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ANALYTIC SOLUTIONS OF A CLASS OF NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

EUGENIA N. PETROPOULOU

Abstract. We study a class of nonlinear partial differential equations, which
can be connected with wave-type equations and Laplace-type equations, by

using a functional-analytic technique. We establish primarily the existence and

uniqueness of bounded solutions in the two-dimensional Hardy-Lebesque space
of analytic functions with independent variables lying in the open unit disc.

However these results can be modified to expand the domain of definition. The

proofs have a constructive character enabling the determination of concrete and
easily verifiable conditions, and the determination of the coefficients appearing

in the power series solution. Illustrative examples are given related to the sine-

Gordon equation, the Klein-Gordon equation, and to equations with nonlinear
terms of algebraic, exponential and logistic type.

1. Introduction

Recently in [17], a functional-analytic technique was employed for the study
of bounded, analytic or entire, complex solutions of the Benjamin-Bona-Mahony
equation [2]

ut + ux + uux − uxxt = 0, u = u(x, t) (1.1)
as well as the associated linear equation

ut + ux − uxxt = 0, u = u(x, t). (1.2)

This technique was used for the first time in [16], for finding a necessary and
sufficient condition for the existence of polynomial solutions of a class of linear
partial differential equations (PDEs). Its main idea, is the transformation of the
PDE into an equivalent operator equation in an abstract Hilbert or Banach space.
Moreover, this technique is an extension of another functional-analytic technique
for the study of analytic solutions of initial value problems of ordinary differential
equations (ODEs), introduced by Ifantis [12] and systemized in [13, 14].

In the present study, the analytic solutions of the general class of nonlinear PDEs

uxt + aux + but + cu = g(x, t) +G(u(x, t)), u = u(x, t) (1.3)

where G(u(x, t)) =
∑∞
n=2 cn[u(x, t)]n will be studied, extending in this way the

method of [17] to other kind of nonlinear terms. It should be noted that the
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nonlinear term G(u(x, t)) appearing in (1.3) is quite general, since it includes all
kind of nonlinear terms having a Taylor expansion.

The problem of the analytic solutions of PDEs is an old and interesting problem
on its own. From the various papers regarding several results on analytic solutions
of PDEs, [7, 15, 20, 21] are indicatively mentioned, as well as the more recent
[3, 4, 11].

The main result of the present paper (Theorem 3.1) is stated in §3 and is of
Cauchy-Kowalewski type establishing a unique bounded solution of (1.3) in the
Banach space

H1(∆2) =
{
f : ∆2 → C, where f(x, t) =

∞∑
i=1

∞∑
j=1

f ijx
i−1tj−1 ∈ H2(∆2),

for which
∞∑
i=1

∞∑
j=1

|fij | < +∞
}
,

where ∆2 = ∆ × ∆, ∆ = {z ∈ C : |z| < 1}, with norm ‖f(x, t)‖H1(∆2) =∑∞
i=1

∑∞
j=1 |fij |. The space H2(∆2) appearing in the previous definition, is the

Hilbert space

H2(∆2) =
{
f : ∆2 → C, where f(x, t) =

∞∑
i=1

∞∑
j=1

f ijx
i−1tj−1, is analytic in ∆2

with
∞∑
i=1

∞∑
j=1

|fij |2 < +∞},

with inner product defined by

(f1(x, t), f2(x, t))H2(∆2) =
∞∑
i=1

∞∑
j=1

αijbij ,

where

f1(x, t) =
∞∑
i=1

∞∑
j=1

αijx
i−1tj−1, f2(x, t) =

∞∑
i=1

∞∑
j=1

bijx
i−1tj−1

are elements of H2(∆2). (The one dimensional spaces H2(∆) and H1(∆) are anal-
ogously defined with only one series involved in their definitions.)

For the proof of the main result, which is also given in §3, the technique presented
in §2 is utilized. This technique reduces the problem of H1(∆2) solutions of (1.3),
to an equivalent problem for the solutions of an operator equation in an abstract
Banach space. One important advantage of this approach is that the conditions
accompanying (1.3) are incorporated in the equivalent operator equation. Another
equally important advantage of this technique, which is a consequence of the spaces
H2(∆2) and H1(∆2), is that the established solution is by definition analytic in the
form of a power series and thus, there is no need to prove convergence using for
example the commonly used method of majorants.

The reasons for studying PDEs in H1(∆2) and H2(∆2), apart from the fact that
these spaces are included in the important class of analytic functions, is that they
are quite useful in applications and their elements are represented by one function
and not by a class of equivalent functions, as in the case of L2(∆2). Moreover, they
are suitable for studying polynomial solutions of PDEs. Also, by establishing a
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solution of a PDE in H2(∆2) or H1(∆2), this solution is a convergent power series,
the coefficients of which can be uniquely determined in many cases, thus obtaining
an “exact” solution. Finally, these spaces appear naturally in problems of quantum
mechanics. For more details, see [17] and the references therein.

For the main result of (1.3), the independent variables x and t are both assumed
in the open unit disc ∆. However, this is not restrictive since one may choose
instead equation

ũx̃t̃ + ãũx̃ + b̃ũt̃ + c̃ũ = g̃(x̃, t̃) + G̃(ũ(x̃, t̃)) (1.4)

where ũ = ũ(x̃, t̃) with |x̃| < X and |t̃| < T , X,T , positive finite numbers. By using
the simple transformations

x̃ = x ·X, t̃ = t · T, (1.5)

equation (1.4) reduces to an equation of the form (1.3) for the function u(x, t) =
ũ(xX, tT ) = ũ(x̃, t̃) and the results for equation (1.3) can be carried to equation
(1.4) (see Corollary 3.4).

