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NONTRIVIAL PERIODIC SOLUTIONS TO SECOND-ORDER
IMPULSIVE HAMILTONIAN SYSTEMS

JOHN R. GRAEF, SHAPOUR HEIDARKHANI, LINGJU KONG

Abstract. Based on variational methods and critical point theory, we study

the existence of nontrivial periodic solutions to a class of second-order im-
pulsive Hamiltonian systems. A unique feature of the approach used here is

that we use a combination of techniques to obtain the existence of multiple

solutions.

1. Introduction

We wish to give sufficient conditions for the existence of nontrivial periodic
solutions to the second-order impulsive Hamiltonian system

−ü(t) +A(t)u(t) = λ∇F (t, u(t)) +∇H(u(t)), a.e. t ∈ [0, T ],

∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . , p,

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
(1.1)

where N ≥ 1, p ≥ 2, u = (u1, . . . , uN ), T > 0, λ > 0 is a parameter, A : [0, T ] →
RN×N is a continuous map from the interval [0, T ] to the set of N ×N symmetric
matrices, tj , j = 1, 2, . . . , p, are the instants at which the impulses occur, 0 = t0 <
t1 < . . . < tp < tp+1 = T , and ∆(u̇i(tj)) = u̇i(t+j ) − u̇i(t−j ) = limt→t+j

u̇i(t) −
limt→t−j

u̇i(t). Without further mention, the following conditions are assumed to
hold throughout the remainder of this article. The functions Iij : R → R are
Lipschitz continuous with the Lipschitz constants Lij > 0, i.e.,

|Iij(s1)− Iij(s2)| ≤ Lij |s1 − s2| (1.2)

for every s1, s2 ∈ R, and Iij(0) = 0 for i = 1, 2, . . . , N , j = 1, 2, . . . , p. In addition,
F : [0, T ] × RN → R is measurable with respect to t for all u ∈ RN , continuously
differentiable in u for almost every t ∈ [0, T ], F (t, 0, . . . , 0) = 0 for t ∈ [0, T ], and
satisfies the standard summability condition

sup
|ξ|≤a

max{|F (·, ξ)|, |∇F (·, ξ)|} ∈ L1([0, T ]) (1.3)
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for any a > 0. Also, the function H : RN → R is continuously differentiable, ∇H
is Lipschitz continuous with the Lipschitz constant L > 0, i.e.,

|∇H(ξ1)−∇H(ξ2)| ≤ L|ξ1 − ξ2| (1.4)

for every ξ1, ξ2 ∈ RN ,

H(0, . . . , 0) = 0, and ∇H(0, . . . , 0) = 0. (1.5)

Assuming that ∇F : [0, T ]× RN → R is continuous implies that condition (1.3) is
satisfied.

The study of multiplicity of solutions of Hamiltonian systems, as a special case of
dynamical systems, is important mathematically as well as being interesting from
a practical view point since these systems form a natural framework for mathemat-
ical models of many natural phenomena in fluid mechanics, gas dynamics, nuclear
physics, relativistic mechanics, etc. For background, theory, and applications of
Hamiltonian systems, we refer the reader to [9, 28, 35]. Inspired by the mono-
graphs [22, 30], the existence and multiplicity of periodic solutions for Hamiltonian
systems have been investigated using variational methods by many authors; for
example, see [7, 8, 10, 12, 16, 18, 23, 24, 37, 40, 41, 43, 44] and the references
therein.

In recent years, investigating the existence of solutions to impulsive boundary
value problems has become increasingly important due to their role in models of
such things as spacecraft control, impact mechanics, physics, chemistry, chemical
engineering, population dynamics, biotechnology, economics, and inspection pro-
cess in operations research. We refer the reader to [3, 4, 15, 19, 32] for a general
discussion of impulsive differential equations and their applications. There have
been many approaches used to study existence of solutions of impulsive differential
equations, such as fixed point theory, topological degree, continuation methods,
coincidence degree theory, upper and lower solution methods, and the monotone
iterative method; see, for example, [1, 13, 21] and references contained therein. Re-
cently, in [2, 26, 36, 39], the authors used critical point theory to study the existence
and multiplicity of solutions of impulsive problems.

