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MULTIPLE SOLUTIONS FOR A DISCRETE ANISOTROPIC
(p1(k), p2(k))-LAPLACIAN EQUATIONS

EL MILOUD HSSINI

Abstract. This article concerns the existence and multiplicity solutions for

a discrete Dirichlet Laplacian problems. Our technical approach is based on

variational methods.

1. Introduction

In this work, we study the existence and multiplicity solutions of the discrete
boundary-value problem

−∆(φp1(k−1)(∆u(k − 1)))−∆(φp2(k−1)(∆u(k − 1))) = λf(k, u(k)),

∀k ∈ Z[1, T ],

u(0) = u(T + 1) = 0,
(1.1)

where, φpi(k)(t) = |t|pi(k)−2t (i = 1, 2) for all t ∈ R and for each k ∈ Z[1, T ],
T ≥ 2 is a positive integer, Z[1, T ] is a discrete interval {1, 2, . . . , T}, λ is a positive
parameter, ∆u(k − 1) := u(k) − u(k − 1) is the forward difference operator, f :
Z[1, T ]× R→ R is a continuous function and p1, p2 : Z[0, T ]→ [2,+∞).

Discrete boundary value problems have been intensively studied in the last
decade. The modeling of certain nonlinear problems from biological neural net-
works, economics, optimal control and other areas of study have led to the rapid
development of the theory of difference equations; see the monograph of [2, 3, 11, 31]
for an overview on this subject.

Equations involving the discrete p-Laplacian operator, subjected to classical or
less classical boundary conditions, have been widely studied by many authors us-
ing various techniques. Recently, many results have been established by applying
variational methods. In this direction we mention the papers [1, 9, 20, 25, 30] and
the references therein. However, problems like (1.1) involving anisotropic expo-
nents have only been started, by Mihailescu, Radulescu and Tersian [27], Kone and
Ouaro [21], where known tools from the critical point theory are applied in order
to get the existence of solutions. Later considered by many methods and authors,
see [6, 7, 13, 15, 26, 29] for an extensive survey of such boundary value problems.
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Our aim is to establish the existence and multiplicity results for problem (1.1)
through variational methods. First we will exploit a critical point Theorem 2.1
which provides for the existence of a local minima for a parameterized abstract
functional. Next, Theorem 2.2 with the classical Ambrosetti-Rabinowitz condition,
guarantee that (1.1) has at least two distinct nontrivial weak solutions (Theo-
rem 3.2). Finally, we will get the existence of at least three nontrivial solutions
of the problem (1.1) where the nonlinearity f(x, u) does not satisfy Ambrosetti-
Rabinowitz condition (Theorem 3.3), by employing a local minimum Theorem 2.3.

2. Preliminaries and basic notation

In this section, we state some basic properties, definitions and theorems to be
used in this article. Let (X, ‖·‖) be a finite dimensional Banach space. A functional
Iλ is said to verify the Palais-Smale condition (in short (P.S.)) whenever one has
that any sequence {un} such that

• {Iλ(un)} is bounded;
• {I ′λ(un)} is convergent at 0 in X∗

admits a subsequence which is converging in X.
Our main tool will be the following three abstract critical point theorems, which

are a simple extension of the Ricceri’s Variational Principle [28] recalled here on
the finite dimensional Banach spaces.

Theorem 2.1. Let X be a finite dimensional Banach space and let Φ, Ψ : X → R
two functions of class C1 on X with Φ is coercive. In addition, suppose that there
exist r ∈ R and w ∈ X, with 0 < Φ(w) < r, such that

supΦ−1([0,r]) Ψ
r

<
Ψ(w)
Φ(w)

. (2.1)

Then, for each

λ ∈ Λw :=
]Φ(w)
Ψ(w)

,
r

supΦ−1([0,r]) Ψ
[
,

the function Iλ = Φ−λΨ admits at least one local minimum u ∈ X such that u 6= 0,
Φ(u) < r, Iλ(u) ≤ Iλ(u) for all u ∈ Φ−1([0, r]) and I ′λ(u) = 0.

Theorem 2.2. Let X be a finite dimensional Banach space and let Φ, Ψ : X → R
two functions of class C1 on X with Φ is coercive. Fix r > 0. Assume that for each

λ ∈ Λ :=
]
0,

r

supΦ−1([0,r]) Ψ
[
,

the function Iλ = Φ−λΨ satisfies the (PS)-condition and is unbounded from below.
Then, for each λ ∈ Λ, the function Iλ admits at least two distinct critical points.

