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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
SEMILINEAR ELLIPTIC EQUATIONS WITH NEUMANN

BOUNDARY CONDITIONS

QIN JIANG, SHENG MA

Abstract. This article shows the existence of solutions by the least action

principle, for semilinear elliptic equations with Neumann boundary conditions,

under critical growth and local coercive conditions. In the subcritical growth
and local coercive case, multiplicity results are established by using the mini-

max methods together with a standard eigenspace decomposition.

1. Introduction and statement of main results

Since the 70s, several authors have studied the existence and multiplicity of
solutions for the Neumann boundary-value problem

−∆u = f(x, u) + h(x) for a.e. x ∈ Ω,
∂u

∂n
= 0 on ∂Ω

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary and outer
normal vector n = n(x), ∂u/∂n = n(x) · ∇u. The function f : Ω̄ × R −→ R is a
Caratheodory function with F (x, u) =

∫ u
0
f(x, s)ds as its primitive. And then, for

(1.1), a vast of literature related to the solvability conditions has been published. It
has been showed that there is at least one solution for (1.1) under the assumptions
of the periodicity condition, see[13], or the monotonicity condition, see[10, 11], or
the sign condition, see[3, 5], or the Landesman-Lazer type condition, see[6, 7], or a
new Landesman-Lazer type condition and sublinear condition, see[14, 15]. At the
same time, some authors studied multiplicity of solutions for (1.1), see[2, 16, 17],
some authors obtained sign-changing solutions, see[8, 9]. In either case, existence
or multiplicity of solutions, even sign-changing solutions, the main methods are the
dual least action principle and the minimax methods respectively.

In this paper, under the critical growth and local coercive condition, we obtain
the existence theorem by the least action principle for (1.1). What’s more, in the
subcritical growth and local coercive case, multiplicity results are established by
using the minimax methods, in particular, a three-critical-point theorem proposed
by Brezis and Nirenberg [1]. A contribution in this direction is [18], where the
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authors use the local coercive condition to study the second order Hamiltonian
systems by variational method. We study (1.1) under the following assumptions:

(H1) There exist a constant C1 > 0 and a real function γ ∈ L1(Ω) such that

|f(x, t)| ≤ C1|t|2
∗−1 + γ(x)

for all t ∈ R and a.e. x ∈ Ω, where

2∗ =

{
2N
N−2 , N ≥ 3
any value q ∈ (2,+∞), N = 1, 2

(H1’) There exist C2 > 0 and 2 < p < 2∗ such that

|f(x, t)| ≤ C2(|t|p−1 + 1)

for all t ∈ R and a.e. x ∈ Ω.
(H2) There exists a subset E of Ω with meas(E) > 0 such that F (x, t) → −∞

as |t| → ∞, uniformly for a.e. x ∈ E.
(H3) There exists g ∈ L1(Ω) such that F (x, t) ≤ g(x) for all t ∈ R and a.e.

x ∈ Ω.
(H4) There exists h ∈ L2∗

′

(Ω) such that∫
Ω

h(x)dx = 0.

where 2∗
′

is the conjugate exponent of 2∗, that is, 1
2∗′

+ 1
2∗ = 1.

(H5) There exist δ > 0 and an integer m ≥ 1 such that

µm ≤
f(x, t)
t
≤ µm+1

for all 0 < |t| ≤ δ, and a.e. x ∈ Ω, where

0 = µ1 < µ2 ≤ · · · ≤ µm ≤ µm+1 ≤ . . . , µm →∞
is the sequence of eigenvalues in H1(Ω) for −∆ with Neumann boundary
condition.

Our main results read as follows.

Theorem 1.1. Under hypotheses (H1)–(H4), Problem (1.1) has at least one solu-
tion in the Sobolev space H1(Ω).

Theorem 1.2. If h = 0, under hypotheses (H1’), (H2), (H3), (H5), Problem (1.1)
has at least two nonzero solutions in H1(Ω).

