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BLOW UP AND QUENCHING FOR A PROBLEM WITH
NONLINEAR BOUNDARY CONDITIONS

NURI OZALP, BURHAN SELCUK

Abstract. In this article, we study the blow up behavior of the heat equation

ut = uxx with ux(0, t) = up(0, t), ux(a, t) = uq(a, t). We also study the
quenching behavior of the nonlinear parabolic equation vt = vxx +2v2

x/(1−v)

with vx(0, t) = (1− v(0, t))−p+2, vx(a, t) = (1− v(a, t))−q+2. In the blow up

problem, if u0 is a lower solution then we get the blow up occurs in a finite
time at the boundary x = a and using positive steady state we give criteria for

blow up and non-blow up. In the quenching problem, we show that the only

quenching point is x = a and vt blows up at the quenching time, under certain
conditions and using positive steady state we give criteria for quenching and

non-quenching. These analysis is based on the equivalence between the blow

up and the quenching for these two equations.

1. Introduction

In this article, we study the blow up and quenching problems with nonlinear
boundary conditions.

Blow up problem. We study the behavior of solutions to the heat equation, with
nonlinear boundary conditions,

ut = uxx, 0 < x < a, 0 < t < T,

ux(0, t) = up(0, t), ux(a, t) = uq(a, t), 0 < t < T,

u(x, 0) = u0(x), 0 ≤ x ≤ a,
(1.1)

where p, q are positive constants and T ≤ ∞. The initial function u0(x) is a non-
negative smooth function satisfying the compatibility conditions

u′0(0) = up0(0), u′0(a) = uq0(a).

We are interested in the occurrence of finite-time blow-up, i.e, the existence of a
T = T (u0) <∞ such that

sup
x∈[0,a]

u(x, t)→∞ as t→ T.
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Quenching problem. If we use the transform u = 1
1−v in the problem (1.1), then

we obtain the nonlinear parabolic equation, with nonlinear boundary conditions,

vt = vxx +
2v2
x

1− v
, 0 < x < a, 0 < t < T,

vx(0, t) = (1− v(0, t))−p+2, vx(a, t) = (1− v(a, t))−q+2, 0 < t < T,

v(x, 0) = v0(x) = 1− 1
u0(x)

, 0 ≤ x ≤ a,

(1.2)

where p, q are positive constants and T ≤ ∞. The initial function v0 : [0, a]→ (0, 1)
satisfies the compatibility conditions

v′0(0) = (1− v0(0))−p+2, v′0(a) = (1− v0(a))−q+2.

A solution v(x, t) of (1.2) is said to quench if there exists a finite time T such that

lim
t→T−

max{v(x, t) : 0 ≤ x ≤ a} = 1.

For the rest of this article, we denote the quenching time of problem (1.2) with T .
Blow up problems with various boundary conditions have been studied exten-

sively; see for example [4, 6, 7, 9, 10, 12, 16]. Lin and Wang [12] considered the
problem

ut = uxx + up, 0 < x < 1, 0 < t < T,

ux(0, t) = 0, ux(1, t) = uq(1, t), 0 < t < T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p, q > 0, T ≤ ∞. They showed that the solutions have a finite time blow-up
and obtained the exact blow-up rates for the necessary and sufficient conditions.
They also proved that the blow-up will occur only at the boundary x = 1. Fu et
al. [8] studied the same problem. Under certain conditions, they proved that the
blow-up point occurs only at the boundary x = 1. Then, by applying the well-
known method of Giga-Kohn, they derived the time asymptotic of solutions near
the blow-up time. Finally, they proved that the blow-up was complete.

Since 1975, quenching problems with various boundary conditions have been
studied extensively [2, 3, 5, 13, 14, 15]. Chan and Yuen [3] considered the problem

ut = uxx, in Ω,

ux(0, t) = (1− u(0, t))−p, ux(a, t) = (1− u(a, t))−q, 0 < t < T,

u(x, 0) = u0(x), 0 ≤ u0(x) < 1, in D,

where a, p, q > 0, T ≤ ∞, D = (0, a), Ω = D × (0, T ). They showed that x = a is
the unique quenching point in finite time if u0 is a lower solution, and ut blows up
at quenching time. Further, they obtained criteria for nonquenching and quenching
by using the positive steady states. Ozalp and Selcuk [13] considered the problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T

ux(0, t) = 0, ux(1, t) = (1− u(1, t))−q, 0 < t < T,

u(x, 0) = u0(x), 0 < u0(x) < 1, 0 ≤ x ≤ 1.