Very recently, a great deal of work has been done on the existence of multi-
ple solutions to second-order impulsive Hamiltonian systems. In [6, 34], based on
variational methods and critical point theory, the existence of multiple solutions
to second-order impulsive Hamiltonian systems was established. We also refer the
interested reader to [20, 33, 42] in which second order Hamiltonian systems with
impulsive effects have been examined. In [14], the present authors used variational
methods and critical point theory to study the existence of infinitely many peri-
odic solutions to a class of perturbed second-order impulsive Hamiltonian systems.
For a discussion of multiple solutions to boundary value problems via variational
methods and critical point theory, we refer the reader to [11, 17].

Our results here are motivated by the recent papers [6, 11, 34]. We begin by
obtaining the existence of a nontrivial periodic solution by combining algebraic
conditions on F and H. Another result, Theorem 3.14 below, is concerned with the
existence of three periodic solutions. We obtain it by combining the use of algebraic
conditions on the functions F and H to obtain the existence of two distinct solutions
and then applying the mountain pass theorem of Pucci and Serrin to obtain the
third solution. This approach of combining techniques to obtain multiple solutions
of boundary value problems is somewhat unique.
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2. Preliminaries

For a given non-empty set X and two functionals Φ, Ψ : X → R, we define the
functions

ϑ(r1, r2) = inf
v∈Φ−1(r1,r2)

supu∈Φ−1(r1,r2) Ψ(u)−Ψ(v)
r2 − Φ(v)

,

ρ1(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− supu∈Φ−1(−∞,r1) Ψ(u)
Φ(v)− r1

for all r1, r2 ∈ R with r1 < r2, and

ρ2(r) = sup
v∈Φ−1(r,∞)

Ψ(v)− supu∈Φ−1(−∞,r) Ψ(u)
Φ(v)− r

for all r ∈ R. We also define the functional Iλ : X → R by

Iλ : Φ− λΨ.

The following two results are due to Bonanno; they will be used in the proofs of
our main results.

Theorem 2.1 ([5, Theorem 5.1]). Let X be a real Banach space, Φ : X → R
be a sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux
differentiable functional whose Gâteaux derivative admits a continuous inverse on
X∗, and let Ψ : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact. Assume there are constants r1, r2 ∈ R, r1 < r2,
such that

ϑ(r1, r2) < ρ1(r1, r2).
Then, for each λ ∈ ( 1

ρ1(r1,r2) ,
1

ϑ(r1,r2) ) there exists u0,λ ∈ Φ−1(r1, r2) such that
Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r1, r2) and I ′λ(u0,λ) = 0.

Theorem 2.2 ([5, Theorem 5.3]). Let X be a real Banach space, Φ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative admits a
continuous inverse on X∗, and let Ψ : X → R be a continuously Gâteaux differen-
tiable functional whose Gâteaux derivative is compact. Choose r so that infX Φ <
r < supX Φ, ρ2(r) > 0, and for each λ > 1

ρ2(r) , the functional Iλ := Φ − λΨ is
coercive. Then, for each λ ∈ ( 1

ρ2(r) ,+∞), there exists u0,λ ∈ Φ−1(r,+∞) such that
Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r,+∞) and I ′λ(u0,λ) = 0.

We assume throughout that the matrix A satisfies the following conditions:
(M1) A(t) = (akl(t)), k = 1, . . . , N , l = 1, . . . , N , is a symmetric matrix with

akl ∈ L∞[0, T ] for any t ∈ [0, T ];
(M2) There exists δ > 0 such that (A(t)ξ, ξ) ≥ δ|ξ|2 for any ξ ∈ RN and a.e.

t ∈ [0, T ], where (·, ·) denotes the inner product in RN .
Next, we recall some basic concepts that will be used in what follows. Set

E =
{
u : [0, T ]→ RN : u is absolutely continuous,

u(0) = u(T ), u̇ ∈ L2([0, T ],RN )
}

with the inner product

≺ u, v �E=
∫ T

0

[(u̇(t), v̇(t)) + (u(t), v(t))]dt.
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The corresponding norm is defined by

‖u‖E =
∫ T

0

(|u̇(t)|2 + |u(t)|2)dt for all u ∈ E.

For every u, v ∈ E, we define

≺ u, v �=
∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt,

and we observe that conditions (M1) and (M2) ensure that this defines an inner
product in E. Then E is a separable and reflexive Banach space with the norm

‖u‖ =≺ u, u �1/2 for all u ∈ E.

