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SPIKE-LAYER SOLUTIONS TO NONLINEAR FRACTIONAL
SCHRÖDINGER EQUATIONS WITH ALMOST OPTIMAL

NONLINEARITIES

JINMYOUNG SEOK

Abstract. In this article, we are interested in singularly perturbed nonlinear

elliptic problems involving a fractional Laplacian. Under a class of nonlinear-
ity which is believed to be almost optimal, we construct a positive solution

which exhibits multiple spikes near any given local minimum components of

an exterior potential of the problem.

1. Introduction

Let N ≥ 2 and (−∆)s, 0 < s < 1 be the usual fractional Laplace operator on
RN . We study the singularly perturbed elliptic problem of fractional order

ε2s(−∆)su+ V (x)u = f(u) in RN ,
lim
x→∞

u(x) = 0,
(1.1)

which is derived from the nonlinear fractional Schrödinger equation

i~ψt − ~2(−∆)sψ − V (x)ψ + f(ψ) = 0, (x, t) ∈ RN × R, (1.2)

where ~ is the Plank constant, i is the imaginary unit. Equation (1.2) can be under-
stood as a nonlinear counterpart of the fractional Schrödinger equations formulated
by Laskin who defined fractional path integrals over the paths of the Lévy flights
and found fractional generalization of the Schrödinger equations in [19, 20]. We
refer to [21] for more physical background. We are concerned with standing waves
of (1.2), solutions of the form

ψ(x, t) = e−iωt/~u(x). (1.3)

By assuming that f : C→ C is continuous such that

f(eiθu) = eiθf(u) for u ∈ R

and inserting the ansatz (1.3) to (1.2), we obtain

~2(−∆)su+ (V (x)− ω)u = f(u) in x ∈ RN .
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Then we set ~ = εs and redefine V (x)−ω by V (x) to derive (1.1). Since the plank
constant ~ > 0 is a very small physical quantity, we may assume ε > 0 is a small
parameter. Throughout this article, we assume

(F1’) f ∈ C(R,R) and limt→0 f(t)/t = 0;
(V1) V ∈ C(RN ,R) and V0 := infx∈RN V (x) > 0.

When s = 1, the equation (1.1) becomes a local elliptic equation

−ε2∆u+ V (x)u = f(u) in RN

lim
x→∞

u(x) = 0
(1.4)

to which a great deal of work has been devoted during the last three decades. The
main concern is to construct a family of positive solution which exhibits spikes
near some critical points of V . Floer and Weinstein proved in their pioneering
paper [16] that if N = 1 and f(u) = u3 then for small ε > 0, there exists a
positive solution of (1.4) which develops a spike near any given non-degenerate
critical point of V . In [25, 26], Oh generalized this result by constructing a positive
solution which develops multiple spikes near any given finite set of non-degenerate
critical points of V when N ≥ 1 and f(u) = up, where p ∈ (1,∞) if N = 1, 2 and
p ∈ (1, (N + 2)/(N − 2)) if N ≥ 3. We also refer to [18] in which Kang and Wei
proved that for small ε > 0, there exists a positive solution which is clustered near
a strict local maximum point of V , i.e., a solution which develops k-spikes near a
strict local maximum point of V for any given k ∈ N.

The results mentioned above make use of Lyapunov-Schmidt reduction method,
which is a very powerful tool especially when we construct highly unstable solutions.
This method essentially requires uniqueness and non-degeneracy of a positive radial
solution of the autonomous equation

−∆v + V (x0)v = f(v) in RN , x0 is fixed

lim
x→∞

v(x) = 0 .
(1.5)

Equation (1.5) is called the limit equation of (1.4) because if u is a solution of (1.5),
by defining v(x) := u(εx+ x0), v satisfies

−∆v + V (εx+ x0)v = f(v),

which approaches as ε → 0 to (1.5). Then, one can apply the Lyapunov-Schmidt
reduction method to search a solution of (1.4) near the set of positive solutions of
(1.5) with x0 which is a critical point of V .

Unfortunately, the uniqueness and non-degeneracy of a positive radial solution
of (1.5) are known for a very restrictive class of f , for example, f(u) = up while the
existence of a radial positive solution of (1.5) can be obtained for a quite general
class of nonlinearity f . Using variational approaches, Berestycki and Lions proved
in [1] that there exists a positive radial least energy solution of (1.5) if f satisfies
the conditions (F1’) and

(F2’) lim supt→∞ |f(t)/tp| < C for some C > 0 and p ∈ (1, (n+ 2)/(n− 2)),
(F3’) there is T > 0 such that F (T ) > V (x0)T 2/2 where F (t) =

∫ t
0
f(s) ds,

which are believed to be almost optimal for the existence of solutions of (1.5).
Therefore one can ask the following question:
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Question 1. Under conditions (F1’)–(F3’), does (1.4) admit spike-layer solutions
described in [16, 25, 26, 18]?

In this regard, we refer to a series of works [11, 12, 13] in which Del pino and
Felmer had developed interesting variational techniques to construct spike layer
solutions of (1.4), concentrating near any given topologically nontrivial critical
point of V for a wide class of nonlinearity f . For example, it is assumed in [13]
that f satisfies

(1) f ∈ C1 and f ′(t)t is locally Lipschitz on [0,∞),
(2) lim supt→∞ f ′(t)/sp−1 <∞ for some p ∈ (1, (n+ 2)/(n− 2)),
(3) f ′(t)t ≤ Cf(t) for some C > 0 and all s ∈ (0, 1),
(4) 0 < qf(t) ≤ f ′(t)t for some q > 1 and all s > 0.

Note that neither uniqueness nor non-degeneracy of a positive solution is assumed
in (1)–(4) although these are still more restrictive than the optimal conditions
(F1’)–(F3’).

After the works [11, 12, 13], much effort has been made to positively answer
Question 1. Byeon and Jeanjean proved in [3, 4] that under the conditions (F1),
(F2’) and (F3’), if ε > 0 is small, there exists a positive solution which exhibits
multiple spikes near any given finite family of local minimum components of V .
Later, Byeon and Tanaka proved in [5] the existence of a spike solution near a
given structurally stable critical point of V by further assuming f ∈ C1. Very
recently, Byeon and Tanaka proved in [6] that for small ε > 0, there is a solution
clustered near a given local maximum component of V by assuming (F2’), (F3’),
f ∈ C1 and f = o(tq) as t→ 0 for some q > 1.