Theorem 2.3. Let X be a reflexive real Banach space, Φ : X → R be a continuously
Gâteaux differentiable, coercive and sequentially weakly lower semicontinuous func-
tional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be
a continuously Gâteaux differentiable functional whose Gâteaux derivative is com-
pact, moreover

Φ(0) = Ψ(0) = 0.

Assume that there exist r ∈ R and ū ∈ X, with 0 < r < Φ(ū), such that
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(i)
supu∈Φ−1(]−∞,r]) Ψ(u)

r
<

Ψ(ū)
Φ(ū)

(ii) for each λ ∈ Λ,

Λ :=
]Φ(ū)
Ψ(ū)

,
r

supu∈Φ−1(]−∞,r]) Ψ(u)
[
,

the functional Φ− λΨ is coercive.
Then, for each λ ∈ Λ, the functional Iλ = Φ−λΨ has at least three distinct critical
points in X.

Remark 2.4. It is worth noticing that whenever X is a finite dimensional Banach
space, for the Theorem 2.3 shows that regarding to the regularity of the derivative of
Φ and Ψ, it is enough to require only that Φ′ and Ψ′ are two continuous functionals
on X∗.

For the rest of this article, we use the following notation:

pmin(k) := min
i=1,2

pi(k), pmax(k) := max
i=1,2

pi(k), for all k ∈ Z[0, T ];

p−min = min
k∈[0,T ]

pmin(k), p+
max = max

k∈[0,T ]
pmax(k);

p−i = min
k∈[0,T ]

pi(k), p+
i = max

k∈[0,T ]
pi(k), for i = 1, 2.

Define the function space,

H := {u : [0, T + 1]→ R : u(0) = u(T + 1) = 0}.
Clearly, H is a T -dimensional Hilbert space (see [2]) with the inner product

〈u, v〉 :=
T+1∑
k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈ H.

The associated norm is defined by

‖u‖ :=
( T+1∑
k=1

|∆u(k − 1)|2
)1/2

.

On the other hand, it is useful to introduce other norms on H, namely

|u|m =
( T∑
k=1

|u(k)|m
)1/m

, ∀u ∈ H and m ≥ 2 .

It can be verified [11] that

T
2−m
2m |u|2 ≤ |u|m ≤ T

1
m |u|2, ∀u ∈ H and m ≥ 2. (2.2)

We start with the following auxiliary result. For (a), (b) and (c) see [27] and for
(d) see [30].

Lemma 2.5. We have the following assertions:
(a) For every u ∈ H with ‖u‖ ≤ 1 one has

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
p+−2

2 ‖u‖p
+
.
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(b) For every u ∈ H with ‖u‖ ≥ 1 one has
T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
2−p−

2 ‖u‖p
−
− T.

(c) For any m ≥ 2 there exists a positive constant cm such that
T∑
k=1

|u(k)|m ≤ cm
T+1∑
k=1

|∆u(k − 1)|m, ∀u ∈ H.

(d) For every u ∈ H and for any p, q > 1 such that 1
p + 1

q = 1, we have

max
k∈Z[1,T ]

|u(k)| <
(
T + 1

)1/q( T+1∑
k=1

|∆u(k − 1)|p
)1/p

.

Definition 2.6. We say that u ∈ H is a weak solution of problem (1.1) if
T+1∑
k=1

(
φp1(k−1)(∆u(k − 1)) + φp2(k−1)(∆u(k − 1))

)
∆v(k − 1)

− λ
T∑
k=1

f(k, u(k))v(k) = 0,

for all v ∈ H.

To treat the Dirichlet problem (1.1), we define the following two functions:

Φ(u) =
T+1∑
k=1

( |∆u(k − 1)|p1(k−1)

p1(k − 1)
+
|∆u(k − 1)|p2(k−1)

p2(k − 1)

)
,

Ψ(u) =
T∑
k=1

F (k, u(k)),

(2.3)

where F (k, t) =
∫ t

0
f(k, s)ds for all (k, t) ∈ Z[1, T ]× R. Further, let us denote

Iλ(u) := Φ(u)− λΨ(u), for every u ∈ H.

The functional Iλ is of class C1(H,R), and

〈I ′λ(u), v〉 =
T+1∑
k=1

(
φp1(k−1)(∆u(k − 1)) + φp2(k−1)(∆u(k − 1))

)
∆v(k − 1)

− λ
T∑
k=1

f(k, u(k))v(k),

for any u, v ∈ H. Thus, critical points of Iλ are weak solutions of (1.1).