They showed that x = 1 is the quenching point in finite time, if u0 satisfies
uxx(x, 0) + (1 − u(x, 0))−p ≥ 0 and ux(x, 0) ≥ 0. Further they showed that ut
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blows up at quenching time. Furthermore, they obtained a quenching rate and a
lower bound for the quenching time.

In Section 2, we investigate the blow up behavior of the problem (1.1). First,
if u0 is a lower solution, then we show that blow up occurs in finite time at the
boundary x = a. Also, using positive steady state we get criteria for blow up and
non-blow up. In Section 3, we investigate quenching behavior of the problem (1.2).
We show that the only quenching point is x = a and vt blows up at the quenching
time, under certain conditions. Also, using positive steady state we get criteria for
quenching and non-quenching.

2. Blow up problem

In this section, we assume that uxx(x, 0) ≥ 0 in (0, a). Now, we give some
auxiliary results for the problem (1.1).

Definition 2.1. A function µ is called a lower solution of (1.1) if µ satisfies the
following conditions:

µt − µxx ≤ 0, 0 < x < a, 0 < t < T,

µx(0, t) ≥ µp(0, t), µx(a, t) ≤ µq(a, t), 0 < t < T,

µ(x, 0) ≤ u0(x), 0 ≤ x ≤ a.
When reverse the inequalities, we have an upper solution.

We have the following Theorem and Lemma for problem (1.1) (see [3]).

Theorem 2.2. Let u(x, t, u0) and h(x, t, h0) be solutions of (1.1) with initial data
given by u0(x) and h0(x), respectively. If u0 ≤ h0, then u(x, t, u0) ≤ h(x, t, h0) on
[0, a]× [0, T ).

Proof. For any τ < T , let w be a solution of the problem

wxx − w + wt = 0 in (0, a)× (0, τ),

w(x, τ) = g(x) on [0, a],

wx(0, t) = r(t)w(0, t), wx(a, t) = s(t)w(a, t), 0 < t < τ,

where g ∈ C2(D) has compact support in D, 0 ≤ g ≤ 1, and r and s are smooth
functions to be determined. By Lieberman [11], the solution w exists. By Andersen
[1], there exists a constant k (depending on the length of the interval D) such that
0 ≤ w ≤ k.

Now,∫ a

0

[(u(x, τ)− h(x, τ))w(x, τ)− (u0(x)− h0(x))w(x, 0)]dx

=
∫ τ

0

∫ a

0

∂

∂σ
[(u(x, σ)− h(x, σ))w(x, σ)] dx dσ

=
∫ τ

0

∫ a

0

[w(x, σ)
∂

∂σ
(u(x, σ)− h(x, σ)) + (u(x, σ)− h(x, σ))

∂

∂σ
w(x, σ)] dx dσ

=
∫ τ

0

∫ a

0

[
w(x, σ)

∂2

∂x2
(u(x, σ)− h(x, σ)) + (u(x, σ)− h(x, σ))

∂

∂σ
w(x, σ)

]
dx dσ

=
∫ τ

0

{w(a, σ) [uq(a, σ)− hq(a, σ)]− w(0, σ) [up(0, σ)− hp(0, σ)]
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− s(σ) [u(a, σ)− h(a, σ)]w(a, σ) + r(σ) [u(0, σ)− h(0, σ)]w(0, σ)}dσ

+
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))(wσ(x, σ) + wxx(x, σ)) dx dσ.

Thus, ∫ a

0

[(u(x, τ)− h(x, τ))g(x)− (u0(x)− h0(x))w(x, 0)]dx

=
∫ τ

0

{w(a, σ) [uq(a, σ)− hq(a, σ)− s(σ) [u(a, σ)− h(a, σ)]]

− w(0, σ) [up(0, σ)− hp(0, σ)− r(σ) [u(0, σ)− h(0, σ)]]}dσ

+
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))w(x, σ) dx dσ.

Let r(σ) and s(σ) be given by

r(σ)(u(0, σ)− h(0, σ)) = up(0, σ)− hp(0, σ),

s(σ)(u(a, σ)− h(a, σ)) = uq(a, σ)− hq(a, σ).

