ∀v ∈ E−}. (1.4)
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The setN− was introduced by Pankov [22], which is a subset of the Nehari manifold

N = {u ∈ E \ {0} : 〈Φ′(u), u〉 = 0}. (1.5)

Now, we are ready to state the main results of this article.

Theorem 1.1. Let (V1), (F1), (F2), (WN) be satisfied, then (1.1) has a solution
u0 ∈ E such that Φ(u0) = infN− Φ ≥ κ, where κ is a positive constant.

Theorem 1.2. Let (V1), (F1), (F2), (F3) be satisfied, then (1.1) has a solution
u0 ∈ E such that Φ(u0) = infMΦ, where M is defined by (1.2).

Note that, u ∈ N− if u 6= 0 and Φ′(u) = 0. Hence N− contains all nontrivial
critical points of Φ, i.e. M is a very small subset of N−. In general, N− contains
infinitely many elements of E. In fact, for any u ∈ E+\{0}, there exist t = t(u) > 0
and w = w(u) ∈ E− such that w + tu ∈ N− which is the global maximum of
Φ|E−⊕R+u, see Corollary 2.6 and Lemma 3.3. As a consequence of Theorem 1.1,
the least energy value m := infN− Φ has a minimax characterization given by

m = Φ(u0) = inf
u∈E+\{0}

max
v∈E−⊕R+u

Φ(v).

Note that this minimax principle is much simpler than the usual characterizations
related to the concept of linking. Since u0 is a solution at which Φ has least “energy”
in set N−, it was called a ground state solution of Nehari-Pankov type in [32, 34].

We remark that Theorems 1.1 and 1.2 generalize and improve the results in
[3, 21, 24, 33, 37, 39].

As a motivation we recall the generalized Nehari manifold method introduced
by Szulkin and Weth [28, 29]. For the case that 0 lies in a gap of σ(−∆ + V ),
they obtained a ground state solution of Nehari-Pankov type under (Ne) and some
additional conditions. The generalized Nehari manifold method developed there is
based on a direct and simple reduction of the strongly indefinite problem to a def-
inite one. More precisely, a homeomorphism between the Nehari-Pankov manifold
N− and a unit sphere S+ in E+ is established which allows to find a minimiz-
ing sequence on the sphere and hence on the Nehari-Pankov manifold. We point
out that the assumption “strictly increasing” in (Ne) is very crucial in the argu-
ment of Szulkin and Weth [28, 29]. In fact, the starting point of their approach
is to show that for each u ∈ E \ E−, the Nehari-Pankov manifold N− intersects
Ê(u) := E− ⊕ R+u in exactly one point m̂(u). The uniqueness of m̂(u) enables
one to define a map u 7→ m̂(u), which is crucial to construct the homeomorphism
between N− and S+, see [29, Chapter 4].

Remark 1.3. The ground state solution of Nehari-Pankov type can not be estab-
lished by using the generalized Nehari manifold method if (Ne) was weakened to
(WN). Indeed, without the strict monotonicity, the uniqueness of m̂(u) can not be
guaranteed unless some additional conditions on the nonlinearity are assumed, and
so the homeomorphism between the Nehari-Pankov manifold and the sphere can
not be established (see [28, (A.2) and Prop. 2.3] and [40]). Thus, it is infeasible to
find a minimizing sequence on the Nehari-Pankov manifold by reducing the prob-
lem on the sphere which is a definite case. Compared to the generalized Nehari
manifold method, the approach used in this paper seems more direct and simpler.

Before proceeding to the proof of Theorems 1.1 and 1.2, we give some examples
to illustrate the assumptions.
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Example 1.4. F (x, t) = h(x)|t|2 ln(1 + |t|1/N ), where h ∈ C(RN , (0,+∞)) is 1-
periodic in each of x1, x2, . . ., xN . It is not difficult to show that if F(x, t) =
1/(2N)|t|2+1/N (1 + |t|1/N )−1 ≥ 0, then F satisfies (WN) and (F1)–(F3) with σ >
max{1, N/2}, but it does not satisfies (AR) and (F0).

Example 1.5. F (x, t) = h(x) min{|t|%1 , |t|%2}, where 2 < %1 < %2 < 2∗ and h ∈
C(RN , (0,+∞)) is 1-periodic in each of x1, x2, . . . , xN . Clearly, (F1)–(F3) and
(WN) hold for F with σ = ρ1/(ρ1 − 2) > max{1, N/2} , but (F0) fails.