3. Main results

To introduce our result, for a nonnegative constant γ, put

σ(γ) :=
T

2−p+
max
2

p+
max

(( γ√
T + 1

)p−min − 2T
p+
max
2

)
.



EJDE-2015/195 MULTIPLICITY OF SOLUTIONS 5

Theorem 3.1. Assume that there exist two real constants γ and δ ≥ 1, with

γ ≥
√
T + 1

(
T
p+
max+p−min−4

2 + 2T
p+
max
2

)1/p−min
, (3.1)

4δp
+
max < p−minσ(γ) (3.2)

such that
(A1) ∑T

k=1 max|t|≤γ F (k, t)
σ(γ)

<
p−min

∑T
k=1 F (k, δ)

4δp
+
max

.

(A2) F (k, δ) ≥ 0 for each k ∈ Z[1, T ].
Then, for each

λ ∈ Λw :=
] 4δp

+
max

p−min

∑T
k=1 F (k, δ)

,
σ(γ)∑T

k=1 max|t|≤γ F (k, t)

[
, (3.3)

problem (1.1) admits at least one nontrivial solution u ∈ H, such that |u| < γ.

Proof. Take the real Banach space H as defined in Section 2, and put Φ,Ψ, as in
(2.3). Our aim is to apply Theorem 2.1 to function Iλ. For each u ∈ H such that
‖u‖ ≥ 1, from assertion (b) in Lemma 2.5, we have

Φ(u) ≥ 1
p+

max

T+1∑
k=1

(
|∆u(k − 1)|p1(k−1) + |∆u(k − 1)|p2(k−1)

)
≥ 1
p+

max

(
T

2−p−1
2 ‖u‖p

−
1 + T

2−p−2
2 ‖u‖p

−
2 − 2T

)
→∞ as ‖u‖ → ∞.

So, Φ is a coercive, and we have the regularity assumptions required on Φ and Ψ.
Therefore, it remains to verify assumption (2.1). To this end, we put r := σ(γ),
and pick w ∈ H, defined as

w(k) :=

{
δ, if k ∈ Z[1, T ],
0, otherwise .

(3.4)

Clearly, with δ ≥ 1 one has

Φ(w) =
T+1∑
k=1

( |∆w(k − 1)|p1(k−1)

p1(k − 1)
+
|∆w(k − 1)|p2(k−1)

p2(k − 1)

)
≤ 4δp

+
max

p−min

. (3.5)

Hence, it follows from (3.2) that 0 < Φ(w) < r. Now, let u ∈ H such that
u ∈ Φ−1([0, r]), by Lemma 2.5 (a), for any u ∈ H with ‖u‖ < 1 we obtain

r ≥ Φ(u) ≥ 1
p+

max

(
T
p
+
1 −2
2 ‖u‖p

+
1 + T

p
+
2 −2
2 ‖u‖p

+
2

)
≥ T

p
−
min−2

2

p+
max

‖u‖p
+
max .

(3.6)

Similarly, from Lemma 2.5 (b), for any u ∈ H with ‖u‖ > 1, we obtain

r ≥ Φ(u) ≥ 1
p+

max

(
T

2−p−1
2 ‖u‖p

−
1 + T

2−p−2
2 ‖u‖p

+
2 − 2T

)
≥ 1
p+

max

(
T

2−p+
max
2 ‖u‖p

−
min − T

)
.

(3.7)
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Then

‖u‖ ≤ max
{( rp+

max

T
p
−
min−2

2

)1/p+
max

,
( rp+

max

T
2−p+

max
2

+ 2T
p+
max
2

)1/p−min
}
.

Bearing in mind (3.1), we obtain

rp+
max ≥ T

p
−
min−2

2 .

Then, from (3.6) and (3.7) we have

‖u‖ ≤
( rp+

max

T
2−p+

max
2

+ 2T
p+
max
2

)1/p−min
.

This together with Lemma 2.5 (d), yields

|u(k)| ≤
√
T + 1‖u‖ ≤

√
T + 1

( rp+
max

T
2−p+

max
2

+ 2T
p+
max
2

)1/p−min
= γ

for all k ∈ Z[1, T ]. Therefore, we have that

sup
u∈Φ−1([0,r])

Ψ(u) = sup
u∈Φ−1([0,r])

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤γ

F (k, t). (3.8)

In view of (3.5) and (3.8), taking into account (A1) and (A2), we obtain

supΦ−1([0,r]) Ψ(u)
r

≤
∑T
k=1 max|t|≤γ F (k, t)

σ(γ)

<
p−min

∑T
k=1 F (k, δ)

4δp
+
max

≤ Ψ(w)
Φ(w)

.