Since u0 ≤ h0 and w(x, 0) ≥ 0, we have∫ a

0

(u(x, τ)− h(x, τ))g(x)dx ≤
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))w(x, σ) dx dσ.

Let
(u(x, σ)− h(x, σ))+ = max{0, u(x, σ)− h(x, σ)}.

From, 0 ≤ w ≤ k, we obtain∫ a

0

(u(x, τ)− h(x, τ))g(x)dx ≤ k
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))+ dx dσ.

Since g ∈ C2(D) has compact support in D and 0 ≤ g ≤ 1, we have∫ a

0

(u(x, σ)− h(x, σ))+dx ≤ k
∫ τ

0

∫ a

0

(u(x, σ)− h(x, σ))+ dx dσ.

By the Gronwall inequality,∫ a

0

(u(x, σ)− h(x, σ))+dx ≤ 0,

which gives u(x, τ) ≤ h(x, τ) for any τ > 0. Thus, the theorem is proved. �

Lemma 2.3. If uxx(x, 0) ≥ 0 in (0, a), then
(i) ut > 0 in (0, a)× (0, T ).
(ii) ux > 0 in (0, a)× (0, T ).

Proof. (i) Since uxx(x, 0) ≥ 0 in (0, a), u′0(0) = up0(0), u′0(a) = uq0(a) it follows
from Definition 2.1 that u0(x) is a lower solution of the problem (1.1). The strong
maximum principle implies that

u(x, t) ≥ u0(x) in (0, a)× (0, T ).

Let h be a positive number less than T , and

z(x, t) = u(x, t+ h)− u(x, t).

Then

zt = zxx in (0, a)× (0, T − h),
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z(x, 0) ≥ 0 on [0, a],

zx(0, t) = pξp−1(t)z(0, t), zx(a, t) = qηq−1(t)z(a, t), 0 < t < T − h,

where ξ(t) and η(t) lie, respectively, between u(0, t + h) and u(0, t), and between
u(a, t+h) and u(a, t). A proof similar to that of Theorem 2.2 shows that z(x, t) ≥ 0.
As h→ 0, we have ut ≥ 0 on [0, a]× (0, T ).

Let H = ut in [0, a]× (0, T ). Since

Ht −Hxx = 0 in (0, a)× (0, T ),

it follows from the strong maximum principle that H = ut > 0 in (0, a)× (0, T ).
(ii) Since ux(0, t) = up(0, t) > 0 and uxx = ut > 0 in (0, a)× (0, T ). Then, ux is

an increasing function and so, ux(x, t) > 0 in (0, a)× (0, T ). �

Theorem 2.4. Let u be a solution of the problem (1.1), f(u) = uq and q > 1. We
assume that ∫ ∞

0

ds

f(s)
<∞. (2.1)

If u0 is a lower solution, assumption (2.1) is satisfied, q ≥ p, then
(a) any positive solution of the problem (1.1) must blow up in a finite time T

such that there exists a positive constant δ with

T ≤ 1
δ

M−q+1
0

q − 1
,

where M0 = max
x∈[0,a]

u0(x),

(b) a blow up rate is obtained for t sufficiently close to T as

sup
x∈[0,a]

u(x, t) ≤ C(T − t)1/(−q+1),

where C = (δ(q − 1))1/(−q+1).

Proof. Let us prove it by using [16, Theorems 1 and 2]. First, we define

J(x, t) = ut(x, t)− δuq(x, t) in [0, a]× [τ, T ),

where τ ∈ (0, T ) and δ is a positive constant to be specified later. Then, J(x, t)
satisfies

Jt − Jxx = δq(q − 1)uq−2u2
x > 0 in (0, a)× (τ, T ),

since q ≥ 1. J(x, τ) ≥ 0 by Lemma 2.3 (i), if δ is small enough. Further,

Jx(0, t) = pup−1(0, t)J(0, t) + (p− q)up+q−1(0, t) ≤ pup−1(0, t)J(0, t),

Jx(a, t) = quq−1(a, t)J(a, t),

since q ≥ p and t ∈ (τ, T ). By the maximum principle and Hopf’s lemma for the
parabolic equations, we obtain that J(x, t) ≥ 0 for (x, t) ∈ [0, a]× [τ, T ). Thus, we
get

ut(x, t) ≥ δuq(x, t),
for (x, t) ∈ [0, a]× [τ, T ).