Remark 1.3. Theorem 1.1 generalizes [16, Theorem 1] because that conditions
(H2) and (H3) are weaker than [16, condition (3)]. There are functions f(x, t) and
h(x) satisfying our Theorem 1.1 and not satisfying the corresponding results in
[2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17]. In fact, let

f(x, t) = −(x− x0)
2t

1 + t2
+ 2∗|t|2

∗−2t cos |t|2
∗

and h ∈ L2∗
′

(Ω) satisfying (H4), where x0 ∈ Ω̄. A direct computation shows that

F (x, t) = −(x− x0) ln(1 + t2) + sin |t|2
∗

satisfies (H1), (H2) and (H3). But f(x, t) does not satisfy the conditions in [2, 3,
5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17].
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Remark 1.4. Obviously, Theorem 1.2 generalizes [16, Theorem 2] because the
local coercive condition (H2) and (H3) are weaker than [16, condition (3)] (2.2),
and condition (H5) is weaker than [16, condition (7)]. Hence, we solve the open
question posed in [16, Remark 4]. There are functions f(x, t) satisfying our Theorem
1.2 and not satisfying the conditions in [2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17].
For example,

f(x, t) =


−(x− x0) 2t

1+t2 + C3p|t|p−2t cos |t|p, |t| ≥ δ
[µm sin2 t−2 + µm+1(1− sin2 t−2)]t, |t| ≤ δ
0, t = 0

where x0 ∈ Ω̄, C3 > 0 and 2 < p < 2∗.

2. Proof of main results

The methods to prove the theorems are variational basically based upon mini-
mization of coercive lower semicontinuous functionals for Theorem 1.1, and minmax
methods together with a standard eigenspace decomposition for Theorem 1.2.

To make the statements precise, let us introduce some notation. The Sobolev
space H1(Ω) is the usual space of L2(Ω) functions with weak derivative in L2(Ω),
endowed with the norm

‖u‖∗ = (|ū|2 +
∫

Ω

|∇u(x)|2dx)1/2

where

ū = (meas Ω)−1

∫
Ω

u(x)dx,

or the norm defined by

‖u‖ =
(∫

Ω

|u(x)|2dx+
∫

Ω

|∇u(x)|2dx
)1/2

for all u ∈ H1(Ω). The two norms ‖u‖ and ‖u‖∗ are equivalent. In fact, Poincaré-
Wirtinger’s inequality asserts that∫

Ω

|u− ū|2dx ≤ c1
∫

Ω

|∇u|2dx

for some constant c1 > 0. Hence, one has∫
Ω

|u|2dx ≤ c2(|ū|2 +
∫

Ω

|∇u|2dx)

for some constant c2 > 0, which implies ‖u‖ ≤ c3‖u‖∗ for some constant c3 > 0.
On the other hand, Hölder inequality leads to

ū = (meas Ω)−1

∫
Ω

u(x)dx ≤ ‖u‖L2

Thus, we obtain ‖u‖∗ ≤ c4‖u‖ for some constant c4 > 0. That is, the two norms
‖u‖ and ‖u‖∗ are equivalent.

It is well known that, by Sobolev’s inequality, there exists a constant C > 0 such
that

‖u‖L1(Ω) ≤ C‖u‖, ‖u‖L2∗ (Ω) ≤ C‖u‖, ‖u‖Lp(Ω) ≤ C‖u‖ (2.1)
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where p is the same as in Theorem 1.2. Now, the functional ϕ on H1(Ω) is given
by

ϕ(u) =
1
2

∫
Ω

|∇u(x)|2 dx−
∫

Ω

F (x, u(x))dx−
∫

Ω

hu dx

for all u ∈ H1(Ω). By the critical growth conditions (H1) or subcritical growth
condition (H1’), we can easy prove that ϕ is continuously differentiable in H1(Ω)
, in a way similar to [12, Theorem 1.4]. It is well known that finding solutions of
(1.1) is equivalent to finding critical points of ϕ in H1(Ω).

For the sake of convenience, we show Ci (i = 1, 2, . . . , 8) be positive constants.
Before giving the proof of Theorem 1.1, we show the following lemmas.

Lemma 2.1 (The least action principle, [12, Theorem 1.1]). Suppose that X is a
reflexive Banach space and ϕ : X → R is weakly lower semi-continuous. Assume
that ϕ is coercive; that is, ϕ(u) → +∞ as ‖u‖ → ∞ for u ∈ X. Then ϕ has at
least one minimum.

Lemma 2.2. Suppose that F satisfies assumption (H1) and (H2). Then there exist
a real function β ∈ L1(Ω), and G ∈ C(R,R) which is subadditive, that is,

G(s+ t) ≤ G(s) +G(t)

for all s, t ∈ R, and coercive, that is, G(t)→ +∞ as |t| → ∞ and satisfies

G(t) ≤ |t|+ 4

for all t ∈ R, such that
F (x, t) ≤ −G(t) + β(x)

for all t ∈ R and a.e. t ∈ E.

The proof of Lemma 2.2 is essentially the same one as the introductory part of
the proof of [16, Theorem 1].