(3.9)

Therefore, condition (2.1) of Theorem 2.1 is verified and all the assumptions of
Theorem 2.1 are satisfied. So, for each λ ∈ Λw ⊂] Φ(w)

Ψ(w) ,
r

supΦ−1([0,r]) Ψ(u) [, the func-

tional Iλ admits at least one critical point u such that 0 < Φ(u) < r, and so u is a
nontrivial weak solution of problem (1.1) such that |u| < γ. �

The following result, in which the global Ambrosetti-Rabinowitz condition is also
used, ensures the existence at least two weak solutions.

Theorem 3.2. We suppose that the assumptions (3.1) and (3.2) of Theorem 3.1 be
satisfied and f(k, 0) 6= 0 for every k ∈ Z[1, T ]. Assume that there are two positive
constants µ > p+

max and R > 0 such that,

0 < µF (k, t) ≤ tf(k, t), (3.10)

for all k ∈ Z[1, T ] and |t| ≥ R. Then, for each λ ∈ Λ :=
]
0, σ(γ)PT

k=1 max|t|≤γ F (k,t)

[
,

problem (1.1) admits at least two nontrivial solutions.

Proof. Let Φ,Ψ be the functionals defined in (2.3) satisfy all regularity assumptions
requested in Theorem 2.2. Arguing as in the proof of Theorem 3.1, put w(k) as in
(3.4) and r = σ(γ), for λ ∈ Λ we obtain

supΦ−1([0,r]) Ψ(u)
r

≤
∑T
k=1 max|t|≤γ F (k, t)

σ(γ)
<

1
λ
.
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Now, From condition (3.10), by standard computations, there is a positive constant
c1 such that

F (k, s) ≥ c1|s|µ for all k ∈ Z[1, T ]. (3.11)
Hence, for every λ ∈ Λ, u ∈ H\{0} and t > 1, we obtain

Iλ(tu) ≤
T+1∑
k=1

( |∆tu(k − 1)|p1(k−1)

p1(k − 1)
+
|∆tu(k − 1)|p2(k−1)

p2(k − 1)

)
− λc1tµ

T∑
k=1

|u(k)|µ

≤ tp
+
max

T+1∑
k=1

( |∆u(k − 1)|p1(k−1)

p1(k − 1)
+
|∆u(k − 1)|p2(k−1)

p2(k − 1)

)
− λc1tµ

T∑
k=1

|u(k)|µ.

Since µ > p+
max, Iλ(tu) → −∞ as t → ∞. Then Iλ is unbounded from below.

Finally, we verify the (PS)-condition, it is sufficient to prove that any Palais-
Smale sequence is bounded. Arguing by contradiction, suppose that there exists a
sequence {un} such that {Iλ(un)} is bounded and ‖I ′λ(un)‖X∗ → 0 as n → +∞
and limn→+∞ ‖un‖ = +∞. Using also (3.10), we deduce that, for all n ∈ N, it
holds

T∑
k=1

(
µF (k, un(k))− un(k)f(k, un(k))

)
≤

∑
|un(k)|≤R

(
µF (k, un(k))− un(k)f(k, un(k))

)

≤
T∑
k=1

max
|x|≤R

|µF (k, x)− xf(k, x)| =: c2.

To this end, taking into account Lemma 2.5 (b) one has

M + ‖un‖ ≥ Iλ(un)− 1
µ
〈I ′λ(un), un〉

=
T+1∑
k=1

( |∆un(k − 1)|p1(k−1)

p1(k − 1)
+
|∆un(k − 1)|p2(k−1)

p2(k − 1)

)
− λ

T∑
k=1

F (x, un(k))

− 1
µ

T+1∑
k=1

(
|∆un(k − 1)|p1(k−1) + |∆un(k − 1)|p2(k−1)

)
+ λ

T∑
k=1

1
µ
f(x, un(k))un(k)

≥
( 1
p+

max
− 1
µ

) T+1∑
k=1

(
|∆un(k − 1)|p1(k−1) + |∆un(k − 1)|p2(k−1)

)
− λ

µ

T∑
k=1

(µF (x, un(k))− un(k)f(x, un(k)))

≥
( 1
p+

max
− 1
µ

)(
T

2−p−1
2 ‖un‖p

−
1 + T

2−p−2
2 ‖un‖p

−
2 − 2T

)
− λ

µ
c2.