Now, we turn our attention to the case s ∈ (0, 1). For the power type nonlinearity
f(u) = up, Dávila, Del pino and Wei [10] obtained the existence of positive solutions
of (1.1), exhibiting multiple spikes near given topologically nontrivial critical points
of V or clustered near a given local maximum point of V by applying the Lyapunov-
Schmidt reduction method. In this paper, we are interested in extending the result
by Byeon and Jeanjean to the nonlocal equation (1.1). This is a first step to answer
Question 1 for nonlocal equation (1.1). The main idea is adopted from [4] but we
are not going to introduce the penalization term Qε in [3, 4] since it causes some
technical complications. Instead, we show a kind of intersection lemma using degree
theory as in [7, 22]. This makes the point of whole proof much clearer.

We define a concept of classical solution to (1.1) by following [15]. Recall that
(−∆)s is defined as

(−∆)su := F−1(|ξ|2sF(u)), (1.6)
where F and F−1 denote the Fourier and inverse Fourier transform respectively. If
u is sufficiently smooth, it is known that (see [14]) definition (1.6) is equivalent to

(−∆)su := −1
2
C(N, s)

∫
RN

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

dy, (1.7)

where

C(N, s) =
(∫

RN

1− cos(ξ1)
|ξ|N+2s

dξ
)−1

.

By a classical solution of (1.1), we mean a continuous function that (1.7) is well
defined for all x ∈ RN and satisfies (1.1) in pointwise sense.

Next, we give precise descriptions for assumptions about V and f . We assume
that



4 J. SEOK EJDE-2015/196

(V2) there are k local minimum components of V for some k ≥ 1, i.e., there are
k bounded open sets O1, . . . , Ok ⊂ RN such that mi := infx∈Oi V (x) <
minx∈∂Oi V (x), i = 1, . . . , k.

Denote Mi := {x ∈ Oi : V (x) = mi}. Suppose f : R→ R be a function satisfying
(F1) f ∈ C1(R,R) and f(t) = o(t) as t→ 0;
(F2) lim supt→∞ |f(t)/tp| < C for some C > 0 and p ∈ (1, (n+ 2s)/(n− 2s));
(F3) there is T > 0 such that F (T ) > mT 2/2 where F (t) =

∫ t
0
f(s) ds and

m = maxi=1,...,kmi.
Now, we state the main theorem.

Theorem 1.1. Let N ≥ 2. Fix arbitrary s ∈ (0, 1). We assume V : RN → R
is a C1 function satisfying (V1)–(V2) and f satisfies (F1)–(F3). Then, for any
small ε > 0, there exists a positive classical solution uε of (1.1) which exhibits k
spikes near each Mi. More precisely, uε develops k local maximum points yε,i ∈ Oi
satisfying

(i) dist(yε,i,Mi)→ 0 up to a subsequence;
(ii) uε(yε,i) > c for some constant c > 0 independent of ε > 0;

(iii)

uε(x) ≤ C
k∑
i=1

εN+2s

(ε2 + |x− yε,i|2)
N+2s

2

.

In this article, we only pay attention to the singularly perturbed setting. For
readers interested in non-perturbed setting, for example, equations of the form

(−∆)su+ V (x)u = λf(x, u) in Rn,
we refer to [24] in which at least two nontrivial solutions are constructed under a
class of exterior potential V and nonlinearity f with sublinear growth.

We close this section by introducing some notation:
• BNr (x) : N -dim Euclidean ball with center x and radius r.
• C∞c (RN+1

+ ) : the set of infinitely differentiable functions with compact sup-

port in RN+1
+ .

• Cσ(RN ), n ∈ N, σ ≥ 0: the set of [σ] times differentiable functions whose
[σ]th derivatives are Hölder continuous with exponent σ − [σ].
• C : positive generic constant which can vary from line to line.
• Lp(Ω) : the set of p-th integrable functions on Ω.
• LpW (Ω) : the set of p-th weighted integrable functions on Ω with weight W .

2. Preliminaries

By the change of variable x→ x/ε, (1.1) is equivalent to

(−∆)su+ Vε(x)u = f(u) in RN

lim
x→∞

u(x) = 0,
(2.1)

where Vε(x) := V (εx).
Let Ds(RN ) denote the homogeneous fractional Sobolev space, defined as the

completion of C∞c (RN ) with respect to the norm

‖u‖Ds :=
(∫

RN
|(−∆)s/2u|2 dx

)1/2
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and Hs(RN ) denote the standard fractional Sobolev space, defined as the set of
u ∈ Ds(RN ) satisfying u ∈ L2(RN ) with the norm

‖u‖Hs :=
(∫

RN
|(−∆)s/2u|2 + u2 dx

)1/2

.

Let Hs
Vε

(RN ) be the set of u ∈ Ds(RN ) satisfying

‖u‖HsVε :=
(∫

RN
|(−∆)s/2u|2 + Vε(x)u2 dx

)1/2

<∞.

Then we have an obvious embedding Hs
Vε

(RN ) ↪→ Hs(RN ). For any u ∈ Hs(RN ),
it is well known that the following fractional version of Sobolev inequality holds

‖u‖
L

2N
N−2s (RN )

≤ C‖(−∆)s/2u‖L2(RN ). (2.2)

We say u ∈ Hs
Vε

(RN ) is a weak solution to (2.1) if u satisfies∫
RN

(−∆)s/2u(−∆)s/2v dx+
∫

RN
Vε(x)uv dx =

∫
RN

f(u)v dx

for all v ∈ Hs
Vε

(RN ). Making use of the definition of Hs
Vε

, Sobolev inequality
(2.2) and the conditions (F1)–(F2), one can see every integral in the above weak
formulation is well defined.

2.1. Extended problems. Now, we introduce a local extended problem

div(t1−2s∇U) = 0 in RN+1
+

lim
t→0
−t1−2s∂tU = −Vε(x)U(x, 0) + f(U(x, 0)) in ∈ RN

lim
(x,t)→∞

U(x, t) = 0.
(2.3)

It is shown by Caffarelli and Silvestre [8] that, up to a normalization constant, the
equation (2.3) is equivalent to (2.1). Let D1(t1−2s,RN+1

+ ) denote the completion

of C∞c (RN+1
+ ) with respect to the norm

‖U‖D1(t1−2s,RN+1
+ ) =

∫
RN+1

+

|∇U(x, t)|2t1−2s dx dt.