Apart from the fact that studying equation (1.3) is quite interesting on its own,
another strong motivation is the connection of (1.3) with wave-type or Laplace-
type equations. More precisely, equation (1.3) can be connected with the wave-type
equation

ûξξ − κ2ûηη + âûξ + b̂ûη + ĉû = ĝ(ξ, η) + Ĝ(û(ξ, η)), û = û(ξ, η), κ 6= 0 (1.6)

using the classic transformations

x = η + κξ, t = η − κξ (1.7)

used also by d’Alembert. In this way, (1.6) is reduced to an equation of the form
(1.3) for the function u(x, t) = û(x−t2κ ,

x+t
2 ) = û(ξ, η). Similarly, the Laplace-type

equation

ûξξ + k2ûηη + âûξ + b̂ûη + ĉû = ĝ(ξ, η) + Ĝ(û(ξ, η)), û = û(ξ, η), k 6= 0, (1.8)

using transformations (1.7) but now for κ = −ik is reduced to an equation of the
form (1.3) for the function u(x, t) = û( t−x2ik ,

x+t
2 ) = û(ξ, η). In this way, the results

of the present paper can provide useful information for the solutions of (1.6) and
(1.8). These results are presented in §4.

The importance of equations of the form (1.6) or (1.8) is well-known in applica-
tions and can be found in various classic textbooks and a huge number of research
papers. Most of the classical results regarding the existence and/or uniqueness of
solutions of equations of the form (1.6) or (1.8) can be found for example in [9] or
[18].

Summarizing, this paper is organized as follows: In §2, the abstract setting of
the method used is described. In §3 the main result is stated and proved. It
worths mentioning that its proof has a constructive character, giving rise to two
easily verifiable conditions for the existence and uniqueness of solutions of (1.3)
in H1(∆2). In §4, equation (1.3) is connected with equations (1.6) and (1.8) and
the main result of §3 is “translated” in terms of these two equations. Finally,
various illustrative examples are given in §5. Most of these examples arise in various
applications and concern the sine-Gordon equation, the Klein-Gordon equation, as
well as equations involving nonlinear terms of exponential, algebraic and logistic
type. For one of these examples, the coefficients of the predicted power series
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solution are also explicitly computed in order to illustrate the procedure and the
established solution agrees with the solution already found in [8].

2. Abstract setting

Denote by H an abstract separable Hilbert space over the complex field C with
orthonormal base {ei,j}∞i,j=1. The inner product and the induced norm will be
denoted as usual by (·, ·), ‖ · ‖. Define also the shift operators V1, V2 on H as
follows:

V1ei,j = ei+1,j , i, j = 1, 2, . . . , V2ei,j = ei,j+1, i, j = 1, 2, . . .

and their adjoint operators V ∗1 , V ∗2 as:

V ∗1 ei,j = ei−1,j , i = 2, 3, . . . , j = 1, 2, . . . V ∗1 e1,j = 0, j = 1, 2, . . . ;

V ∗2 ei,j = ei,j−1, i = 1, 2, . . . , j = 2, 3, . . . V ∗2 ei,1 = 0, i = 1, 2, . . . .

The operators Vi, V ∗j , i, j = 1, 2 commute as long as the indices are different. For
example, it is true that V1V2 = V2V1 or V1V

∗
2 = V ∗2 V1. Moreover,

V ∗1 V1 = I, V ∗2 V2 = I, ‖V1‖ = ‖V2‖ = ‖V ∗1 ‖ = ‖V ∗2 ‖ = 1 (2.1)

where I is the identity operator. The following two propositions are very important
for the method employed in the present study

Proposition 2.1 ([16, Proposition 1]). Every point xt, with x, t ∈ ∆ = {x ∈ C :
|x| < 1}, belongs to the point spectrum of V ∗1 V

∗
2 and the set of the eigenelements:

fxt =
∞∑
i=1

∞∑
j=1

xi−1tj−1ei,j , f0t =
∞∑
j=1

tj−1e1,j , fx0 =
∞∑
i=1

xi−1ei,1, f00 = e1,1

(2.2)
forms a complete system in H i.e., if f is orthogonal to fxt for all x, t ∈ ∆, then
f = 0.

Proposition 2.2 ([16, §3.2]). The mapping φ : H → H2(∆2) with

φ(f) = (fxt, f) = f(x, t), (2.3)

is a one-to-one mapping from H onto H2(∆2), which preserves the norm.

Actually, for every f(x, t) =
∑∞
i=1

∑∞
j=1 f ijx

i−1tj−1 ∈ H2(∆2), there exists the
element f =

∑∞
i=1

∑∞
j=1 fijei,j ∈ H such that φ(f) = f(x, t), which is called the

abstract form of f(x, t). Conversely, if f =
∑∞
i=1

∑∞
j=1(f, ei,j)ei,j , then due to

(2.3), f(x, t) =
∑∞
i=1

∑∞
j=1 (f, ei,j)xi−1tj−1.

Consider now the linear manifold of all the elements of H2(∆2), f(x, t) =∑∞
i=1

∑∞
j=1 f ijx

i−1tj−1 which satisfy the condition
∑∞
i=1

∑∞
j=1 |fij | < +∞. This

linear manifold equipped with the norm ‖f1(x, t)‖H1(∆2) =
∑∞
i=1

∑∞
j=1 |fij |, be-

comes the well known Banach space H1(∆2) and it “carries” the inner product
of H2(∆2). The corresponding to H1(∆2) by the mapping (2.3), Banach abstract
space will be denoted by H1 and its norm by ‖ · ‖1. For a discussion on why the
space H1(∆2) is chosen, see [14] or [17].

As in [14], the following statements are true:
• H1 is invariant under the shift operators Vi, V ∗i , i = 1, 2 and their powers.

Moreover, ‖V1‖1 = ‖V2‖1 = ‖V ∗1 ‖1 = ‖V ∗2 ‖1 = 1.
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• H1 is invariant under every bounded diagonal operator Dei,j = d(i, j)ei,j ,
i, j = 1, 2, . . . on H. Moreover, ‖D‖1 = ‖D‖ = supi,j |d(i, j)|.
• The null spaces of (V ∗1 )k and (V ∗2 )k in H belong to H1.