Example 1.6. F (x, t) = 2
∑m
i=1 |t|βi sin2(2πx1), where 2∗ > β1 > β2 > · · · > βm ≥

2. It is easy to see that F(x, t) =
∑m
i=1(βi−2)|t|βi sin2(2πx1) ≥ 0. Then F does not

satisfies (AR) and (DL), but it satisfies (F3) with σ = β1/(β1− 2) > max{1, N/2}.

Example 1.7. F (x, t) = a(8/5|t|13/4−4|t|11/4+9/2|t|9/4), where a > 0 and N ≤ 4.
By simple computation, one has F(x, t) = a|t|9/4(

√
|t| − 3/4)2 ≥ 0. Then F does

not satisfies (AR) and (DL), but it satisfies (F3) with σ = 12/5 if a ∈ (0, 8Λ0/81).

The remaining of this article is organized as follows. In Section 2, some pre-
liminary results are presented. The proofs of main results will be given in the last
Section.

2. Variational setting and preliminaries

In this section, as in [33], we introduce the variational framework associated with
problem (1.1). Throughout this paper, we denote by ‖ · ‖s the usual Ls(RN ) norm
for s ∈ [1,∞) and Ci, i ∈ N for different positive constants. Let A = −∆ + V ,
then A is self-adjoint in L2(RN ) with domain D(A) = H2(RN ). Let {E(λ) : −∞ ≤
λ ≤ +∞} be the spectral family of A, and |A|1/2 be the square root of |A|. Set
U = id− E(0)− E(0−). Then U commutes with A, |A| and |A|1/2, and A = U|A|
is the polar decomposition of A (see [10, Theorem 4.3.3]). Let E∗ = D(|A|1/2), the
domain of |A|1/2, then E(λ)E∗ ⊂ E∗ for all λ ∈ R. On E∗ define an inner product

(u, v)0 = (|A|1/2u, |A|1/2v)L2 + (u, v)L2 , ∀u, v ∈ E∗,

and the norm

‖u‖0 =
√

(u, v)0, ∀u ∈ E∗,

where and in the sequel, (·, ·)L2 denotes the usual L2(RN ) inner product.
By (V1), we can choose a0 > 0 such that

V (x) + a0 > 0, ∀x ∈ RN . (2.1)

For u ∈ C∞0 (RN ), one has

‖u‖20 = (|A|u, u)L2 + ‖u‖22
= ((A+ a0)Uu, u)L2 − a0(Uu, u)L2 + ‖u‖22
≤ ‖U(A+ a0)1/2u‖2‖(A+ a0)1/2u‖2 + a0‖Uu‖2‖u‖2 + ‖u‖22
≤ ‖(A+ a0)1/2u‖22 + (a0 + 1)‖u‖22
≤ (1 + 2a0 +M)‖u‖2H1(RN )

(2.2)
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and
‖u‖2H1(RN ) ≤ ((A+ a0 + 1)u, u)L2

= (Au, u)L2 + (a0 + 1)‖u‖22
= (U|A|1/2u, |A|1/2u)L2 + (a0 + 1)‖u‖22
≤ ‖|A|1/2u‖22 + (a0 + 1)‖u‖22 ≤ (1 + a0)‖u‖20,

(2.3)

where M = supx∈RN |V (x)|. Since C∞0 (RN ) is dense in (E∗, ‖ · ‖0) and H1(RN ),
thus

1
1 + a0

‖u‖2H1(RN ) ≤ ‖u‖
2
0 ≤ (1 + 2a0 +M)‖u‖2H1(RN ), ∀u ∈ E∗ = H1(RN ). (2.4)

Let
E−∗ = E(0)E∗, E+ = [E(+∞)− E(0)]E∗,

and
(u, v)∗ =

(
|A|1/2u, |A|1/2v

)
L2 , ‖u‖∗ =

√
(u, u)∗, ∀u, v ∈ E∗. (2.5)

Lemma 2.1 ([33, Lemma 3.1]). Suppose that (V1) is satisfied. Then E∗ = E−∗ ⊕
E+,

(u, v)∗ = (u, v)L2 = 0, ∀u ∈ E−∗ , v ∈ E+, (2.6)

‖u+‖2∗ ≥ Λ0‖u+‖22, ‖u−‖2∗ ≤ a0‖u−‖22, ∀u = u− + u+ ∈ E∗ = E−∗ ⊕ E+, (2.7)

where b0 is given by (V1) and a0 by (2.1).