It is known that (see [17]) for any U ∈ D1(t1−2s,RN+1
+ ), its trace U(x, 0) belongs

to Ds(RN ) and the trace map is continuous as follows:

‖U(·, 0)‖Ds(RN ) ≤ C‖U‖D1(t1−2s,RN+1
+ ). (2.4)

Then the trace Sobolev inequality

‖U(x, 0)‖
L

2N
N−2s (RN )

≤ C‖U‖D1(t1−2s,RN+1
+ ) (2.5)

is derived from (2.4) and (2.2). We define function spaces H0 by the set of all
U ∈ D1(t1−2s,RN+1

+ ) satisfying

‖U‖20 :=
∫

RN+1
+

|∇U(x, t)|2t1−2s dx dt+
∫

RN
U(x, 0)2 dx <∞

and Hε by the set of all U ∈ D1(t1−2s,RN+1
+ ) satisfying

‖U‖2ε :=
∫

RN+1
+

|∇U(x, t)|2t1−2s dx dt+
∫

RN
Vε(x)U(x, 0)2 dx <∞.
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We say U ∈ Hε is a weak solution of (2.3) if U satisfies∫
RN+1

+

∇U · ∇V t1−2s dx dt+
∫

RN
V (εx)U(x, 0)V (x, 0)− f(U(x, 0))V (x, 0) dx

for every V ∈ Hε. It is well known that (See [8] and [17]) if Wε ∈ Hε is a weak
solution of (2.3), then Wε(·, 0) ∈ Hs

Vε
(RN ) is a weak solution of (2.1). Also, it is

standard to show that U ∈ Hε is a weak solution of (2.3) if and only if it is a critical
point of the following C1 functional on Hε,

Γε(U) =
1
2

∫
RN+1

+

|∇U |2t1−2s dx dt+
∫

RN

1
2
Vε(x)U(x, 0)2 − F (U(x, 0)) dx,

where F (s) =
∫ s
0
f(σ) dσ.

2.2. Elliptic estimates. Let Dr := BNr (0) × (0, r). Consider the nonlinear Neu-
mann boundary value problem

−div(t1−2s∇U) = 0 in D1

− lim
t→0+

t1−2s∂tU(x, 0) = a(x)U(x, 0) + g(x) in BN1 (0)
(2.6)

Let L2(t1−2s,Dr) be a weighted L2 space on Dr with the weight t1−2s. Also,
H1(t1−2s,Dr) denotes the corresponding weighted Sobolev space. Here we collect
some standard elliptic estimates for (2.6).

Proposition 2.1 (De Giorgi-Nash-Moser type estimate, [17, Proposition 2.4]).
Suppose a, g ∈ Lp(BN1 (0)) for some p > N/(2s).

(i) Let U ∈ H1(t1−2s,D1) be a weak solution to (2.6). Then, U ∈ L∞(D1/2)
and there is a constant C > 0 depending only on N, s, p and ‖a‖Lp(BN1 (0))

such that

sup
D1/2

U ≤ C
(
‖U‖L2(t1−2s,D1) + ‖g‖Lp(BN1 (0))

)
;

(ii) Let U ∈ H1(t1−2s,D1) be a weak solution to (2.6). Then, there is α ∈ (0, 1)
depending only on N, s, p such that U ∈ Cα(D1/2) and there is a constant
C > 0 depending only on N, s, p and ‖a+‖Lp(BN1 (0)) such that

‖U‖Cα(D1/2)
≤ C

(
‖U+‖L∞(D1) + ‖g‖Lp(BN1 (0))

)
.

Proposition 2.2 (Schauder estimate [17, Theorem 2.3]). Suppose a, g belong to
Cσ(BN1 (0)) for some σ 6∈ N. Let U ∈ H1(t1−2s,D1) be a weak solution to (2.6).
If 2s + σ is not an integer, then U(·, 0) ∈ C2s+σ(BN1/2(0)) and there is a constant
C > 0 depending only on N, s, σ and ‖a‖Cσ(BN1 (0)) such that

‖U(·, 0)‖C2s+α(BN1/2(0))
≤ C(‖U‖L∞(D1) + ‖g‖Cσ(BN1 (0)))

2.3. Regularity of weak solutions. We assume f(t) = 0 for any t ≤ 0 by redefin-
ing f if necessary. Then, we see that every weak solution W of (2.3) is nonnegative
by testing W−, the negative part of W to the equation (2.1). Actually we can prove
W is classical and positive everywhere.

Proposition 2.3. Let Wε be a weak solution of (2.3). Then its trace Wε(·, 0) is a
classical solution of (2.1) and positive.
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Proof. Since Wε ∈ Hε ⊂ H0 solves

div(t1−2s∇U) = 0 in RN+1
+

lim
t→0

U(x, t) = Wε(x, 0) in ∈ RN ,

it is given by

Wε(x, t) = β(N, s)
∫

RN

t2s

(|x− y|2 + t2)
N+2s

2

Wε(x, 0) dx,

and consequently Wε ∈ L2(t1−2s,D1)(see [17]). Thus the De Giorgi-Nash-Moser
type estimate (Proposition 2.1) applies to deduce Wε(·, 0) is Hölder continuous.
Then, applying the Schauder estimate (Proposition 2.2) iteratively, we see that
Wε(·, 0) ∈ C2+α(RN ) for some α ∈ (0, 1) if s > 1/2 and Wε(·, 0) ∈ C1+α(RN )
for some α ∈ (0, 1) if s ≤ 1/2. We refer to [15] to inform that these are enough
regularities to makes weak solutions classical. Suppose that there is x0 ∈ RN such
that Wε(x0, 0) = 0. Since Wε(x0, 0) ≥ 0, x0 is a global minimum of Wε. But this
contradicts with the expression

− 1
2
C(N, s)

∫
RN

Wε(x0 + y, 0) +Wε(x0 − y, 0)− 2Wε(x0, 0)
|y|N+2s

dy

= −Wε(x0, 0) + f(Wε(x0, 0))

because the left-hand side is positive but the right-hand side vanishes. �

2.4. limit equations. As ε→ 0, we obtain the following limit equation of (2.3)

div(t1−2s∇U) = 0 in RN+1
+

lim
t→0
−t1−2s∂tU = −aU(x, 0) + f(U(x, 0)) in ∈ RN

lim
(x,t)→∞

U(x, t) = 0,
(2.7)

where a is a real constant.
As before, a weak solution of (2.7) is defined by a function W ∈ H0 satisfying∫

RN+1
+

∇W · ∇V t1−2s dx dt+
∫

RN
aW (x, 0)V (x, 0)− f(W (x, 0))V (x, 0) dx

for every V ∈ H0, and it is a critical point of the functional

Γa(U) =
1
2

∫
RN+1

+

|∇U |2t1−2s dx dt+
∫

RN

1
2
aU(x, 0)2 − F (U(x, 0)) dx.