For the implementation of the method, the abstract forms of all the appearing
terms in (1.3), are needed. For all the linear terms, the corresponding abstract
forms have been found in [16, Proposition 2] and the following hold:

∂f(x, t)
∂x

= (fxt, C
(0)
1 V ∗1 f),

∂f(x, t)
∂t

= (fxt, C
(0)
2 V ∗2 f),

∂2f(x, t)
∂x∂t

= (fxt, C
(0)
1 V ∗1 C

(0)
2 V ∗2 f)

(2.4)

where C(0)
1 , C(0)

2 are the diagonal operators defined on H as follows:

C
(0)
1 ei,j = iei,j , C

(0)
2 ei,j = jei,j , i, j = 1, 2, . . . .

These operators have the following properties [16, Remark 3]:
(i) They have a self-adjoint extension with discrete spectrum, i.e. the definition

domain of C(0)
1 , C(0)

2 can be extended to the range of the bounded operators B(0)
1 ,

B
(0)
2 , respectively, defined by: B(0)

1 ei,j = 1
i ei,j , B

(0)
2 ei,j = 1

j ei,j , i, j = 1, 2, . . ..

(ii) The definition domains of the operators (C(0)
1 )p, (C(0)

2 )p are extended to the
range of the bounded operators (B(0)

1 )p, (B(0)
2 )p, p = 2, 3, . . . , k, respectively.

(iii) The range of (B(0)
1 )p ((B(0)

2 )p) in H, p = 1, 2, . . . , k, i.e. the definition
domain of (C(0)

1 )p ((C(0)
2 )p) is isomorphic to the linear manifold in H2(∆2) which

consists of functions with derivatives with respect to x (t) up to order p in H2(∆2).
For the determination of the abstract form of the nonlinear term G(f(x, t)) =∑∞
n=2 cn[f(x, t)]n appearing in (1.3), a good starting point are the Propositions 3

and 4 of [17], where it was found that the abstract form of the term [f(x, t)]2 is the
nonlinear Frechét differentiable operator

f(V1, V2)f =
∞∑
i=1

∞∑
j=1

(f, ei,j)V i−1
1 V j−1

2 f (2.5)

defined on all H1 for f ∈ H1.
In the proof of [17, Proposition 3], the following useful relation was contained,

although not explicitly stated:

f∗(V1, V2)fxt = f(x, t)fxt, (2.6)

where f∗(V1, V2) is the adjoint of f(V1, V2).
By using (2.6) and mathematical induction, the following can be proved:

Proposition 2.3. The abstract form of [f(x, t)]n is the element [f(V1, V2)]n−1f ,
where n = 2, 3, . . . and is defined on all H1 for f ∈ H1.

Proof. As already mentioned, this is true for n = 2. For n = 3, the element
[f(V1, V2)]2f is defined on all H1 for f ∈ H1, since

‖[f(V1, V2)]2f‖1 ≤ ‖f(V1, V2)‖21 · ‖f‖1 ≤ ‖f‖31 <∞.
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Moreover,

(fxt, [f(V1, V2)]2f) = (fxt, f(V1, V2)f(V1, V2)f)

= (f∗(V1, V2)fxt, f(V1, V2)f)
(2.6)
= (f(x, t)fxt, f(V1, V2)f)

= f(x, t)(fxt, f(V1, V2)f) = f(x, t)(f∗(V1, V2)fxt, f)
(2.6)
= [f(x, t)]2(fxt, f)

(2.3)
= [f(x, t)]3.

Now suppose that for n = p, the abstract form of [f(x, t)]p is [f(V1, V2)]p−1f . Then,
as before it can be proved that the abstract form of [f(x, t)]p+1 is the element
[f(V1, V2)]pf , which is defined on all H1 for f ∈ H1. Thus, the proposition is true
by use of mathematical induction. �

Proposition 2.4. Suppose that the analytic function G(w) =
∑∞
n=2 cnw

n has a
radius of convergence R1 > 0. Then, the nonlinear operator

N(f) =
∞∑
n=2

cn[f(V1, V2)]n−1f (2.7)

is the abstract form of G(f(x, t)) =
∑∞
n=2 cn[f(x, t)]n and is defined in the open

sphere S(0, R1) ⊂ H1.

Proof. The operator N(f) is well defined for f ∈ S(0, R1), since

‖N(f)‖1 ≤
∞∑
n=2

|cn| · ‖[f(V1, V2)]n−1f‖1 ≤
∞∑
n=2

|cn| · ‖f‖n1 ≤
∞∑
n=2

|cn|Rn <∞,

for ‖f‖ ≤ R < R1. Moreover, N(f) is the abstract form of G(f(x, t)), since

(fxt, N(f)) =
(
fxt,

∞∑
n=2

cn[f(V1, V2)]n−1f
)

=
∞∑
n=2

cn
(
fxt, [f(V1, V2)]n−1f

)
= G(f(x, t)),

due to Proposition 2.3. �

Remark 2.5. If G(w) is an entire function of w, then N(f) is defined on all H1.

Operator N(f) defined by (2.7), is Frechét differentiable under specific assump-
tions and the proof of this fact is similar to the Weierstrass proof for the existence
of the derivative of an analytic function. Also, it follows closely a proof given in
[14, Theorem 4.4], for the Frechét differentiability of a similar to N(f) nonlinear
operator, used in the study of analytic solutions of nonlinear ODEs. However, the
proof will be included here for reasons of self-completeness.