But, this cannot hold true since p−1 , p
−
2 > 1 and µ > p+

max. Hence, {un} is bounded.
That information combined with the fact that H is a finite dimensional Hilbert
space implies that there exists a subsequence, still denoted by {un}, and u0 ∈ H
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such that un converges to u0 in H. Then, for each λ ∈ Λ, the function Iλ admits
at least two distinct critical points. �

Finally, we give an application of Theorem 2.3.

Theorem 3.3. Suppose that there exist two constants γ and δ ≥ 1 with (3.1) and

4δp
−
min > p+

maxσ(γ) (3.12)

such that the assumptions (A1) and (A2) in Theorem 3.1 hold. Assume also

|f(k, t)| ≤ a0(1 + |t|α(k)−1), (3.13)

where a0 > 0 and 2 ≤ α− = mink∈[0,T ] α(k) ≤ α+ = maxk∈[0,T ] α(k) < p−min. Then,
for each λ ∈ Λw, where Λw as in (3.3), problem (1.1) admits at last three weak
solutions.

Proof. Our aim is to verify (i) and (ii) of Theorem 2.3. Arguing as in the proof of
Theorem 3.1, put w(k) as in (3.4) and r = σ(γ), bearing in mind (3.12) we obtain

Φ(w) > r > 0.

Therefore, (3.9) holds and the assumption (i) of Theorem 2.3 is satisfied. Now, we
prove that the functional Iλ is coercive. For u ∈ H such that ‖u‖ → +∞, in fact
by using condition (3.13), we have

Iλ(u) ≥ 1
p+

max

T+1∑
k=1

(
|∆u(k − 1)|p1(k−1) + |∆u(k − 1)|p2(k−1)

)
− λa1

T∑
k=1

|u(k)|α(k)

α(k)
− a2,

where a1, a2 are positive constants. Now, for k ∈ Z[1, T ] we point out that

|u(k)|α(k) ≤ |u(k)|α
−

+ |u(k)|α
+
.

Thus, using (2.2) and Lemma 2.5 (c), we obtain

|u|α
±

α± =
T∑
k=1

|u(k)|α
±
≤ T |u|α

±

2 = T
( T∑
k=1

|u(k)|2
)α±/2

≤ T
(
c2

T+1∑
k=1

|∆u(k − 1)|2
)α±/2

= TCα±‖u‖α
±
.

Then, for every λ ∈ Λ we obtain

Iλ(u) ≥ 1
p+

max

(
T

2−p−1
2 ‖u‖p

−
1 + T

2−p−2
2 ‖u‖p

−
2 − 2T

)
− λa1

α−

(
TCα−‖u‖α

−
+ TCα+‖u‖α

+
)
− a2

≥ 1
p+

max

(
T

2−p+
max
2 ‖u‖p

−
min − 2T

)
− a3‖u‖α

+
− a2 → +∞,

since p−min > α+, the functional Iλ is coercive, also condition (ii) holds. So, for each
λ ∈ Λw, the functional Iλ has at least three distinct critical points that are weak
solutions of (1.1). �
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Example 3.4. For T = 2, consider the problem

−∆
((
|∆u(0)|p1(0)−2 + |∆u(0)|p2(0)−2

)
∆u(0)

)
= −2λ(u(1)− 1)

−∆
((
|∆u(1)|p1(1)−2 + |∆u(1)|p2(1)−2

)
∆u(1)

)
= −2λ(u(2)− 2)

u(0) = u(3) = 0,

(3.14)

where f(k, t) = −2(t− k) for k = 1, 2 and for

p1(k) =
1
2
k + 2, p2(k) = −1

2
k + 4 for k = 0, 1, 2.

Then one has

p−1 = 2, p−2 = 3, p+
1 = 3, p+

2 = 4, p−min = 2, p+
max = 4.

In fact, if we choose, for example δ = 1 and γ = 6
√

3 such that (3.1) is verified, we
obtain σ(γ) = 7/2 and condition (3.2) holds. Moreover, one has∑2

k=1 max|t|≤6
√

3 F (k, t)

7/2
=

10
7
< 2 =

p−min

∑2
k=1 F (k, 1)

4δp
+
max

.

Then, owing to Theorem 3.1, for each λ ∈
]

1
2 ,

7
10

[
, problem (3.14) admits at least

one nontrivial solution u, such that |u| < 6
√

3.
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