Clearly, E is an uniformly convex Banach space.
A simple computation shows that

(A(t)ξ, ξ) =
N∑

k,l=1

akl(t)ξkξl ≤
N∑

k,l=1

‖akl‖L∞ |ξ|2

for every t ∈ [0, T ] and ξ ∈ RN . Along with condition (A2), this implies
√
m‖u‖E ≤ ‖u‖ ≤

√
M‖u‖E , (2.1)

where m = min{1, δ} and M = max{1,
∑N
k,l=1 ‖akl‖∞}, which means the norm

‖ · ‖ is equivalent to the norm ‖ · ‖E . Since (E, ‖ · ‖) is compactly embedded in
C([0, T ],RN ) (see [22]), there exists a positive constant c such that

‖u‖∞ ≤ c‖u‖, (2.2)

where ‖u‖∞ = maxt∈[0,T ] | u(t) | and c =
√

2
m max{ 1√

T
,
√
T} (see [6]).

For u ∈ E, ∆u̇(t) = u̇(t+) − u̇(t−) = 0 does not necessarily hold for every
t ∈ (0, T ), and the derivative u̇ may possess discontinuities. This leads to the
impulsive effects.

Next, we define what we mean by a solution of (1.1).

Definition 2.3. A function u ∈ {u ∈ E : u̇ ∈ (W 1,2(tj , tj+1))N , j = 0, 1, 2, . . . , p}
is said to be a classical solution of the problem (1.1) if u satisfies the differential
equation, the impulse relations, and the boundary conditions given in problem (1.1).

Definition 2.4. By a weak solution of the problem (1.1), we mean any u ∈ E such
that ∫ T

0

[
(u̇(t), v̇(t)) + (A(t)u(t), v(t))− (∇H(u(t)), v(t))

]
dt

+
p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)− λ
∫ T

0

(∇F (t, u(t)), v(t))dt = 0
(2.3)

for every v ∈ E.

An important relationship between a weak solution and a classical solution of
(1.1) is given in the next lemma.

Lemma 2.5 ([14, Lemma 2.2]). If u ∈ E is a weak solution of (1.1), then u is a
classical solution of (1.1).
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In what follows, unless stated otherwise, by a solution of (1.1) we will always
mean a classical solution. Without further mention, we will assume throughout
that

K := c2(2LT +
p∑
j=1

N∑
i=1

Lij) < 1.

The following proposition is needed in the proofs of our main results.

Proposition 2.6. Let J : E → E∗ be the operator defined by

J(u)v =
∫ T

0

[
(u̇(t), v̇(t)) + (A(t)u(t), v(t))− (∇H(u(t)), v(t))

]
dt

+
p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)

for every u, v ∈ E. Then J admits a continuous inverse on E∗.

Proof. Since −L|ξ|2 ≤ (∇H(ξ), ξ) ≤ L|ξ|2 for every ξ ∈ RN , and −Lij |s|2 ≤
Iij(s)s ≤ Lij |s|2 for every s ∈ R and all i = 1, 2, . . . , N , j = 1, 2, . . . , p, in view of
(2.2), we have

J(u)u =
∫ T

0

[
(u̇(t), u̇(t)) + (A(t)u(t), u(t))− (∇H(u(t)), u(t))

]
dt

+
p∑
j=1

N∑
i=1

Iij(ui(tj))ui(tj)

≥
(

1− c2LT − c2
p∑
j=1

N∑
i=1

Lij

)
‖u‖2

>
(

1−K
)
‖u‖2.

Since K < 1, J is coercive. Now for any u, v ∈ E,

〈J(u)− J(v), u− v〉 =
∫ T

0

(u̇(t)− v̇(t), u̇(t)− v̇(t))dt

+
p∑
j=1

N∑
i=1

(Iij(ui(tj))− Iij(vi(tj)))(ui(tj)− vi(tj))

−
∫ T

0

(∇H(u(t))−∇H(v(t)), u(t)− v(t))dt

≥
(

1− c2LT − c2
p∑
j=1

N∑
i=1

Lij

)
‖u− v‖2

> (1−K)‖u− v‖2,

so J is uniformly monotone. By [38, Theorem 26.A (d)], J−1 exists and is contin-
uous on E∗. �
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3. Main results

Our first existence result is contained in the following theorem. For a given
function w ∈ E and a given nonnegative constant r with

r 6= 1
2

(1 +K)‖w‖2,

we set

aw(r) :=

∫ T
0

max|ξ|≤c( 2r
1−K )1/2 F (t, ξ)dt−

∫ T
0
F (t, w(t))dt

r − 1
2 (1 +K)‖w‖2

.