Proof of Theorem 1.1. First, we prove that the functional ϕ is coercive. By Lemma
2.2, (H3) and (2.1) we obtain∫

Ω

F (x, u)dx =
∫
E

F (x, u)dx+
∫

Ω\E
F (x, u)dx

≤ −
∫
E

G(u)dx+
∫
E

β(x)dx+
∫

Ω\E
g(x)dx

≤ −
∫
E

G(ū)dx+
∫
E

G(−ũ)dx+
∫
E

β(x)dx+
∫

Ω\E
g(x)dx

≤ −measE ·G(ū) +
∫
E

G(−ũ)dx+
∫

Ω

|β(x)|dx+
∫

Ω

|g(x)|dx

≤ −measEG(ū) +
∫
E

(|ũ|+ 4)dx+ C4

≤ −measEG(ū) + ‖ũ‖L1(Ω) + 4 measE + C4

≤ measE(4−G(ū)) + C‖ũ‖+ C4

for all u ∈ H1(Ω), where C4 =
∫

Ω
|β(x)|dx+

∫
Ω
|g(x)|dx and

ũ(x) = u(x)− ū.
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Hence by the inequality above, Hölder inequality and (2.1) we have

ϕ(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx−
∫

Ω

hudx

≥ 1
2

∫
Ω

|∇ũ|2dx+ measE(G(ū)− 4)− C‖ũ‖ − C4 −
∫

Ω

hũdx

≥ 1
2

∫
Ω

|∇ũ|2dx+ (G(ū)− 4) measE − C‖ũ‖ − C4 − ‖h‖L2∗′ (Ω)
‖ũ‖L2∗ (Ω)

≥ 1
2
‖ũ‖2 + (G(ū)− 4) measE − C(1 + ‖h‖

L2∗′ (Ω)
)‖ũ‖ − C4

for all u ∈ H1(Ω). By Lemma 2.2, we know that G(t)→ +∞ as |t| → ∞, together
with the fact that

‖ũ‖2 + ‖ū‖2 = ‖u‖2,
it is easy to obtain ϕ is coercive.

Next, by (H3), in a way similar to the first part of the proof of [4, Theorem 1]
or the part of the proof of [16, Theorem 1], we can easily prove the functional ϕ
is weakly lower semicontinuous. Derived by the least action principle (see, Lemma
2.1), ϕ has a minimum. Hence (1.1) has at least one solution, which completes the
proof. �

Next, we prove Theorem 1.2 by using the following three-critical-point theorem
proposed by Brezis-Nirenberg [1].

Lemma 2.3 ([1]). Let X be a Banach space with a direct sum decomposition

X = X1 ⊕X2

with dimX2 < ∞ and let ϕ be a C1 function on X with ϕ(0) = 0, satisfying the
(PS) condition. Assume that, for some δ0 > 0,

ϕ(v) ≥ 0, for v ∈ X1 with ‖v‖ ≤ δ0,
ϕ(v) ≤ 0, for v ∈ X2 with ‖v‖ ≤ δ0 .

Assume also that ϕ is bounded from below and infX ϕ < 0. Then ϕ has at least two
nonzero critical points.

Proof of Theorem 1.2. Let X = H1(Ω) = X1⊕X2, where X2 = ⊕1≤i≤m ker(∆+µi)
is a finite dimension subspace and X1 = X⊥2 .

Obviously, ϕ is a C1 function on H1(Ω) with ϕ(0) = 0. Similar to the proof of the
coercivity of ϕ in Theorem 1.1, by condition (H2), (H3) and (H1’), the subcritical
growth condition, we can easily obtain that ϕ is coercive and bounded from below.
Therefore, the functional ϕ satisfies the (PS) condition; that is, {un} possesses a
convergent subsequence if {un} is a sequence of X such that {ϕ(un)} is bounded
and ϕ′(un)→ 0 as n→∞.

Firstly, we obtain that

ϕ(u) ≤ 0, for u ∈ X2 with ‖u‖ ≤ δ0 (2.2)

By (H5), we have
µmt

2 ≤ tf(x, t) ≤ µm+1t
2

for all |t| ≤ δ and a.e.x ∈ Ω. Hence, the following inequality holds

µmt
2s ≤ tf(x, ts) ≤ µm+1t

2s
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for all 0 < s ≤ 1, |t| ≤ δ and a.e. x ∈ Ω. It follows from the fact that F (x, t) =∫ 1

0
tf(x, st)ds,

1
2
µmt

2 ≤ F (x, t) ≤ 1
2
µm+1t

2 (2.3)

for all |t| ≤ δ and a.e. x ∈ Ω. X2 is a finite dimensional space, hence there is a
positive constant C5 such that ‖u‖∞ ≤ C5‖u‖ for all u ∈ X2. Therefore, by (2.3),
we have

ϕ(u) =
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (x, u(x))dx

≤ 1
2

∫
Ω

|∇u(x)|2dx− 1
2
µm

∫
Ω

|u(x)|2dx,

for all u ∈ X2 with |u| ≤ δ, which implies that

ϕ(u) ≤ 0, with ‖u‖ ≤ δ

C5
.