Proposition 2.6. Suppose that the analytic function G1(w) =
∑∞
n=2 cnw

n−1 has a
radius of convergence R1 > 0. Then, the nonlinear operator N(f) defined by (2.7),
is Frechét differentiable at every point f0 ∈ S(0, R1) and its derivative is given by

N ′(f0)f =
∞∑
n=2

cn(n− 1)[f0(V1, V2)]n−2f. (2.8)
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Proof. Since formally

(fxt, N ′(f0)f) =
(
fxt,

∞∑
n=2

cn(n− 1)[f0(V1, V2)]n−2f
)

=
∞∑
n=2

cn(n− 1)
(
fxt, [f0(V1, V2)]n−2f

)
=
∞∑
n=2

cn(n− 1)
(
f∗0 (V1, V2)fxt, [f0(V1, V2)]n−3f

)
(2.6)
=

∞∑
n=2

cn(n− 1)f0(x, t)
(
fxt, [f0(V1, V2)]n−3f

)
which implies

(fxt, N ′(f0)f) =
∞∑
n=2

cn(n− 1)[f0(x, t)]n−2f(x, t) = G2(f(x, t)),

it suffices to show that G2(f(x, t)) is the Frechét derivative of

G1(f(x, t)) =
∞∑
n=2

cn[f(x, t)]n−1

at the point f0(x, t) ∈ S(0, R1) ⊂ H1(∆2).
Obviously, G2(f(x, t)) is a linear operator of f(x, t) for which

‖G2(f(x, t))‖H1(∆2) ≤
∞∑
n=2

|cn|(n− 1)Rn−2‖f(x, t)‖H1(∆2) <

∞∑
n=2

|cn|(n− 1)Rn−1,

which converges for f0(x, t) ∈ S(0, R1) ⇒ ‖f0(x, t)‖H1(∆2) ≤ R < R1 due to the
analyticity of G1(w). Thus, G2(f(x, t)) is well defined for f(x, t) ∈ S(0, R1).

Moreover, for ‖f0(x, t) + h(x, t)‖H1(∆2) ≤ R < R1 it is

G1(f0(x, t) + h(x, t))−G1(f0(x, t))

=
∞∑
n=2

cn
[
(f0(x, t) + h(x, t))n−1 − (f0(x, t))n−1

]
=
∞∑
n=2

cnh(x, t)
[
(f0(x, t))n−2 + (f0(x, t))n−3(f0(x, t) + h(x, t))

+ . . .+ (f0(x, t) + h(x, t))n−2
]

= h(x, t)
∞∑
n=2

cn

[
(n− 1)(f0(x, t))n−2 + (f0(x, t))n−3(f0(x, t) + h(x, t)− f0(x, t))

+ . . .+ (f0(x, t) + h(x, t))n−2 − (f0(x, t))n−2
]

and as a consequence

G1(f0(x, t) + h(x, t))−G1(f0(x, t))−G2(h(x, t))

= h(x, t)
∞∑
n=3

cn

[
(f0(x, t))n−3h(x, t) + (f0(x, t))n−4h(x, t)(f0(x, t) + h(x, t)
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+ f0(x, t)) + . . .+ h(x, t)(f0(x, t) + h(x, t))n−3 + . . .+ (f0(x, t))n−3
]

= (h(x, t))2
∞∑
n=3

cn

[
(f0(x, t))n−3 + (f0(x, t))n−4(f0(x, t) + h(x, t) + f0(x, t))

+ . . .+ (f0(x, t) + h(x, t))n−3 + . . .+ (f0(x, t))n−3
]

which implies

‖G1(f0(x, t) + h(x, t))−G1(f0(x, t))−G2(h(x, t))‖H1(∆2)

≤ ‖h(x, t)‖2H1(∆2)

∞∑
n=3

|cn|(Rn−3 + 2Rn−3 + . . .+ (n− 2)Rn−3)

=
‖h(x, t)‖2H1(∆2)

2

∞∑
n=3

|cn|(n− 1)(n− 2)Rn−3

which implies

‖G1(f0(x, t) + h(x, t))−G1(f0(x, t))−G2(h(x, t))‖H1(∆2)

‖h(x, t)‖H1(∆2)

≤
‖h(x, t)‖H1(∆2)

2

∞∑
n=3

|cn|(n− 1)(n− 2)Rn−3 → 0,

for ‖h(x, t)‖H1(∆2) → 0, since the series
∑∞
n=3 |cn|(n − 1)(n − 2)Rn−3 converges,

due to the analyticity of G1(w). �

3. Main result

Consider the problem consisting of equation (1.3), i.e.

uxt + aux + but + cu = g(x, t) +
∞∑
n=2

cn[u(x, t)]n, u = u(x, t) (3.1)

and the conditions
u(x, 0) = φ1(x), u(0, t) = φ2(t). (3.2)

Theorem 3.1. Assume that g(x, t) ∈ H1(∆2), u(x, 0), u(0, t) ∈ H1(∆). Suppose
also that the series

∑∞
n=2 cnw

n is an analytic function which converges for |w| < R1,
R1 > 0, sufficiently large. Then, if

|a|+ |b|+ |c| < 1, (3.3)

there exist R0 > 0 and P0 > 0 such that if

‖g(x, t)‖H1(∆2) + (1 + |b|) ‖u(x, 0)‖H1(∆) + (1 + |a|) ‖u(0, t)‖H1(∆) − |u(0, 0)| < P0,
(3.4)

problem (3.1)-(3.2) has a unique solution in H1(∆2) bounded by R0.

Remark 3.2. The previous result is not a purely local result, in the sense that
the constants R0 > 0 and P0 > 0 can be explicitly determined. More precisely, as
it will be made clear in the proof of Theorem 3.1, the constant R0 is the point at
which the function

P (R) =
R

L
−
∞∑
n=2

|cn|Rn, with L =
1

1− |a| − |b| − |c|
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attaints its maximum and P0 = P (R0).

Remark 3.3. Even if the quantities R0 and P0 cannot be explicitly determined in
some cases, they can be approximately determined by truncating the power series
appearing in P (R). In this way P (R), becomes a polynomial of which the maximum
can be found, at least numerically.

The following corollary is an immediate consequence of Theorem 3.1 and extends
the previous result for independent variables lying in a disc with radius not equal
to 1.