It is easy to see that ‖ · ‖∗ and ‖ · ‖H1(RN ) are equivalent norms on E+, and if
u ∈ E∗ then u ∈ E+ ⇔ E(0)u = 0. Thus E+ is a closed subset of (E∗, ‖ · ‖0) =
H1(RN ). We introduce a new norm on E−∗ by setting

‖u‖− = (‖u‖2∗ + ‖u‖2%)1/2, ∀u ∈ E−∗ . (2.8)

Let E− be the completion of E−∗ with respect to ‖ · ‖−. Then E− is separable and
reflexive, E− ∩ E+ = {0} and (u, v)∗ = 0, ∀u ∈ E−, v ∈ E+. Let E = E− ⊕ E+

and define norm ‖ · ‖ as follows

‖u‖ = (‖u−‖2− + ‖u+‖2∗)1/2, ∀u = u− + u+ ∈ E = E− ⊕ E+. (2.9)

It is easy to verify that (E, ‖ · ‖) is a Banach space, and√
Λ0‖u+‖2 ≤ ‖u+‖∗ = ‖u+‖, ‖u+‖s ≤ γs‖u+‖, ∀u ∈ E, s ∈ [2, 2∗], (2.10)

where γs ∈ (0,+∞) is imbedding constant.

Lemma 2.2 ([33, Lemma 3.2]). () Suppose that (V1) is satisfied. Then the follow-
ing conclusions hold.

(i) E− ↪→ Ls(RN ) for % ≤ s ≤ 2∗;
(ii) E− ↪→ H1

loc(RN ) and E− ↪→↪→ Lsloc(RN ) for 2 ≤ s < 2∗;
(iii) For % ≤ s ≤ 2∗, there exists a constant Cs > 0 such that

‖u‖ss ≤ Cs
[
‖u‖s∗ +

(∫
Ω

|u|%dx
)s/%

+
(∫

Ωc

|u|2dx
)s/2]

, ∀u ∈ E−, (2.11)

where Ω ⊂ RN is any measurable set, Ωc = RN \ Ω.

The following linking theorem is an extension of [15] (see also [36, Theorem
6.10]), which plays an important role in proving our main results.
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Proposition 2.3 ([33, Theorem 2.4]). Let X be real Banach space with X = Y ⊕Z,
where Y and Z are subspaces of X, Y is separable and reflexive, and there exists a
constant ζ0 > 0 such that the following inequality holds

‖P1u‖+ ‖P2u‖ ≤ ζ0‖u‖, ∀u ∈ X, (2.12)

where P1 : X → Y, P2 : X → Z are the projections. Let {fk}k∈N ⊂ Y ∗ be the dense
subset with ‖fk‖Y ∗ = 1, and the τ -topology on X be generated by the norm

‖u‖τ := max
{
‖P2u‖,

∞∑
k=1

1
2k
|〈fk, P1u〉|

}
, ∀u ∈ X. (2.13)

Suppose that the following assumptions are satisfied:
(H1) ϕ ∈ C1(X,R) is τ -upper semi-continuous and ϕ′ : (ϕa, ‖ · ‖τ )→ (X∗, Tw∗)

is continuous for every a ∈ R;
(H2) there exists r > ρ > 0 and e ∈ Z with ‖e‖ = 1 such that

κ := inf ϕ(Sρ) > 0 ≥ supϕ(∂Q),

where

Sρ = {u ∈ Z : ‖u‖ = ρ}, Q = {v + se : v ∈ Y, s ≥ 0, ‖v + se‖ ≤ r}.

Then there exist c ∈ [κ, supQ ϕ] and a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖X∗(1 + ‖un‖)→ 0. (2.14)

Such a sequence is called a Cerami sequence on the level c, or a (C)c-sequence.