Secondly, we prove that

ϕ(u) ≥ 0, for u ∈ X1 with ‖u‖ ≤ δ0 . (2.4)

In fact, by (H1’), one has

|F (x, t)| ≤ C2(
|t|p

p
+ |t|)

for all t ∈ R and a.e.x ∈ Ω. Thus, we have

|F (x, t)| ≤ C2(p−1 + δ1−p)|t|p = C6|t|p (2.5)

for all |t| ≥ δ and a.e.x ∈ Ω, where C6 = C2(p−1 + δ1−p).
For u ∈ X1, let u = v + w, where v ∈ E(µm+1), w ∈ W = (X2 + E(µm+1))⊥.

For ‖u‖ ≤ δ
2C5

, and |u(x)| > δ, we have

|w(x)| ≥ |u(x)| − |v(x)| ≥ |u(x)| − ‖v‖∞
≥ |u(x)| − C5‖v‖ ≥ |u(x)| − C5‖u‖

≥ 1
2
|u(x)|

Moreover,

µm+2

∫
Ω

|w(x)|2dx ≤
∫

Ω

|∇w(x)|2dx

Hence, we obtain

‖w‖2 =
∫

Ω

|∇w(x)|2dx+
∫

Ω

|w(x)|2dx ≤ (1 +
1

µm+2
)
∫

Ω

|∇w(x)|2dx ;

that is, ∫
Ω

|∇w(x)|2dx ≥ µm+2

1 + µm+2
‖w‖2 (2.6)

By (2.3), (2.5), (2.1) and (2.6), one has

ϕ(u)

=
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (x, u(x))dx

=
1
2

∫
Ω

|∇u(x)|2dx−
∫
{x∈Ω:|u(x)|>δ}

F (x, u(x))dx−
∫
{x∈Ω:|u(x)|≤δ}

F (x, u(x))dx
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=
1
2

∫
Ω

|∇u(x)|2dx−
∫
{x∈Ω:|u(x)|≤δ}

1
2
µm+1|u|2dx

−
∫
{x∈Ω:|u(x)|>δ}

F (x, u(x))dx−
∫
{x∈Ω:|u(x)|≤δ}

(
F (x, u)− 1

2
µm+1|u|2

)
dx

≥ 1
2

∫
Ω

|∇w(x)|2dx+
1
2

∫
Ω

|∇v(x)|2dx−
∫

Ω

1
2
µm+1|u|2dx

−
∫
{x∈Ω:|u(x)|>δ}

|F (x, u(x))|dx

≥ 1
2

∫
Ω

|∇w(x)|2dx+
1
2

∫
Ω

|∇v(x)|2dx−
∫

Ω

1
2
µm+1w

2dx

−
∫

Ω

1
2
µm+1v

2dx−
∫
{x∈Ω:|u(x)|>δ}

C6|u|pdx

≥ 1
2

∫
Ω

|∇w(x)|2dx− 1
2

∫
Ω

µm+1|w(x)|2dx−
∫

Ω

C6|2w|pdx

=
1
2

∫
Ω

|∇w(x)|2dx− 1
2

∫
Ω

µm+1|w(x)|2dx− C6‖2w‖pLp(Ω)

≥ 1
2

(1− µm+1

µm+2
)
∫

Ω

|∇w(x)|2dx− C6C
p‖2w‖p

≥ µm+2 − µm+1

2(1 + µm+2)
‖w‖2 − C7‖w‖p = C8‖w‖2 − C7‖w‖p

for all u ∈ X1 with ‖u‖ ≤ δ
2C5

. From the above inequality, we can conclude that

ϕ(u) ≥ 0, for u ∈ X1 with ‖u‖ ≤ δ1 =
(C8

C7

) 1
p−2

Let δ0 = min{ δ
2C5

, δ1}, hence (2.2) and (2.4) hold.
In the case infX ϕ < 0, the proof of Theorem 1.2 is complete directly by Lemma

2.3.
In the case infX ϕ ≥ 0, it follows from (2.2) that

ϕ(u) = inf
X
ϕ = 0 for all u ∈ X2 with ‖u‖ ≤ δ

Hence all u ∈ X2 with ‖u‖ ≤ δ are solutions of (1.1). Therefore, Theorem 1.2 is
proved. �
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