Corollary 3.4. Consider the equation

ũx̃t̃ + ãũx̃ + b̃ũt̃ + c̃ũ = g̃1(x̃, t̃) +
∞∑
n=2

c̃n[ũ(x̃, t̃)]n, ũ = ũ(x̃, t̃) (3.5)

with |x̃| < X and |t̃| < T , X,T , positive finite numbers, which after using transfor-
mations (1.5) becomes:

uxt + aux + but + cu = g(x, t) +
∞∑
n=2

cn[u(x, t)]n, (3.6)

where u(x, t) = ũ(xX, tT ) = ũ(x̃, t̃), g(x, t) = XTg̃1(xX, tT ), a = ãT , b = b̃X,
c = c̃XT and cn = c̃nXT . Assume that g(x, t) ∈ H1(∆2), u(x, 0), u(0, t) ∈ H1(∆),
the series

∑∞
n=2 c̃nw

n is an analytic function which converges for |w| < R1, R1 > 0,
sufficiently large and

T |ã|+X|b̃|+XT |c̃| < 1. (3.7)

Then there exist R0 > 0 and P0 > 0 such that if

‖g(x, t)‖H1(∆2) +
(

1 +X|b̃|
)
‖u(x, 0)‖H1(∆)

+ (1 + T |ã|) ‖u(0, t)‖H1(∆) − |u(0, 0)| < P0,
(3.8)

then (3.5) has a unique solution bounded by R0, of the form

ũ(x̃, t̃) =
∞∑
i=1

∞∑
j=1

uij
( x̃
X

)i−1( t̃
T

)j−1
,

which converges absolutely for |x̃| < X, |t̃| < T .

Proof of Theorem 3.1. According to §2, equation (3.1) is written as(
fxt, C

(0)
1 V ∗1 C

(0)
2 V ∗2 u

)
+ a
(
fxt, C

(0)
1 V ∗1 u

)
+ b
(
fxt, C

(0)
2 V ∗2 u

)
+ c
(
fxt, u

)
=
(
fxt, g

)
+
(
fxt, N(u)

)
,

where g is the abstract form of g(x, t) and N(u) the operator defined by (2.7), or
since fxt form a complete system of H,

C
(0)
1 V ∗1 C

(0)
2 V ∗2 u+ aC

(0)
1 V ∗1 u+ bC

(0)
2 V ∗2 u+ cu = g +N(u) (3.9)

which is the equivalent to (3.1) abstract operator equation in H.
By using the inverseB(0)

1 of C(0)
1 and the properties of V ∗1 , equation (3.9) becomes

V ∗1 C
(0)
2 V ∗2 u+ aV ∗1 u+ bB

(0)
1 C

(0)
2 V ∗2 u+ cB

(0)
1 u = B

(0)
1 g +B

(0)
1 N(u)
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which implies
C

(0)
2 V ∗2 u+ au+ bV1B

(0)
1 C

(0)
2 V ∗2 u+ cV1B

(0)
1 u

= V1B
(0)
1 g + V1B

(0)
1 N(u) +

∞∑
j=1

Aje1,j ,
(3.10)

where the coefficients Aj are uniquely determined by the coefficients of φ2(t), by
taking the inner product of (3.10) with e1,j as follows:(

C
(0)
2 V ∗2 u, e1,j

)
+ a(u, e1,j) = Aj ⇒ Aj = j(u, e1,j+1) + a(u, e1,j).

But since u(x, t) =
∑∞
i=1

∑∞
j=1 (u, ei,j)xi−1tj−1, it is φ2(t) =

∑∞
j=1 (u, e1,j)tj−1.

Thus, the coefficients Aj are determined via the coefficients of the power series in
t of φ2(t). Proceeding in the same way, equation (3.10) is rewritten as

V ∗2 u+ aB
(0)
2 u+ bV1B

(0)
1 V ∗2 u+ cB

(0)
2 V1B

(0)
1 u

= B
(0)
2 V1B

(0)
1 g +B

(0)
2 V1B

(0)
1 N(u) +

∞∑
j=1

Aj
j
e1,j

which implies

u+ aV2B
(0)
2 u+ bV1B

(0)
1 u+ cV2B

(0)
2 V1B

(0)
1 u

= V2B
(0)
2 V1B

(0)
1 g + V2B

(0)
2 V1B

(0)
1 N(u) +

∞∑
j=1

Aj
j
e1,j+1 +

∞∑
i=1

Biei,1.
(3.11)

The coefficients Bi are again uniquely determined by the coefficients of φ1(x), by
taking the inner product of (3.11) with ei,1. More precisely, they are given by

B1 = (u, e1,1), Bi = (u, ei,1) +
b

i− 1
(u, ei−1,1), ∀ i 6= 1

and since φ1(x) =
∑∞
i=1 (u, ei,1)xi−1, it is obvious that Bi are determined via the

coefficients of the power series in x of φ1(x).
For reasons of simplicity, (3.11) is written as

(I +K)u = h+ V2B
(0)
2 V1B

(0)
1 g + V2B

(0)
2 V1B

(0)
1 N(u), (3.12)

where

K = aV2B
(0)
2 + bV1B

(0)
1 + cV2B

(0)
2 V1B

(0)
1 , h =

∞∑
j=1

Aj
j
e1,j+1 +

∞∑
i=1

Biei,1.

According to a classical inversion theorem: “If T is a linear bounded operator of
a Hilbert space H, with ‖T‖ < 1, then I − T is invertible, defined on all H and
‖(I−T )−1‖ ≤ 1

1−‖T‖ .” Thus, since (3.3) holds, the operator I+K is invertible and
its inverse is bounded by L = 1

1−|a|−|b|−|c| . Then, (3.12) can be rewritten as:

u = (I +K)−1
[
h+ V2B

(0)
2 V1B

(0)
1 g + V2B

(0)
2 V1B

(0)
1 N(u)

]
= g(u). (3.13)

At this point the following fixed point theorem of Earle and Hamilton [6] will be
applied: “If f : X → X is holomorphic, i.e. its Fréchet derivative exists, and f(X)
lies strictly inside X, then f has a unique fixed point in X, where X is a bounded,
connected and open subset of a Banach space E. (By saying that a subset X ′ of X
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lies strictly inside X it is meant that there exists an ε1 > 0 such that ‖x′− y‖ > ε1
for all x′ ∈ X ′ and y ∈ E −X.)”