Theorem 3.1. Assume that there exist constants r1 ≥ 0 and r2 > 0, and a function
w ∈ E such that

(A1)
(

2r1
1−K

)1/2
< ‖w‖ <

(
2r2

1+K

)1/2,
(A2) aw(r2) < aw(r1).

Then, for each λ ∈
(

1
aw(r1) ,

1
aw(r2)

)
, problem (1.1) has a non-trivial periodic solu-

tion u∗ ∈ E such that

r1 <
1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds−
∫ T

0

H(u∗(t))dt < r2.

Remark 3.2. In the above theorem, and in the results below, by u∗ we mean the
vector (u∗1, u

∗
2, . . . , u

∗
N ).

Proof. Choose λ as in the conclusion of the theorem. To apply Theorem 2.1 to our
problem, we take X = E and define the functionals Φ, Ψ, Iλ : X → R by

Φ(u) =
1
2
‖u‖2 +

p∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(s)ds−
∫ T

0

H(u(t))dt,

Ψ(u) =
∫ T

0

F (t, u(t))dt,

Iλ(u) = Φ(u)− λΨ(u)

for every u ∈ X. It is well known that Ψ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗ given
by

Ψ′(u)v =
∫ T

0

(∇F (t, u(t)), v(t))dt (3.1)

for every v ∈ X, and that Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a
Gâteaux differentiable functional whose Gâteaux derivative at the point u ∈ X is
the functional Φ′(u) ∈ X∗ given by

Φ′(u)v =
∫ T

0

[
(u̇(t), v̇(t)) + (A(t)u(t), v(t))− (∇H(u(t)), v(t))

]
dt

+
p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)
(3.2)

for every v = (v1, v2, . . . , vN ) ∈ X. Furthermore, Φ is sequentially weakly lower
semicontinuous (see [14]). From (1.4) and (1.5), we have |H(ξ)| ≤ L|ξ|2 for all
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ξ ∈ RN . From (1.2), (2.2), and the fact that Iij(0) = 0, we have

1
2

(1−K)‖u‖2 ≤ Φ(u) ≤ 1
2

(1 +K)‖u‖2 (3.3)

for u ∈ X. Condition (A1) together with (3.3) implies

r1 < Φ(w) < r2.

From (2.2) and (3.3), for each u ∈ X,

Φ−1(−∞, r2) = {u ∈ X : Φ(u) < r2}

⊆
{
u ∈ X :

1
2

(1−K)‖u‖2 < r2

}
⊆
{
u ∈ X : |u(t)| ≤ c

( 2r2

1−K
)1/2 for each t ∈ [0, T ]

}
,

and it follows that

sup
u∈Φ−1(−∞,r2)

Ψ(u) = sup
u∈Φ−1(−∞,r2)

∫ T

0

F (t, u(t))dt ≤
∫ T

0

max
|ξ|≤c( 2r2

1−K )1/2
F (t, ξ)dt.

Therefore,

ϑ(r1, r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤

∫ T
0

max
|ξ|≤c

(
2r2

1−K

)1/2 F (t, ξ)dt−Ψ(w)

r2 − Φ(w)

≤

∫ T
0

max
|ξ|≤c

(
2r2

1−K

)1/2 F (t, ξ)dt−
∫ T

0
F (t, w(t))dt

r2 − 1
2 (1 +K)‖w‖2

= aw(r2).

On the other hand, arguing as before,

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(−∞,r1) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−

∫ T
0

max
|ξ|≤c

(
2r1

1−K

)1/2 F (t, ξ)dt

Φ(w)− r1

≥

∫ T
0
F (t, w(t))dt−

∫ T
0

max
|ξ|≤c

(
2r1

1−K

)1/2 F (t, ξ)dt

1
2 (1 +K)‖w‖2 − r1

= aw(r1).