It is also true that if W ∈ H0 is a weak solution of (2.7), then W (·, 0) ∈ Hs(RN ) is
a weak solution of

(−∆)su+ au = f(u) in RN

lim
x→∞

u(x) = 0.
(2.8)

In [9], the following Pohozaev identity is proved for a > 0. We note that the ar-
gument employed in [9], originally developed in [1], does not require the positiveness
of a. Thus we have the following result.



8 J. SEOK EJDE-2015/196

Proposition 2.4. For any a ∈ R, if W ∈ H0 is a weak solution of (2.7), it satisfies
the following integral identity, which is called the Pohozaev identity
N − 2s

2

∫
RN+1

+

|∇W |2t1−2s dx dt+N

∫
RN

a

2
W (x, 0)2 − F (W (x, 0)) dx = 0. (2.9)

We say L ∈ H0 is a least energy solution of (2.7) if L is a weak solution of (2.7)
and satisfies Γa(L) ≤ Γa(W ) whenever W is a nontrivial weak solution of (2.7).

Proposition 2.5. Let s ∈ (0, 1) and f satisfies (F1)–(F3). Then, for any a > 0
there exists a positive least energy solution to (2.7). Moreover, every least energy
solution L satisfies the following properties:

(i) L(·, 0) is a classical solution of (2.8) and positive.
(ii) Γa(L) ≤ Γa(V ) whenever V ∈ H0 is nontrivial and satisfies the Pohozaev

identity (2.9).
(iii) there is a constant C depending only on N, s, f and ‖L‖H0 such that

|L(x, 0)| ≤ C 1
|x|N+2s

for |x| > 1;

Proof. The existence of a solution W of (2.7) satisfying

Γa(W ) = ca := min
γ∈T

max
σ∈[0,1]

Γa(γ(σ)), (2.10)

where T = {γ ∈ C([0, 1], H0 : γ(0) = 0, γ(1) < 0}, is obtained in [9] but it is not
clear at this point whether or not it is of least energy and it satisfies (ii). Here,
we reconstruct a solution by following the approach employed in [2] that finding a
minimizer of a minimization problem below

min
U∈H0\{0}

{
Γa(U) :

N − 2s
2

∫
RN+1

+

|∇U |2t1−2s dx dt

+N

∫
RN

a

2
U(x, 0)2 − F (U(x, 0)) dx = 0

}
.

Using the Pohozaev identity (2.9), it is easy to check that there is a minimizer
L ∈ H0, which is a solution of (2.7). For detail, we refer to [2]. From the definition
it is clear that (ii) holds. Since every weak solution satisfies (2.9), we see L is a
least energy solution. Applying the same argument in the proof of Proposition 2.3,
we also obtain (i).

Now, we prove (iii). Applying (i) of Proposition 2.1, we see that ‖L(·, 0)‖L∞(RN )

is bounded and ‖L(·, 0)‖L∞(BN1 (x)) → 0 as |x| → ∞ so that L(·, 0) satisfies

(−∆)sL(·, 0) +
a

2
L(·, 0) ≤ 0 on RN \ BNR (0)

by taking large R > 0. It is proved in [15] that there is a positive function K ∈
Hs(RN ) satisfying

(−∆)sK(x) +
a

2
K(x) = 0 in RN \BN1 (0),

K(x) ≤ C 1
|x|N+2s

on RN \BN1 (0).

Then, the comparison principle (we refer to [15]) applies to see

L(x, 0) ≤ CK(x) ≤ C 1
|x|N+2s

on RN \BNR (0)
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for some C > 0. �

Let Sa denote the set of least energy solutions L of (2.7) such that L(x, 0) attains
its maximum at 0 ∈ RN . The compactness of Sa can be proved by following the
argument in the proof of [3, Proposition 1] with no changes. We omit the details.

Proposition 2.6. For any a > 0, the set Sa is compact in H0.

We denote Ea := Γa(L), where L ∈ Sa.

Proposition 2.7. Suppose that 0 < a ≤ b. Then Ea ≤ Eb.
Proof. Recall ca := minγ∈T maxσ∈[0,1] Γa(γ(σ)). We claim that Ea = ca. Then the
proposition follows from the definition of ca. Let L be a least energy solution of
(2.7). Using the Pohozaev identity (2.9), we see that

Γa(L(·/σ, ·/σ)) =
(σN−2s

2
− N − 2s

2N
σN
)∫

RN+1
+

|∇L|2t1−2s dx dt (2.11)

so that there is σ0 > 1 such that Γa(L(·/σ0, ·/σ0)) < 0. Define a path γ0(σ) :
[0, 1] → H0 by γ0(σ) = L(·/(σ0σ), ·/(σ0σ)). Then γ0 is continuous such that
γ0(0) = 0 and γ0(1) < 0. We also see from (2.11) that

Γa(L) = max
σ∈[0,1]

Γa(γ0(σ)),

which shows ca ≤ Ea.
Conversely, take arbitrary path γ ∈ T . It is standard to see from the mountain

pass geometry of Γa that we may assume γ(1) = γ0(1). For any U ∈ H0 \ {0},
define a map

Pa(U) :=

√√√√(N ∫RN F (U(x, 0))− a
2U(x, 0)2 dx

N−2s
2

∫
RN+1

+
|∇U |2t1−2s dx dt

)
+
.

Observe Pa(γ0(σ)) = σ0σ. For proving Ea ≤ ca, it is sufficient to show there
is σ1 > 0 such that Pa(γ(σ1)) = 1, due to the (ii) of Proposition 2.5. Define a
homotopy Ha : [0, 1]× [0, 1] by

Ha(σ, t) = (1− t)γ0(σ) + tγ(σ).

Since deg(Pa(γ0(σ)), [0, 1], 1) = deg(σ0Id, [0, 1], 1) 6= 0 and γ0(0), γ0(1) 6= 1, we are
done because the homotopy fixes the boundary. Later, we shall apply a similar
argument when we prove Proposition 4.2. �

3. Local concentration compactness result

Let 10δ := min{mini dist(Mi, ∂Oi),mini 6=j dist(Oi, Oj)} and ϕ : RN → [0, 1] be
a smooth cut-off function satisfying

ϕ(x) =

{
1 for |x| ≤ δ
0 for |x| ≥ 2δ.