Returning to (3.13), suppose that u ∈ B(0, R), R < R1. Then, ‖u‖1 < R < R1

and

‖g(u)‖1 ≤ L(‖h‖1 + ‖g‖1 + ‖N(u)‖1) ≤ L(‖h‖1 + ‖g‖1)) + L

∞∑
n=2

|cn| · ‖u‖n1

which implies

‖g(u)‖1 ≤ L (‖h‖1 + ‖g‖1)) + L

∞∑
n=2

|cn|Rn. (3.14)

Suppose M(R) =
∑∞
n=2 |cn|Rn−2. By hypothesis, R1 is sufficiently large and as a

consequence there exists an R2 ∈ [0, R1) such that LR2M(R2) > 1. Then, for the
function

M1(R) = 1− LRM(R)

it is M1(0) = 1 > 0 and M1(R2) < 0, which by the intermediate value theorem
implies that there exists an R3 ∈ (0, R2) such that M1(R3) = 0.

Consider now the continuous function

P (R) = L−1RM1(R).

Then, P (0) = 0 = P (R3) and P ′(0) > 0, whereas P ′(R3) < 0. Thus, there exists
an R0 ∈ (0, R3) where P (R) attains its maximum.

Now for every ε > 0 and R = R0, if

‖h‖1 + ‖g‖1 ≤ P (R0)− ε

L
, (3.15)

relation (3.14) gives

‖g(u)‖ ≤ LP (R0)− ε+ LR2
0M(R0) = LP (R0)− ε+R0 −R0M1(R0)

which implies ‖g(u)‖ ≤ R0 − ε < R0. Moreover, g(u) is Frechét differentiable and
thus according to the theorem of Earle and Hamilton, equation (3.13) has a unique
solution in H1, bounded by R0.

Rewriting the left-hand side of inequality (3.15) in terms of the original functions
gives

‖h‖1 + ‖g‖1 = ‖g‖1 + ‖
∞∑
j=1

Aj
j
e1,j+1 +

∞∑
i=1

Biei,1‖1

≤ ‖g‖1 +
∞∑
j=1

|(u, e1,j+1)|+ |a|
∞∑
j=1

|(u, e1,j)|

+
∞∑
i=1

|(u, ei,1)|+ |b|
∞∑
i=2

|(u, ei−1,1)|

= ‖g(x, t)‖H1(∆2) + ‖u(0, t)‖H1(∆) − |u(0, 0)|+ |a| · ‖u(0, t)‖H1(∆)

+ ‖u(x, 0)‖H1(∆) + |b| · ‖u(x, 0)‖H1(∆).

Thus, if (3.4) holds, the problem (3.1), (3.2) has a unique solution in H1(∆2),
bounded by R0. �
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Remark 3.5. Following a procedure similar to the one employed in [17], one may
prove by use of the Fredholm alternative, that operator I +K is invertible without
restriction (3.3). Then, theorem 3.1 remains valid without condition (3.3), but the
bound L is undetermined. Hence, it has now a pure local character, since R0 and
P0 cannot be explicitly determined.

4. Connections with wave-type and Laplace-type equations

As already mentioned in §1, equation (1.3) can be connected with wave-type and
Laplace-type equations. Indeed, consider the wave-type equation

ûξξ − κ2ûηη + âûξ + b̂ûη + ĉû = ĝ2(ξ, η) +
∞∑
n=2

ĉn[û(ξ, η)]n, û = û(ξ, η), (4.1)

where κ is a non zero real number. By using transformations (1.7), i.e.

x = η + κξ, t = η − κξ (4.2)

the previous equation becomes

uxt + aux + but + cu = g(x, t) +
∞∑
n=2

cn[u(x, t)]n, (4.3)

where u(x, t) = û(x−t2κ ,
x+t

2 ) = û(ξ, η), g(x, t) = − 1
4κ2 ĝ2(x−t2κ ,

x+t
2 ), a = − b̂+âκ4κ2 ,

b = − b̂−âκ4κ2 , c = − ĉ
4κ2 and cn = − ĉn

4κ2 . Then according to Theorem 3.1 the following
holds.

Corollary 4.1. Assume that g(x, t) ∈ H1(∆2), u(x, 0), u(0, t) ∈ H1(∆), (x, t given
by (4.2)), the series

∑∞
n=2 ĉnw

n is an analytic function which converges for |w| <
R1, R1 > 0, sufficiently large and

|b̂+ âκ|+ |b̂− âκ|+ |ĉ| < 4κ2. (4.4)

Then there exist R0 > 0 and P0 > 0 such that if

‖g(x, t)‖H1(∆2) +
(

1 +
|b̂− âκ|

4κ2

)
‖u(x, 0)‖H1(∆)

+
(

1 +
|b̂+ âκ|

4κ2

)
‖u(0, t)‖H1(∆) − |u(0, 0)| < P0,

(4.5)

then (4.1) has a unique solution bounded by R0, of the form

û(ξ, η) =
∞∑
i=1

∞∑
j=1

uij(η + κξ)i−1(η − κξ)j−1,

which converges absolutely for |η ± κξ| < 1.

In a similar way, consider the Laplace-type equation

ûξξ + k2ûηη + âûξ + b̂ûη + ĉû = ĝ2(ξ, η) +
∞∑
n=2

ĉn[û(ξ, η)]n, û = û(ξ, η), (4.6)

where k is a non zero real number. By using transformations (4.2) for κ = −ik, the
previous equation becomes

uxt + aux + but + cu = g(x, t) +
∞∑
n=2

cn[u(x, t)]n, (4.7)
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where u(x, t) = û( t−x2ik ,
x+t

2 ) = û(ξ, η), g(x, t) = 1
4k2 ĝ2( t−x2ik ,

x+t
2 ), a = b̂−iâk

4k2 , b =
b̂+iâk
4k2 , c = ĉ

4k2 and cn = ĉn

4k2 . Then according to Theorem 3.1 the following holds

Corollary 4.2. Assume that g(x, t) ∈ H1(∆2), u(x, 0), u(0, t) ∈ H1(∆), (x, t given
by (4.2) for κ = −ik), the series

∑∞
n=2 ĉnw

n is an analytic function which converges
for |w| < R1, R1 > 0, sufficiently large and

|b̂− iâk|+ |b̂+ iâk|+ |ĉ| < 4k2. (4.8)

Then there exist R0 > 0 and P0 > 0 such that if

‖g(x, t)‖H1(∆2) +
(

1 +
|b̂+ iâk|

4k2

)
‖u(x, 0)‖H1(∆)

+
(

1 +
|b̂− iâk|

4k2

)
‖u(0, t)‖H1(∆) − |u(0, 0)| < P0,

(4.9)

then (4.6) has a unique solution bounded by R0, of the form

û(ξ, η) =
∞∑
i=1

∞∑
j=1

uij(η − ikξ)i−1(η + ikξ)j−1,

which converges absolutely for |η ± ikξ| < 1.