Integrating from t to T we obtain∫ T

t

us(x, s)
uq(x, s)

ds ≥ δ(T − t).
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Let u0(x0) = M0 = maxx∈[0,a] u(x, 0). If x0 is a blow up point and
supx0∈[0,a] u(x0, T )→∞ as T →∞, then∫ u(x0,T )

M0

ds

f(s)
≥ δ(T − t),

where f(s) = sq. But if assumption (2.1) is satisfied, this leads to a contradiction.
Therefore, any positive solution of the problem (1.1) must blow up in finite time
T . Further, we get an estimate for finite blow up time as

T ≤ 1
δ

M−q+1
0

q − 1
.

Furthermore, we get a blow up rate for t sufficiently close to T as

sup
x∈[0,a]

u(x, t) ≤ C(T − t)1/(−q+1),

where C = (δ(q − 1))1/(−q+1). �

Theorem 2.5. If q > 1 and u0 is a lower solution, then x = a is the only blow up
point.

Proof. Define
J(x, t) = ux − ε(x− b1)uq in [b1, b2]× [τ, T ),

where b1 ∈ [0, a), b2 ∈ (b1, a], τ ∈ (0, T ) and ε is a positive constant to be specified
later. Then, J(x, t) satisfies

Jt − Jxx = 2εquq−1ux + εq(q − 1)(x− b1)uq−2u2
x > 0

in (b1, b2)× [0, T ). J(x, τ) ≥ 0 by Lemma 2.3 (ii), if ε is small enough. Further

J(b1, t) = ux(b1, t) > 0,

J(b2, t) = ux(b2, t)− ε(b2 − b1)uq > 0,

for t ∈ (τ, T ). By the maximum principle, we obtain that J(x, t) ≥ 0 for (x, t) ∈
[b1, b2] × [0, T ). Namely, ux ≥ ε(x − b1)uq for (x, t) ∈ [b1, b2] × [τ, T ). Integrating
this with respect to x from b1 to b2, we have

u−q+1(b1, t) ≥ u−q+1(b2, t) +
ε(q − 1)(b2 − b1)2

2
,

u(b1, t) ≤
[ε(q − 1)(b2 − b1)2

2
] 1
−q+1 <∞.

So u does not blow up in [0, a). The proof is complete. �

Theorem 2.6. If u0 is a lower solution, q > 1 and ux(x, 0) ≥ xuq(x, 0) in (0, a),
then x = a is the only blow up point, a ≤ 1.

Proof. Define J(x, t) = ux − xuq in [0, a]× [0, T ). Then, J(x, t) satisfies

Jt − Jxx = 2quq−1ux + q(q − 1)xuq−2u2
x,

since ux > 0, J(x, t) cannot attain a negative interior minimum. On the other
hand, J(x, 0) ≥ 0 from ux(x, 0) ≥ xuq(x, 0) in (0, a) and

J(0, t) = up(0, t) > 0,

J(a, t) = (1− a)uq(a, t) ≥ 0,
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if a ≤ 1, for t ∈ (0, T ). By the maximum principle, we obtain that J(x, t) ≥ 0, i.e.
ux ≥ xuq for (x, t) ∈ [0, a]× [0, T ). Integrating this with respect to x from x to a,
we have

u−q+1(x, t) ≥ u−q+1(a, t) + (q − 1)
a2 − x2

2

u(x, t) ≤
[
(q − 1)

a2 − x2

2
] 1
−q+1 <∞.

So u does not blow up in [0, a). The proof is complete. �

Now, we first obtain criteria for the blow up and non-blow up using positive
steady state. The proof of the following lemma and theorem is analogous to that of
Chan and Yuen [3]. Let us consider the positive steady states of the problem (1.1):

Uxx = 0, Ux(0) = Up(0), Ux(a) = Uq(a). (2.2)

We have U = I + nx, where n = Ip, n = (I + na)q. From these, we have

U = I + Ipx, (2.3)

where
Ip = (I + Ipa)q,

which gives
a(I) = I−p(Ip/q − I). (2.4)

We get

lim
I→0

a(I) = lim
I→0

Ip/q − I
Ip

=∞.