We denote ϕε(x) := ϕ(εx). For any set A ⊂ RN , we mean by Aδ the δ-neighbor
hood of A, i.e., {x ∈ RN : dist(x,A) ≤ δ}. Then one can define a set of approxi-
mation solutions by

Nε(ρ) =
{ k∑
i=1

ϕε(· − xi/ε)Li(· − xi/ε, t) + ω :
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xi ∈Mδ
i , Li ∈ Smi , ω ∈ Hε, ‖ω‖ε ≤ ρ

}
In this section, we prove a concentration compactness type result which gives a de-
composition of so-called ε-PS sequences when they belong to Nε(ρ). For a sequence
{εn} > 0 with limn→∞ εn = 0, we say a sequence {Un} ∈ Hεn is an ε-PS sequence
of Γε at level c ∈ R if

lim
n→∞

Γ′εn(Un) = 0 in (Hεn)−1 and lim
n→∞

Γεn(Un)→ c.

Proposition 3.1. Let {Un} ∈ Nεn(ρ) be an ε-PS sequence of Γε at level c ≤∑k
i=1Ei. Then for sufficiently small ρ > 0, there exist k functions Li ∈ Smi and k

sequences {xin} ∈ RN such that

εnx
i
n → xi for some xi ∈Mi and

∥∥Un − k∑
i=1

ϕεn(· − xin)Li(· − xin, ·)
∥∥
εn
→ 0

as n→∞ up to a subsequence.

Proof. Since Un ∈ Nεn(ρ), there exist k sequences of functions {Lin} ∈ Smi and k
sequences of points {yin} ∈ Mδ

i such that

Un(x, t) =
k∑
i=1

ϕεn(x− yin/εn)Lin(x− yin/εn, t) + ωn,with ‖ωn‖εn ≤ ρ. (3.1)

Then, we see by the compactness of Smi and Mδ
i , as n→∞,

Lin → Li in H0, yin → yi in RN

for some Li ∈ Smi and yi ∈ Mδ
i up to a subsequence. Define U1

n :=
∑k
i=1 ϕεn(· −

yin/εn)Un and U2
n = Un − U1

n. We denote U1,i
n = ϕεn(· − yin/εn)Un so that U1

n =∑k
i=1 U

1,i
n . Now, we divide the remaining proof into several steps.

Step 1. Fix an arbitrary i. From the definition, it is clear that W i
n is bounded

in H0 so that we may assume it weakly converges to some Wi ∈ H0 by taking
a subsequence. Choose an arbitrary test function Ψ ∈ C∞c (RN+1

+ ). We denote
un := Un(·, 0) and ψ := Ψ(·, 0). Also, for z ∈ RN , we denote Ψz := Ψ(· − z, t) and
ψz := Ψ(· − z, 0). Since Un is an ε-(PS) sequence, we have as n→∞,∫

RN+1
+

∇Un · ∇Ψyin/εn
t1−2s dx dt+

∫
RN

Vεnunψyin/εn − F (un)ψyin/εn dx

= o(1)‖ψyin/ε‖εn = o(1)

For n as large as supp(Ψ) ⊂ BNδ/εn(0) × [0,∞), the LHS of the above equation
becomes by a change of variable x 7→ x+ yin,∫

RN+1
+

∇W i
n · ∇Ψt1−2s dx dt+

∫
RN

V (εnx+ yin)winψ − F (win)ψ dx,

which converges to∫
RN+1

+

∇Wi · ∇Ψt1−2s dx dt+
∫

RN
V (yi)wiψ − F (wi)ψ dx as n→∞

due to the weak convergence of W i
n, conditions (F1)–(F2) of the nonlinearity f

and compact Sobolev embedding. This proves Step 1.
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Step 2. We define Õεn :=
(
RN \∪ki=1B

N
δ/εn

(yin/εn)
)
× [0,∞) so that supp(U2

n) ⊂ Õ
and ϕ̃εn :=

∑k
i=1 ϕεn(· − yin/εn) so that U2

n = (1 − ϕ̃εn)Un. Then, using the fact
that ‖Un‖εn is bounded, we can see if n is sufficiently large,

‖U2
n‖εn = ‖U2

n‖Hεn (Õ) = ‖(1− ϕ̃εn)Un‖Hεn (Õ)

≤ ‖Un‖Hεn (Õ) + o(1)

≤ ‖Un −
k∑
i=1

ϕεn(· − yin/εn)Lin(· − yin/εn, ·)‖Hεn (Õ)

+ ‖
k∑
i=1

ϕεn(· − yin/εn)Lin(· − yin/εn, ·)‖Hεn (Õ) + o(1)

≤ ρ+ o(1) ≤ 2ρ

(3.2)

Then, we have from the conditions (F1)–(F2) and Sobolev trace inequality that

Γεn(U2
n) ≥ 1

2
‖U2

n‖2εn −
1
4
V0‖U2(·, 0)‖2L2(RN ) − C‖U

2(·, 0)‖p+1
Lp+1(RN )

≥ 1
4
‖U2

n‖2εn − C‖U
2
n‖p+1
εn

= ‖U2
n‖2εn

(1
4
− C‖U2

n‖p−1
εn

)
.

(3.3)

Thus, we can deduce Γεn(U2
n) ≥ 0 by taking ρ > 0 small.

Next, we prove the second assertion. Define

A(n, i) := BN2δ/εn(yin/εn) \BNδ/εn(yin/εn).

Let un = Un(·, 0). We claim that for all i ∈ 1, . . . , k

lim inf
n→∞

∫
A(n,i)

|un|p+1 dx = 0,

from which we can deduce that

lim inf
n→∞

∫
RN

F (un)− F (u1
n)− F (u2

n) dx = 0

by using the conditions (F1)–(F2). Then our assertion follows because

Γεn(Un) = Γεn(U1
n) + Γεn(U2

n) +
∫

RN+1
+

ϕ̃εn(1− ϕ̃εn)|∇Un|2t1−2s dx dt

+
∫

RN
V (εx)ϕ̃εn(1− ϕ̃εn)(un)2 dx

+
∫

RN
F (un)− F (u1

n)− F (u2
n) dx+ o(1).