5. Examples

To show the usefulness of Theorem 3.1, several examples will be given in this
section, most of which arise in various applications. For the first example, the
coefficients of the predicted power series solution will be explicitly computed in
order to demonstrate the procedure. Of course this can be done for all the other
examples, once the initial conditions are specified.

5.1. Equations with algebraic nonlinear terms. In this first example, equa-
tions of the form (4.1) or (4.6) with a nonlinear term of the form [û(ξ, η)]k, k ∈ N,
k ≥ 2 will be considered. Such kind of equations have been studied for example
in [8], [10] and [19]. More precisely in [10], it was proved that there exist some
quasi-periodic solutions with frequencies of the form ω = λω∗, λ ∼ 1, λ ∈ R, ω∗ a
fixed Diophantine frequency, for the one dimensional nonlinear wave equation

ûξξ − ûηη +mû+ û3 = 0, û = û(ξ, η),

subject to Dirichlet boundary conditions.
In [8], exact solutions of the Klein-Gordon equation

ûξξ + αûηη + βû+ γûk = f(ξ, η), û = û(ξ, η), (5.1)

were found for various values of k and various functions f(ξ, η) by using a mod-
ification of the homotopy perturbation method under initial conditions on û(η, 0)
and ûξ(η, 0). Some of the examples treated in [8] were also studied in [19] by use
of a modified decomposition method.

Starting with this motivation, the PDE

uxt + aux + but + cu = g(x, t) + uk, u = u(x, t), k ∈ N, k ≥ 2 (5.2)

is considered. The function P (R) in this case is

P (R) =
R

L
−Rk, L =

1
1− |a| − |b| − |c|

,
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which attains its maximum at R0 = ( 1
kL )

1
k−1 . Thus, according to Theorem 3.1 the

following holds:

Result 5.1. Assume that g(x, t) ∈ H1(∆2), u(x, 0), u(0, t) ∈ H1(∆),

|a|+ |b|+ |c| < 1 (5.3)

and
‖g(x, t)‖H1(∆2) + (1 + |b|) ‖u(x, 0)‖H1(∆)

+ (1 + |a|) ‖u(0, t)‖H1(∆) − |u(0, 0)|

< (k − 1)
( 1
kL

) k
k−1 .

(5.4)

Then equation (5.2) has a unique solution in H1(∆2) bounded by R0.

One of the equations studied in [8] was

ûξξ + ûηη + û+ û3 = 2η + ηξ2 + η3ξ6, û = û(ξ, η), (5.5)

for which it was found that it has the exact solution û(ξ, η) = ηξ2.
By consequently using the transformations

x̃ = η − iξ, t̃ = η + iξ, û(ξ, η) = ũ(x̃, t̃) (5.6)

x̃ = xX, t̃ = tT, ũ(x̃, t̃) = u(x, t), X, T > 0 (5.7)

equation (5.5) is reduced to

uxt +
XT

4
u = h(x, t)− XT

4
u3, u = u(x, t), (5.8)

which is of the form (5.2), with

h(x, t) = − t
9T 10X

2048
+

3t8T 9xX2

2048
− t6T 7x3X4

256
+

3t5T 6x4X5

1024

+
3t4T 5x5X6

1024
− t3T 4x6X7

256
− t3T 4X

32
+
t2T 3xX2

32
+

3tT 2x8X9

2048

+
tT 2x2X3

32
+
tT 2X

4
− Tx9X10

2048
− Tx3X4

32
+
TxX2

4
.

For reasons of simplicity only the real solutions of (5.8) will be considered.
If (5.8) is complemented by the initial conditions

u(x, 0) = −X
3

8
x3, u(0, t) = −T

3

8
t3, (5.9)

then Result 5.1 becomes

Result 5.2. If
XT < 4 (5.10)

and
T 10X

2048
+

3T 9X2

2048
+
T 7X4

256
+

3T 6X5

1024
+

3T 5X6

1024
+
T 4X7

256
+
T 4X

32
+
T 3X2

32

+
3T 2X9

2048
+
T 2X3

32
+
T 2X

4
+
TX10

2048
+
TX4

32
+
TX2

4
+
X3

8
+
T 3

8

< 2
(4−XT

12
)3/2

,

(5.11)

the initial value problem (5.8), (5.9) has a unique solution in H1(∆2) bounded by
( 4−XT

12 )1/2.
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Moreover, this solution can be determined by computing the coefficients (u, ei,j)
of the real solution u(x, t) =

∑∞
i=1

∑∞
j=1(u, ei,j)xi−1tj−1 in the following way:

The equivalent to (5.8)–(5.9), for the abstract operator equation, according to
(3.12), is(

I +
XT

4
V2B

(0)
2 V1B

(0)
1

)
u = h+ V2B

(0)
2 V1B

(0)
1 g + V2B

(0)
2 V1B

(0)
1 N(u), (5.12)

where

N(u) = −XT
4

[u(V1, V2)]2u, h = −T
3

8
e1,4 −

X3

8
e4,1,

g =
T 2X

4
e1,2 −

T 4X

32
e1,4 −

T 10X

2048
e1,10 +

TX2

4
e2,1 +

T 3X2

32
e2,3 +

3T 9X2

2048
e2,9

+
T 2X3

32
e3,2 −

TX4

32
e4,1 −

T 7X4

256
e4,7 +

3T 6X5

1024
e5,6 +

3T 5X6

1024
e6,5

− T 4X7

256
e7,4 +

3T 2X9

2048
e9,2 −

TX10

2048
e10,1.