Let X = E, Y = E− and Z = E+. Then (2.12) is obvious true by (2.9). Since
E− is separable and reflective subspace of E, then (E−)∗ is also separable. Thus we
can choose a dense subset {fk}k∈N ⊂ (E−)∗ with ‖fk‖(E−)∗ = 1. Hence, it follows
from (2.13) that

‖u‖τ := max
{
‖u+‖,

∞∑
k=1

1
2k
|〈fk, u−〉|

}
, ∀u ∈ E. (2.15)

It is clear that
‖u+‖ ≤ ‖u‖τ ≤ ‖u‖, ∀u ∈ E. (2.16)

By Lemma 2.2, it is easy to see that the functional Φ defined by (1.3) is of class
C1, moreover

〈Φ′(u), v〉 =
∫

RN

(∇u∇v + V (x)uv)dx−
∫

RN

f(x, u)vdx, ∀u, v ∈ E. (2.17)

This shows that critical points of Φ are the solutions of (1.1). Furthermore

Φ(u) =
1
2

(‖u+‖2 − ‖u−‖2∗)−
∫

RN

F (x, u)dx, ∀u = u+ + u− ∈ E− ⊕ E+ = E,

(2.18)

〈Φ′(u), v〉 = (u+, v)∗ − (u−, v)∗ −
∫

RN

f(x, u)vdx, ∀u, v ∈ E. (2.19)

Lemma 2.4 ([33, Lemma 3.3]). Suppose that (V1), (F1) are satisfied. Then Φ ∈
C1(E,R) is τ -upper semi-continuous and Φ′ : (Φa, ‖·‖τ )→ (E∗, Tw∗) is continuous
for every a ∈ R.
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Lemma 2.5. Suppose that (V1), (F1), (WN) are satisfied. Then

Φ(u) ≥ Φ(tu+ w) +
1
2
‖w‖2∗ +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉,

for all u ∈ E, w ∈ E−, t ≥ 0.

The proof of the above lemma is the same as one of [34, Lemma 2.4], we omit it
here. From Lemma 2.5, we have the following two corollaries.

Corollary 2.6. Suppose that (V1), (F1), (WN) are satisfied, assume moreover
u ∈ N−. Then

Φ(u) ≥ Φ(tu+ w), ∀w ∈ E−, t ≥ 0. (2.20)

Corollary 2.7. Suppose that (V1), (F1), (WN) are satisfied. Then

Φ(u) ≥ Φ(tu+) +
t2‖u−‖2∗

2
+

1− t2

2
〈Φ′(u), u〉+ t2〈Φ′(u), u−〉, ∀u ∈ E, t ≥ 0.

3. Proof of main results

Lemma 3.1. Suppose that (V1), (F1) are satisfied. Then
(i) there exists ρ > 0 such that

m := inf
N−

Φ ≥ κ := inf{Φ(u) : u ∈ E+, ‖u‖ = ρ} > 0;

(ii) ‖u+‖ ≥ max{‖u−‖∗,
√

2m} for all u ∈ N−;

Proof. (i) The first inequality is a direct consequence of Corollary 2.6, since for
every u ∈ N− there is t > 0 such that ‖tu+‖ = ρ. For any ε > 0, (F1) implies the
existence of Cε > 0 such that

|F (x, t)| ≤ ε|t|2 + Cε|t|p, ∀(x, t) ∈ RN × R, (3.1)

which, together with (2.18) and Lemma 2.2, yields

Φ(u) =
1
2
‖u‖2 −

∫
RN

F (x, u)dx

≥ 1
2
‖u‖2 − C1(ε‖u‖% + Cε‖u‖p), ∀u ∈ E+.

(3.2)

Choosing an appropriate ε we see that the second inequality holds for some ρ > 0.
(ii) For u ∈ N−, it follows from (i), (F1) and (2.18) that

m ≤ 1
2

(‖u+‖2 − ‖u−‖2∗)−
∫

RN

F (x, u)dx ≤ 1
2

(‖u+‖2 − ‖u−‖2∗),

hence, ‖u+‖ ≥ max{‖u−‖∗,
√

2m}. �

Lemma 3.2 ([33, Lemma 4.2]). Suppose that (V1), (F1), (F2) are satisfied. Let
e ∈ E+ with ‖e‖ = 1. Then there is a r1 > 0 such that sup Φ(∂Q) ≤ 0 for r ≥ r1,
where

Q = {w + se : w ∈ E−, s ≥ 0, ‖w + se‖ ≤ r}. (3.3)

Lemma 3.3. Suppose that (V1), (F1), (F2), (WN) are satisfied. Then for any
u ∈ E+ \ {0}, N− ∩ (E− ⊕ R+u) 6= ∅, i.e., there exist t(u) > 0 and w(u) ∈ E−
such that t(u)u+ w(u) ∈ N−.
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Proof. By Lemma 3.2, there exists R > 0 such that Φ(v) ≤ 0 for v ∈ (E−⊕R+u) \
BR(0). By Lemma 3.1 (i), Φ(tu) > 0 for small t > 0. Thus, 0 < sup Φ(E−⊕R+u) <
∞. It is easy to see that Φ is weakly upper semi-continuous on E−⊕R+u, therefore,
Φ(u0) = sup Φ(E− ⊕ R+u) for some u0 ∈ E− ⊕ R+u. This u0 is a critical point
of Φ|E−⊕Ru, so 〈Φ′(u0), u0〉 = 〈Φ′(u0), v〉 = 0 for all v ∈ E− ⊕ R u. Consequently,
u0 ∈ N− ∩ (E− ⊕ R+u). �

Lemma 3.4. Suppose that (V1), (F1), (F2) are satisfied. Then there exist a con-
stant c0 ∈ [κ, sup Φ(Q)] and a sequence {un} ⊂ E satisfying

Φ(un)→ c0, ‖Φ′(un)‖(1 + ‖un‖)→ 0, (3.4)

where Q is defined by (3.3).

The above lemma is a direct corollary of Lemmas 2.4, 3.1 (i), 3.2 and Proposition
2.3.

Lemma 3.5. Suppose that (V1), (F1), (F2), (WN) are satisfied. Then there exist
a constant c∗ ∈ [κ, m] and a sequence {un} ⊂ E satisfying

Φ(un)→ c∗, ‖Φ′(un)‖(1 + ‖un‖)→ 0. (3.5)

Using the diagonal method and taking into account Lemmas 3.1, 3.2, 3.4 and
Corollary 2.6, one can prove the above lemma by the same argument as in the proof
of [32, Lemma 3.8].

Lemma 3.5 shows that a minimizing Cerami sequence for the energy functional
can be found outside the Nehari-Pankov manifold, from which one can easily demon-
strate a ground state solution of Nehari-Pankov type for problem (1.1).

Lemma 3.6. Suppose that (V1), (F1), (F2), (F3) are satisfied. Then any sequence
{un} ⊂ E satisfying

Φ(un)→ c ≥ 0, 〈Φ′(un), u±n 〉 → 0, (3.6)

is bounded in E.

Proof. The following argument is essentially contained in [35, Lemma 3.5], for the
reader convenience we choose to write it in detail. It follows from (F3) and (3.6)
that

C2 ≥ Φ(un)− 1
2
〈Φ′(un), un〉 =

∫
RN

F(x, un)dx ≥ 0. (3.7)

First we prove that {‖un‖∗} is bounded. To this end, arguing by contradiction,
suppose that ‖un‖∗ →∞. Let vn = un/‖un‖∗, then ‖vn‖∗ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|v+
n |2dx = 0,

then by Lions’s concentration compactness principle [17] or [36, Lemma 1.21], v+
n →

0 in Ls(RN ) for 2 < s < 2∗. Set σ′ = σ/(σ − 1) and

Ωn :=
{
x ∈ RN :

f(x, un)
un

≤ (Λ0 − δ0)
}
. (3.8)

Clearly, 2σ′ ∈ (2, 2∗) by the fact σ > max{1, N/2}. It follows from (F1) and (2.10)
that ∫

Ωn

f(x, un)
un

(v+
n )2dx ≤ (Λ0 − δ0)‖v+

n ‖22 ≤ (1− δ0
Λ0

)‖v+
n ‖2∗ ≤ 1− δ0

Λ0
. (3.9)
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On the other hand, by virtue of (F3), (3.7) and Hölder inequality, one can get that∫
RN\Ωn

f(x, un)
un

(v+
n )2dx ≤

[ ∫
RN\Ωn

(
f(x, un)
un

)σdx
]1/σ
‖v+
n ‖22σ′

≤
[
c3

∫
RN\Ωn

F(x, un)dx
]1/σ
‖v+
n ‖22σ′

≤ (c3C2)1/σ‖v+
n ‖22σ′ = o(1).

(3.10)

Combining (3.9) and (3.10), and using (F1), (2.19) and (3.6), one has

1 + o(1) =
‖un‖2∗ − 〈Φ′(un), u+

n − u−n 〉
‖un‖2∗

=
∫
un 6=0

f(x, un)
un

[(v+
n )2 − (v−n )2]dx

≤
∫

Ωn

f(x, un)
un

(v+
n )2dx+

∫
RN\Ωn

f(x, un)
un

(v+
n )2dx

≤ 1− δ0
Λ0

+ o(1).

(3.11)

This contradiction shows that δ > 0. The rest of the argument is the same as in
the proof of [33, Lemma 4.4]. �

Note that condition (WN) is stronger than (Ta), then one gets directly the
following lemma from [33, Lemma 4.4].