Arguing indirectly, suppose that lim infn→∞
∫
A(n,i)

|un|p+1 dx 6= 0 for some i. We
let gn := |un|χA(n,i). Then, as is proved in [23], there exist a positive R > 0 and a
sequence {zn} ∈ RN such that

lim inf
n→∞

∫
BNR (zn)

g2
n dx > 0.
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Since the support of gn is contained in A(n, i), we may assume that

zn ∈ BN2δ
εn

+R
(yin/εn) \BNδ

εn
−R(yin/εn).

Define W̃n := Un(· + zn, ·). Then, As in Step 1, we see that W̃n weakly converges
in H0 to some W̃ ∈ H0, which is a solution of (2.7) with a = V (z0) for some
z0 ∈ BN2δ(yi) \BNδ (yi). Also, W̃ is nontrivial because∫

BR(0)

w̃2 dx = lim inf
n→∞

∫
BR(0)

w̃2
n dx ≥ lim inf

n→∞

∫
BNR (zn)

g2
n dx > 0.

Then we see from Proposition 2.7, the definition of EV (z0) and the Pohozaev identity
(2.9) that

Emi ≤ EV (z0) ≤ ΓV (z0)(W̃ ) =
s

N

∫
RN
|∇W̃ |2t1−2s dx dt.

Thus, by taking large R, we have
Emi

2
≤ s

N

∫
BR(0)

|∇W̃ |2t1−2s dx dt ≤ lim inf
n→∞

s

N

∫
BR(0)

|∇W̃n|2t1−2s dx dt

But, by taking small ρ < Emi/2, this contradicts with (3.1) and proves the claim.
Step 3. As before, we set win := W i

n(·, 0). We first claim that win strongly converges
to wi in Lp+1(RN ) for p in the condition (F2). Fix an i. Arguing indirectly,
suppose that win 6→ wi in Lp+1(RN ). Then, again using the argument in [23], there
are an unbounded sequence {zn} ∈ RN and a positive number R > 0 such that
lim infn→∞

∫
BR(zn)

(win)2 dx > 0. Since each win is supported in B2δ/εn(0), we may

assume that zn ∈ B 2δ
εn

+R(0) by choosing a subsequence. Define W̃ i
n := W i

n(·+zn, ·).
As before, we can deduce by taking a subsequence, W̃ i

n weakly converges in H0 to
some W̃i ∈ H0, which is a nontrivial solution to (2.7) with a = V (z0), where z0 is a
point in Oi. Then, as in Step 2, this contradicts with (3.1) and the claim follows.
Now, the conditions (F1)–(F3) imply

lim
n→∞

∫
RN

F (win) dx =
∫

RN
F (wi) dx,

which shows
lim inf
n→∞

Γεn(U1,i
n )

= lim inf
n→∞

(1
2

∫
RN+1

+

|∇W i
n|t12−s dx dt

+
1
2

∫
RN

V (εnx+ yin)(win)2 dx−
∫

RN
F (win) dx

)
≥ 1

2

∫
RN+1

+

|∇Wi|t12−s dx dt+
1
2

∫
RN

V (yi)(wi)2 dx−
∫

RN
F (wi) dx ≥ Ei.

(3.4)

Also, we see from Step 2

lim sup
n→∞

k∑
i=1

Γεn(U1,i
n ) ≤ lim sup

n→∞
(
k∑
i=1

Γεn(U1,i
n ) + Γεn(U2

n))

≤ lim sup
n→∞

Γεn(Un) ≤
k∑
i=1

Ei.

(3.5)
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The inequalities (3.4) and (3.5) imply that limn→∞ Γεn(U1,i
n ) = Ei. We again use

(3.4) and (3.5) to see that ΓV (yi)(Wi) = Ei, from which and Proposition 2.7 we
deduce yi ∈Mi. Therefore we see also there exist Li ∈ Smi and zi ∈ RN such that
Wi = Li(· − zi) from Proposition 2.5. Now observe∫

RN
V (yi)(win)2 dx =

∫
RN

V (yi)(u1,i
n )2 dx

≤
∫

RN
V (εnx)(u1,i

n )2 dx

=
∫

RN
V (εnx+ yin)(win)2 dx,

where we used the fact that V (yi) ≤ V (εnx) on the support of u1,i
n so that

lim sup
n→∞

(∫
RN+1

+

|∇W i
n|2t1−2s dx dt+

∫
RN

V (yi)(win)2 dx
)

≤ 2(Ei +
∫

RN
F (wi) dx)

=
∫

RN+1
+

|∇Wi|2t1−2s dx dt+
∫

RN
V (yi)(wi)2 dx.

This shows that W i
n →Wi in H0 as n→∞.

Step 4. Completion of the proof. Combining (3.4) and (3.5), we also deduce
limn→∞ Γεn(U2

n) = 0. Then, using (3.3), it holds that

lim
n→∞

‖U2
n‖εn = 0. (3.6)

By setting xin = yin/εn + zi, the whole proof of Proposition 3.1 follows from com-
bining (3.6) and Steps 1–3. �

Now by Proposition 3.1, we obtain a sufficient condition for proving Theorem 1.1.

Proposition 3.2. For sufficiently small ρ > 0, every family of critical points
Uε ∈ Nε(ρ) of Γε with limε→0 Γε(Uε) ≤

∑k
i=1Ei satisfies the conclusion of Theorem

1.1.

Proof. From Proposition 2.3, uε := Uε(·, 0) is a classical solution of (2.1). We
denote Oε,i := {x ∈ RN : εx ∈ Oi}. Let xε,i be a point satisfying u(xε,i) =
maxx∈Oε,i uε(x). We first note that Uε fulfills the hypothesis of Proposition 3.1.
Then using Proposition 3.1, we may assume that if ε > 0 is sufficiently small,
u(xε,i) is bounded below uniformly for ε > 0 and dist(εxε,i,Mi) → 0 as ε → 0.
This implies that {xε,i}, i = 1, . . . , k are k-local maximums of uε. By scaling back
x→ x/ε, this proves all the assertion in Theorem 1.1 except (iii).