But, by using L’Hôpital’s rule two times, we obtain

lim
I→0

a(I) = lim
I→0

(pq )(pq − 1)Ip/q−2

p(p− 1)Ip−2
= 0

for p 6= 1 and q 6= 1. If α is a positive number, which is very close to 0, then we
get a(α) = 0 and a(1) = 0. Also, If we select p > q, then we note that a(I) > 0 for
α < l < 1. Now, a′(I) = 0 implies

I =
[q(1− p)
p(1− q)

] q
p−q . (2.5)

We denote this value by A. From (2.4),

A =
[q(1− p)
p(1− q)

] p(1−q)
p−q −

[q(1− p)
p(1− q)

] q(1−p)
p−q .

Lemma 2.7. (i) If q ≥ p, then the steady-state problem (2.2) does not have a
positive solution.

(ii) If p > q, then (2.2) has a solution u if and only if 0 < a ≤ A. Furthermore,
if 0 < a < A, then there exist two positive solutions; if a = A, then there exists
exactly one positive solution.

Proof. (i) For a(I) > 0, we have

a(I) = I−p+p/q − I−p+1

which is impossible for q ≥ p.
(ii) Since a(α) = 0 = a(1) and a(I) > 0 for α < l < 1, the graph of a(I) is

concave downwards with maximum attained at A. Thus for p > q, the problem
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(2.2) has a solution if and only if 0 < a ≤ A. To each a ∈ (0, A), there are exactly
two values of I. If a = A, then I is given by (2.5). �

Theorem 2.8. (a) If p > q and a ∈ (0, A), then u exists globally, provided u0 ≤
U(0).

(b) Suppose that the assumptions of Theorem 2.4 hold. Then, u blows up in a
finite time and x = a is the only blow up point. Further, if ux(x, 0) ≥ xuq(x, 0) in
(0, a), then a ≤ 1.

Proof. (a) By Theorem 2.2, u ≤ U . Hence u exists globally.
(b) By Lemma 2.3 (i), ut > 0 in (0, a)× (0, T ). If u does not blow up in a finite

time, then u converges to U which by Lemma 2.7 (i), does not exist for q ≥ p.
This contradiction and Theorem 2.4 shows that u blows up in a finite time for
q ≥ p. Further, from Theorem 2.5, x = a is the only blow up point. Furthermore,
from Theorem 2.6, if ux(x, 0) ≥ xuq(x, 0) in (0, a), then a ≤ 1. The proof is
complete.. �

3. Quenching problem

The equivalence between the blow-up problem and the quenching problem is well
known, for example see [5, 14]. Using transform u = 1/(1− v) in problem (1.1), we
obtain the quenching problem (1.2). Then (1.2) has three heat sources for p, q > 2.
We easily get quenching properties this difficult problem via (1.1). First, we give
an auxiliary results for (1.2).

Remark 3.1. (i) Let u and h be solutions of the problem (1.1) and v and k be
solutions of the problem (1.2). We let u = 1

1−v , h = 1
1−k . From Theorem 2.2, If

v0 ≤ k0 < 1, then v(x, t, v0) ≤ k(x, t, k0) on [0, a]× [0, T ].
(ii) Let u be a solution of the problem (1.1) and v be a solution of the problem

(1.2). We define u = 1
1−v . If u0 is a lower solution of the problem (1.1), then we

known the following results from Lemma 2.3:

ut > 0, ux > 0, uxx > 0 in (0, a)× (0, T ).

Similarly, we obtain

vt > 0, vx > 0 in (0, a)× (0, T ).

Theorem 3.2. If ux(x, 0) ≥ u2(x, 0) in [0, a] and p, q ≥ 2 in the problem (1.1),
then x = a is the only quenching point of problem (1.2).

Proof. Let M(x, t) = ux(x, t)− u2(x, t) in [0, a]× [0, T ) and M(x, t) satisfies

Mt −Mxx = 2u2
x(x, t) > 0 in (0, a)× [0, T ),

M(0, t) = up(0, t)− u2(0, t) ≥ 0, 0 < t < T,

M(a, t) = uq(a, t)− u2(a, t) ≥ 0, 0 < t < T,

M(x, 0) ≥ 0, 0 ≤ x ≤ a,

with ux(x, 0) ≥ u2(x, 0) in [0, a]. By the maximum principle, we obtain ux(x, t) ≥
u2(x, t) in [0, a]× [0, T ). Then, we have

vx(x, t) =
ux(x, t)
u2(x, t)

≥ 1 in [0, a]× [0, T ).