Lemma 3.7. Suppose that (V1), (F1), (F2), (WN) are satisfied. Then any sequence
{un} ⊂ E satisfying (3.6) is bounded in E.

Lemma 3.8 ([3, Corollary 2.3]). Suppose that (V1) is satisfied. If u ⊂ E is a weak
solution of the Schrödinger equation

−∆u+ V (x)u = f(x, u), x ∈ RN , (3.12)

i.e. ∫
RN

(∇u∇ψ + V (x)uψ)dx =
∫

RN

f(x, u)ψdx, ∀ψ ∈ C∞0 (RN ), (3.13)

then un → 0 as |x| → ∞.

Proof of Theorem 1.1. Lemma 3.5 and 3.7 imply the existence of a bounded se-
quence {un} ⊂ E satisfying (3.5). By (2.10) and Lemma 2.2 (i), ‖un‖%% + ‖un‖pp is
also bounded. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|u+
n |2dx = 0,

then by Lions’s concentration compactness principle, u+
n → 0 in Ls(RN ) for 2 <

s < 2∗. From (F1), (2.18), (2.19) and (3.5), one sees that

2c∗ + o(1) = ‖u+
n ‖2 − ‖u−n ‖2∗ − 2

∫
RN

F (x, un)dx

≤ ‖u+
n ‖2 =

∫
RN

f(x, un)u+
n dx+ 〈Φ′(un), u+

n 〉

≤ c2
∫

RN

(|un|%−1 + |un|p−1)|u+
n |dx+ o(1)
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≤ c2(‖un‖%−1
% ‖u+

n ‖% + ‖un‖p−1
p ‖u+

n ‖p)dx+ o(1) = o(1)

which is a contradiction. Thus δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN

such that ∫
B(kn,1+

√
N)

|u+
n |2dx >

δ

2
.

Let us define vn(x) = un(x+ kn) so that∫
B(0,1+

√
N)

|v+
n |2dx >

δ

2
. (3.14)

Since V (x) and f(x, t) are periodic in x, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c∗ ∈ [κ, m], ‖Φ′(vn)‖(1 + ‖vn‖)→ 0. (3.15)

Passing to a subsequence, we have vn ⇀ v0 in E, vn → v0 in Lsloc(RN ) for 2 ≤ s < 2∗

and vn → v0 a.e. on RN . (3.14) implies that v0 6= 0. By a standard argument, one
can prove that 〈Φ′(v0), ψ〉 = 0 for any ψ ∈ C∞0 (RN ). It follows that Φ′(v0) = 0
since C∞0 (RN ) is dense in E. Then v0 ∈ N− and so Φ(v0) ≥ m. On the other
hand, by (3.15), (WN) and Fatou’s Lemma, we have

m ≥ c∗ = lim
n→∞

[
Φ(vn)− 1

2
〈Φ′(vn), vn〉

]
= lim
n→∞

∫
RN

[1
2
f(x, vn)− F (x, vn)

]
dx

≥
∫

RN

lim
n→∞

[1
2
f(x, vn)− F (x, vn)

]
dx

=
∫

RN

[1
2
f(x, v0)− F (x, v0)

]
dx

= Φ(v0)− 1
2
〈Φ′(v0), v0〉 = Φ(v0).

Then Φ(v0) ≤ m and so Φ(v0) = m = infN− Φ ≥ κ by Lemma 3.1 (i). It follows
from Lemma 3.8 that v0 is a ground state solution of problem (1.1). �

Proof of Theorem 1.2. Applying Lemmas 3.4 and 3.6, there exists a bounded se-
quence {un} ⊂ E satisfying (3.4). Similar to the argument as in the proof of
Theorem 1.1, we can show that Φ′(ū) = 0 for some ū ∈ E \ {0}, i.e. M 6= 0. Let
ĉ := infMΦ. By (F3), for any u ∈M, one has

Φ(u) = Φ(u)− 1
2
〈Φ′(u), u〉 =

∫
RN

F(x, u)dx ≥ 0;

therefore ĉ ≥ 0. Let {un} ⊂ M such that Φ(un) → ĉ. Then 〈Φ′(un), v〉 = 0 for
any v ∈ E. It follows from Lemma 3.6 that {un} is bounded in E. The rest of
the argument is the same as in the proof of Theorem 1.1 by using (F3) instead of
(WN). �
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