By the second of the initial conditions (5.9) it is deduced that

(u, e1,j) = 0, ∀j 6= 4 and (u, e1,4) = −T
3

8
.

By taking the inner product of (5.12) with e2,j and using the othonormality of
{ei,j} one obtains:

(u, e2,1) = 0,

(u, e2,j) = − XT

4(j − 1)
(u, e1,j−1) +

1
j − 1

(g, e1,j−1)

− XT

4(j − 1)

j−1∑
`=1

j−∑̀
p=1

(u, e1,`)(u, e1,p)(u, e1,j−`−p+1),

from where it is deduced that

(u, e2,j) = 0, ∀j 6= 3 and (u, e2,3) =
XT 2

8
.

Similarly, by taking the inner product of (5.12) with e3,j it is deduced that

(u, e3,j) = 0, ∀j 6= 2 and (u, e3,2) =
TX2

8
and by taking the inner product of (5.12) with e4,j it is obtained that

(u, e4,j) = 0, ∀j 6= 1 and (u, e4,1) = −X
3

8
.

Continuing in the same way and after some tedious manipulations, which can be
performed also by use of a symbolic package calculations such as Mathematica, it is
found that for i = 5, . . . , 11 it is (u, ei,j) = 0, for all j and by use of mathematical
induction it is finally proved that (u, ei,j) = 0, ∀ j and ∀ i ≥ 12. Thus, the unique
solution of (5.8), (5.9) in H1(∆2) is

u(x, t) =
∞∑
i=1

∞∑
j=1

(u, ei,j)xi−1tj−1 = −T
3

8
t3 +

XT 2

8
xt2 +

TX2

8
x2t− X3

8
x3,
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for X, T satisfying (5.10) and (5.11). Notice that by using (5.7) and (5.6), u(x, t)
is rewritten as û(ξ, η) = ηξ2.

5.2. Equations with logistic type nonlinear terms. In [1], the traveling waves
of

utt = v2uxx + ku(1− u), u = u(x, t) (5.13)

were studied. Such kind of equations appear in chemical and population dynamics.
Thus, in this example the PDE

uxt + aux + but + cu = ku(1− u), u = u(x, t), (5.14)

will be considered. The function P (R) in this case is

P (R) = R (1− |a| − |b| − |c− λ|)− |λ|R2,

which attains its maximum at R0 = 1−|a|−|b|−|c−λ|
2|λ| . Thus, according to Theorem

3.1 the following holds.

Result 5.3. Assume that u(x, 0), u(0, t) ∈ H1(∆), |a|+ |b|+ |c− λ| < 1 and

|a|+ |b|+ 2 <
1− |a| − |b| − |c− λ|

4|λ|
.

Then equation (5.14) has a unique solution in H1(∆2) bounded by R0.

5.3. The sine-Gordon equation. Consider now the well-known sine-Gordon equa-
tion

ûξξ − ω2ûηη + d sin û = 0, (5.15)

where ω is a non zero real number, which arises in various problems such as dif-
ferential geometry, oscillations, optics, fluid mechanics, elementary particle physics
and biology. (For more information see [5] and the references therein). Equation
(5.15) can be rewritten in the form

ûξξ − ω2ûηη + dû = −d
∞∑
s=1

(−1)2s+1

(2s+ 1)!
û2s+1, (5.16)

or after using (4.2) for κ = ω in the form

uxt −
d

4ω2
u =

d

4ω2

∞∑
s=1

(−1)2s+1

(2s+ 1)!
û2s+1, (5.17)

where u(x, t) = û(x+t
2 , x−t2ω ) = û(η, ξ). The function P (R) in this case is

P (R) =
4ω2R

4ω2 − |d|
− |d|

4ω2

∞∑
s=1

1
(2s+ 1)!

R2s+1

=
4ω2R

4ω2 − |d|
− |d|

4ω2
(sinhR−R)

=
16ω4 + 4ω2|d| − |d|2

4ω2(4ω2 − |d|)
R− |d|

4ω2
sinhR,

which attains its maximum at R0 = cosh−1
( 16ω4+4ω2|d|−|d|2

4ω2−|d|
)
. Then a direct appli-

cation of Corollary 4.1 gives
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Result 5.4. Assume that u(x, 0), u(0, t) ∈ H1(∆),

|d| < 4ω2, (5.18)

‖u(x, 0)‖H1(∆) + ‖u(0, t)‖H1(∆) − |u(0, 0)| < P (R0). (5.19)

Then equation (5.17) has a unique solution in H1(∆2) bounded by R0.

5.4. Equations with exponential nonlinear terms. Consider the PDE

uxt + aux + but + cu = eu, u = u(x, t), (5.20)

which can be rewritten as

uxt + aux + but + (c− 1)u = 1 +
∞∑
n=2

1
n!
un, u = u(x, t).

Then, the function P (R) becomes

P (R) = R (1− |a| − |b| − |c− 1|)−
∞∑
n=2

1
n!
Rn

= 1 +R (2− |a| − |b| − |c− 1|)− eR,

which attains its maximum at R0 = ln (2− |a| − |b| − |c− 1|). Thus, according to
Theorem 3.1 the following holds.

Result 5.5. Assume that u(x, 0), u(0, t) ∈ H1(∆), |a|+ |b|+ |c− 1| < 1 and

(1 + |b|)‖u(x, 0)‖H1(∆) + (1 + |a|)‖u(0, t)‖H1(∆) − |u(0, 0)|
<
(
2− |a| − |b| − |c− 1|

)
(ln (2− |a| − |b| − |c− 1|)− 1).

Then (5.20) has a unique solution in H1(∆2) bounded by R0.
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