Now, we prove (iii). Define a set Aε := RN \ ∪ki=1B
N
R (xε,i). Using Proposition

3.1 again we see that ‖Uε‖ε is bounded and ‖Uε‖Hε(Aε×(0,∞)) is arbitrarily small
by taking ρ > 0 small and R > 0 large. Then are before, applying Applying (i)
of Proposition 2.1 we can deduce ‖uε‖L∞(RN ) is bounded and ‖uε‖L∞(Aε) can be
controlled as small as uε satisfies (−∆)suε + 1

2V0uε ≤ 0 on RN \ ∪ki=1B
N
R (xε,i) by

taking small ρ > 0 and large R > 0. Let Φ be the fundamental solution of equation
(−∆)su + 1

2V0u = 0 in RN . Then Kε :=
∑k
i=1{Φ ∗ χBNR (0)}(· − xε,i) satisfies

the equation (−∆)su + 1
2V0u = 0 on RN \ ∪ki=1B

N
R (xε,i) so that one can use the
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comparison principle to see uε ≤ CKε on RN \ ∪ki=1B
N
R (xε,i) for some C > 0. It is

proved in [15] that Φ ∗ χBNR (0) ≤ C 1
|x|N+2s , on RN \BNR (0) which implies that

uε(x) ≤ C
k∑
i=1

C

(1 + |x− xε,i|2)
N+2s

2

on RN .

Then, scaling back x→ x/ε again, we see (iii) holds. This completes the proof. �

From now on, we devote the rest of the paper to prove the existence of a family
of critical points Uε ∈ Nε(ρ0) of Γε with limε→0 Γε(Uε) ≤

∑k
i=1Ei.

4. Initial surface and intersection lemma

Choose and fix xi ∈Mi and Li ∈ Smi for each i. Define a k-dimensional surface
γε : [0,∞)k → Hε as

γε(σ1, · · · , σk) :=
k∑
i=1

ϕε(· − xi/ε)Li
( · − xi/ε

σi
,
·
σi

)
.

We call γε the initial surface because it will be deformed by a deformation flow
later. We denote by [a, b]k and ∂([a, b]k) a k-dimensional cube [a, b] × · · · × [a, b]
and its boundary respectively. We may choose small ρ0 > 0 which makes the
conclusion of Proposition 3.2 holds, σ− ∈ (0, 1) and σ+ ∈ (1,∞) such that if
ε > 0 is small, γε(σ) 6∈ Nε(2ρ0) on σ = (σ1, · · · , σk) ∈ ∂([σ−, σ+]k). Let Dε :=
maxσ∈[σ−,σ+]k Γε(γε(σ)).

Proposition 4.1. It holds that

(i) limε→0Dε =
∑k
i=1Ei.

(ii) there exists α > 0 such that for all small ε > 0,

Γε(γε(σ)) ≥ Dε − α⇒ γε(σ) ∈ Nε(ρ0/2).

Proof. Let us denote by oσ(1) a quantity going to zero uniformly for σ ∈ [σ−, σ+]k

as ε→ 0. We compute by setting li = Li(·, 0),

Γε(γε(σ))

=
k∑
i=1

1
2

∫
RN+1

+

|∇(φεLi(·/σi, ·/σi))|2t1−2s dx dt

+
1
2

∫
RN

V (εx+ xi)ϕε(x)li(x/σi)2 dx−
∫

RN
F (ϕε(x)li(x/σi)) dx

=
k∑
i=1

σN−2s
i

2

∫
RN+1

+

|∇Li|2t1−2s dx dt+ σNi

(∫
RN

mi

2
l2i − F (li) dx

)
+ oσ(1)

=
k∑
i=1

(σN−2s
i

2
− N − 2s

2N
σNi

)∫
RN+1

+

|∇Li|2t1−2s dx dt+ oσ(1),
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where we used the decay property of li and the Pohozaev identity (2.9). Therefore
we see

Dε = max
σ∈[σ−,σ+]k

Γε(γε(σ))

=
k∑
i=1

(
1
2
− N − 2s

2N
)
∫

RN+1
+

|∇Li|2t1−2s dx dt+ oσ(1)

=
k∑
i

Ei + oσ(1)

(4.1)

since the function g(t) := tN−2s/2 − N−2s
2N tN attains it maximum at t = 1. This

proves (i).
Next, we prove (ii). Suppose that (ii) does not hold. Then by (i), there exist

εn > 0 with limn→∞ εn = 0 and {σn} ∈ [σ−, σ+]k such that limn→∞ Γεn(γεn(σn)) =∑k
i=1Ei and γεn(σn) 6∈ Nεn(ρ0/2) for all n. Since [σ−, σ+]k is compact, we may

assume σn → σ0 to some σ0 ∈ [σ−, σ+]k as n→∞. Then, we use (4.1) to deduce
k∑
i=1

( (σ0)N−2s
i

2
− N − 2s

2N
(σ0)Ni

)∫
RN+1

+

|∇Li|2t1−2s dx dt =
k∑
i=1

Ei.

By explicitly computing g′(t), we can easily see t = 1 is a unique solution of
g′(t) = 0. This implies that σ0 = (1, · · · 1) so that σn is arbitrarily close to (1, · · · , 1)
as n → ∞. This however contradicts with γεn(σn) 6∈ Nεn(ρ0/2). This completes
the proof. �

We say a k-dimensional continuous map γ̃ε : [σ−, σ+]k → Hε is a boundary
fixing deformation of γε if there exists a continuous map Kε : [σ−, σ+]× [0, 1]→ Hε

such that Kε(σ, t) = γε(σ) for any (σ, t) ∈ ∂([σ−, σ+]k) × [0, 1], Kε(·, 0) = γε and
Kε(·, 1) = γ̃ε. For each i = 1, . . . , k, let ζi : RN → R+ be a cut-off function
satisfying ζi(x) = 1 if x ∈ Oδi , ζi(x) = 0 if x 6∈ O2δ

i and |∇ζi| ≤ 2/δ. For any
U ∈ H0 \ {0}, we define functionals

Pi(U) :=

√√√√(N ∫RN F (U(x, 0))− mi
2 U(x, 0)2 dx

N−2s
2

∫
RN+1

+
|∇U |2t1−2s dx dt

)
+

and a set

Pε := {U ∈ Hε : Pi(ζi(ε·)U) = 1 for every i = 1, . . . , k}.

Proposition 4.2 (Intersection lemma). Let γ̃ε be a boundary fixing deformation
of γε. Then for any small ε > 0

γ̃ε([σ−, σ+]k) ∩ Pε 6= ∅.

Proof. Since γ̃ε is a boundary fixing deformation of γε, there is a continuous map
Kε : [σ−, σ+]k× [0, 1]→ Hε satisfying the definition above. We define a continuous
map Ξε : [σ−, σ+]k × [0, 1]→ Rk by

Ξε(σ, t) := (P1(ζ1(ε·)Kε(σ, t)), . . . ,Pk(ζk(ε·)Kε(σ, t))).