EJDE-2015/192 BLOW UP AND QUENCHING 9

Let ε ∈ (0, a), integrating this with respect to x from a− ε to a, we have

v(a− ε, t) ≤ v(a, t)− ε ≤ 1− ε.
So v does not quench in [0, a). The proof is complete. �

Theorem 3.3. If limt→T v(a, t) = 1 for some finite time T , then vt blows up.

Proof. Suppose that vt is bounded on [0, a] × [0, T ). Then, there exists a positive
constant M such that vt < M , that is

vxx +
2v2
x

1− v
< M.

Integrating with respect to x from 0 to a, we have∫ a

0

vxx
vx

dx+
∫ a

0

2vx
1− v

dx <

∫ a

0

M

vx
dx

ln
vx(a, t)
vx(0, t)

− 2 ln(
1− v(0, t)
(1− v(a, t)

) <
∫ a

0

M

vx
dx

ln
(1− v(0, t))p

(1− v(a, t))q
<

∫ a

0

M

vx
dx.

As t → T−, the left-hand side tends to infinity, while the right-hand side is finite.
This contradiction shows that vt blows up at the quenching point x = a. �

As in Section 2, let us consider the positive steady states of problem (1.2).

Vxx = − 2V 2
x

1− V
, Vx(0) = (1− V (0))−p+2, Vx(a) = (1− V (a))−q+2. (3.1)

Dividing by Vx and integrating with respect to x, we have V (x) = 1− 1
cx+d , where

c = dp. From these, we have

V = 1− 1
dpx+ d

, (3.2)

where c = (ca+ d)q, which gives

a(d) = d−p(dp/q − d). (3.3)

We obtain

lim
d→0

a(d) = lim
d→0

dp/q − d
dp

=∞.

But, by using L’Hôpital’s rule two times, we obtain

lim
d→0

a(d) = lim
d→0

(pq )(pq − 1)dp/q−2

p(p− 1)dp−2
= 0

for p 6= 1 and q 6= 1. If β is a positive number, which is very close to 0, then we
get a(β) = 0 and a(1) = 0. Also, If we select p > q, then we note that a(d) > 0 for
β < d < 1. Now, a′(d) = 0 implies

d =
[q(1− p)
p(1− q)

] q
p−q . (3.4)

We denote this value by A. From (3.3),

A =
[q(1− p)
p(1− q)

] p(1−q)
p−q −

[q(1− p)
p(1− q)

] q(1−p)
p−q .
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Lemma 3.4. (i) If q ≥ p, then the steady-state problem (3.1) does not have a
positive solution.

(ii) If p > q, then it has a solution v if and only if 0 < a ≤ A. Furthermore,
if 0 < a < A, then there exist two positive solutions; if a = A, then there exists
exactly one positive solution.

Proof. (i) For a(d) > 0, we have

a(d) = d−p+p/q − d−p+1

which is impossible for q ≥ p.
(ii) Since a(β) = 0 = a(1) and a(d) > 0 for β < d < 1, the graph of a(d) is

concave downwards with maximum attained at A. Thus for p > q, the problem
(3.1) has a solution if and only if 0 < a ≤ A. To each a ∈ (0, A), there are exactly
two values of d. If a = A, then d is given by (3.4). �

Theorem 3.5. (a) If p > q and a ∈ (0, A), then v exists globally, provided v0 ≤
V (0).

(b) Suppose that the assumptions of Theorem 3.2 holds. If q ≥ p, then x = a
is the only quenching point. Further, if limt→T v(a, t) = 1 for some finite time T ,
then vt blows up.

Proof. (a) By Remark 3.1 (i), v ≤ V . Hence v exists globally.
(b) By Remark 3.1 (ii), vt > 0 on (0, a)× (0, T ). If v does not quench in a finite

time, then v converges to V which does not exist for q ≥ p by Lemma 3.4 (i). This
contradiction shows that v quenches for q ≥ p. Further, from Theorem 3.2, x = a
is the only quenching point. Furthermore, from Theorem 3.3, if limt→T v(a, t) = 1
for some finite time T , then vt blows up. The proof is complete. �
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