We have to prove that for any small ε > 0, there exists some σε ∈ [σ−, σ+]k such
that

Ξε(σε, 1) = (1, . . . , 1).
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This is the case when deg(Ξε(·, 1), [σ−, σ+]k, (1, . . . , 1)) 6= 0. Using elementary
computation, we can see

Ξε(σ, 0) = (P1(ϕεL1(·/σ1)), . . . ,Pk(ϕεLk(·/σ1))) = (σ1, . . . , σk) + oσ(1), (4.2)

which shows for sufficiently small ε > 0,

deg(Ξε(·, 1), [σ−, σ+]k, (1, . . . , 1)) = deg(Ξε(·, 0), [σ−, σ+]k, (1, . . . , 1))

because Ξε fixes the boundary and Ξε(·, 0) does not touch (1, . . . , 1) at the boundary.
Next, we define another homotopy map χ : [σ−, σ+]k × [0, 1] by

χ(σ, ε) = (P1(ϕεL1(·/σ1)), . . . ,Pk(ϕεLk(·/σ1)))

Then we again use (4.2) to see χ connects Ξε(·, 0) with the identity map I and for
sufficiently small ε > 0,

deg(Ξε(·, 0), [σ−, σ+]k, (1, . . . , 1)) = deg(I, [σ−, σ+]k, (1, . . . , 1)) = 1.

This completes the proof. �

Now, the following corollary immediately follows from the above intersection
lemma.

Corollary 4.3. For any boundary fixing deformation γ̃ε of γε, it holds that

lim inf
ε→∞

max
σ∈[σ−,σ+]k

Γε(γ̃ε(σ)) ≥
k∑
i=1

Ei.

Proof. Define γ̃1
ε =

∑k
i=1 ζi(ε·)γ̃ε and γ̃2

ε = γ̃ε − γ̃1
ε . Arguing similarly in the proof

of Proposition 3.1, we can check

Γεn(γ̃2
ε ) ≥ 0 and Γεn(γ̃ε) ≥ Γεn(γ̃1

ε ) + Γεn(γ̃2
ε ) + oσ(1).

Let σε ∈ [σ−, σ+]k be such that γ̃ε(σε) ∈ Pε. Then we have from Proposition 2.5
that

Γε(γ̃ε(σε)) ≥ Γε(γ̃1
ε (σε)) + oσ(1) =

k∑
i=1

Γε(ζi(ε·)γ̃ε(σε)) + oσ(1)

=
k∑
i=1

Γmi(ζi(ε·)γ̃ε(σε)) + oσ(1)

≥
k∑
i=1

Γmi(Li) + oσ(1) =
k∑
i=1

Ei + oσ(1),

which shows the result. �

5. Deformation argument and Completion of the proof

In this section, we first show the existence of a (PS) sequence {un} ∈ Nε(ρ0) of
Γε with Γε(un) ≤ Dε by applying a deformation argument. Then the existence of
a critical point follows.

Proposition 5.1. For each small ε > 0 there exists a sequence {Un} ∈ Nε(ρ0) of
Γε satisfying Γε(Un) ≤ Dε for all n and limn→∞ Γ′ε(Un)→ 0 in H−1

ε .
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Proof. Arguing indirectly, suppose that there exists no such a sequence. We define
a set Xε(ρ) by

Xε(ρ) := {U ∈ Nε(ρ) : Γε(U) ≤ Dε}.
Then there is a real number βε > 0 such that ‖Γ′ε‖H−1

ε
≥ βε on Xε(ρ0). Also,

Proposition 3.1 implies that there is a real number η > 0 independent of small
ε > 0 such that ‖Γ′ε‖H−1

ε
≥ η on Xε(ρ0) \ Xε(ρ0/2). Then, by combining this

facts with Proposition 4.1, we can apply the standard deformation theory(see for
example [27]) to show the existence of k-dimensional surface γ̃ε(σ) homotopic to
initial surface γε(σ) satisfying γ̃ε(σ) = γε(σ) on σ ∈ ∂([σ−, σ+]k) and

max
σ∈[σ−,σ+]k

Γε(γ̃ε(σ)) ≤ Dε − κ

for some κ > 0 independent of ε > 0. But, taking the limit ε→ 0, this contradicts
with Corollary 4.3. This completes the proof. �

Now we are ready to complete the proof of Theorem 1.1.

Proposition 5.2. For sufficiently small ε > 0, there exists a critical point Uε ∈
Nε(ρ0) of Γε with Γε(Uε) ≤ Dε.

Proof. We fix small ε > 0. Let {Un} be the (PS) sequence obtained in Proposition
5.1. Then there are Vn and Wn such that Un = Vn+Wn, Vn ∈ Nε(0) and ‖Wn‖ε ≤
ρ0. Since {Un} is a (PS) sequence and bounded in Hε, it weakly converges, up
to a subsequence, to a critical point U ∈ Hε of Γε. It is easily checked from the
compactness of Smi in H0 that Nε(0) is compact in Hε. Thus, there is V ∈ Nε(0)
such that Vn → V in Hε, up to a subsequence, as n → ∞. Also there is W ∈ Hε

which weakly converges, up to a subsequence, to some W ∈ Hε so that U = V +W .
Then we have

‖U − V ‖ε = ‖W‖ε ≤ lim inf
n→∞

‖Wn‖ε ≤ ρ0,

which shows U ∈ Nε(ρ0).
Next, we claim that Γε(U) ≤ lim supn→∞ Γε(Un) to show Γε(U) ≤ Dε. By using

the same argument for proving well known Brezis-Lieb lemma (for example see
[27]), it can be seen∫

RN
F (Un(x, 0)) dx =

∫
RN

F (U(x, 0)) dx+
∫

RN
F (Un(x, 0)− U(x, 0)) dx+ o(1),

which shows
Γε(Un) = Γε(U) + Γε(Un − U) + o(1).

Observe
‖Un − U‖ε ≤ ‖Vn − V ‖ε + ‖Wn −W‖ε ≤ 2ρ0 + o(1).

Then, arguing similarly as in the proof of Proposition 3.1, it holds that Γε(Un−U) ≥
0, which proves the claim. �

Theorem 1.1 follows from Propositions 5.2, 3.2 and the fact that limε→0Dε =∑k
i=1Ei.
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