Hence, from condition (A1), we have ϑ(r1, r2) < ρ(r1, r2). Therefore, by Theorem
2.1, for each λ ∈

(
1

aw(r1) ,
1

aw(r2)

)
, the functional Iλ admits at least one critical point

u∗ ∈ X such that r1 < Φ(u∗) < r2, that is, u∗ is a nontrivial local minimum for Iλ
in X.

Since weak solutions of problem (1.1) are precisely the solutions of the equation
I ′λ(u) = 0 (see (2.3), (3.1), and (3.2)), u∗ is a weak solution of problem (1.1). In
view of Lemma 2.5, this completes the proof of the theorem. �
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The following corollary provides a sufficient condition for applying Theorem 3.1
that does not require knowledge of two constants r1, r2 and a test function w
satisfying (A1) and (a2).

Let

D =
(T − tp)2

t1t2p
+

t1
3t2p

(t2p + tpT + T 2) + (tp − t1) +
T − tp
t2p

+
1

3t2p
(T 3 − t3p) > 0,

and for a given nonnegative constant θ and a positive constant η, with

(1−K)θ2 6= c2(1 +K)DMη2,

let

bη(θ) :=

∫ T
0

max|ξ|≤θ F (t, ξ)dt−
∫ tp
t1
F (t, ηε)dt

1
2 (1−K)θ2 − 1

2c
2(1 +K)DMη2

where ε = (1, 0, . . . , 0) ∈ RN .

Corollary 3.3. Assume that there exist constants θ1 ≥ 0, θ2 > 0, and η > 0 with
θ1

c
√
Dm

< η < θ2
c

√
1−K

DM(1+K) such that

(A3) F (t, ξ) ≥ 0 for each t ∈ [0, t1] ∪ [tp, T ] and |ξ| ≤ ηT
tp

,
(A4) bη(θ2) < bη(θ1).

Then, for each λ ∈
(

1
c2

1
bη(θ1) ,

1
c2

1
bη(θ2)

)
, the problem (1.1) has a non-trivial periodic

solution u∗ ∈ E such that

1
2

(1−K)
(θ1

c

)2
<

1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds

−
∫ T

0

H(u∗(t))dt <
1
2

(1−K)
(
θ2

c

)2

.

Proof. Choose r1 = 1
2 (1−K)( θ1c )2, r2 = 1

2 (1−K)( θ2c )2, and

w(t) =


(T + tp−T

t1
t)ηεtp , t ∈ [0, t1),

ηε, t ∈ [t1, tp],
ηε
tp
t, t ∈ (tp, T ].

(3.4)

Then w ∈ E and ‖w‖2E = Dη2. By (2.1),

Dmη2 ≤ ‖w‖2 ≤ DMη2, (3.5)

and this together with the condition on η implies (A1) is satisfied. Moreover, since
0 ≤ w(t) ≤ ηT

tp
for each t ∈ [0, T ] and (A3) holds, we have∫ t1

0

F
(
t,
(
T +

t1 − T
tp

t
)ηε
tp

)
dt+

∫ T

tp

F
(
t,
ηε

tp
t
)
dt ≥ 0. (3.6)

Therefore, from (3.5) and (3.6) it follows that

aw(r2) =

∫ T
0

max|ξ|≤c( 2r2
1−K )1/2 F (t, ξ)dt−

∫ T
0
F (t, w(t))dt

r2 − 1
2 (1 +K)‖w‖2

≤ c2bη(θ2),

c2bη(θ1) ≤

∫ T
0
F (t, w(t))dt−

∫ T
0

max|ξ|≤c( 2r1
1−K )1/2 F (t, ξ)dt

1
2 (1 +K)‖w‖2 − r1

= aw(r1).
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Therefore, (A4) implies that (A2) is satisfied. Hence, by Theorem 3.1,the conclusion
of the corollary follows. �

An easy consequence of Corollary 3.3 is the following existence result.

Corollary 3.4. In addition to (A3), assume there exist θ > 0 and η > 0 with
η < θ

c

√
1−K

DM(1+K) such that

(A5) ∫ T
0

max|ξ|≤θ F (t, ξ)dt
θ2

<
1−K

c2(1 +K)DM

∫ tp
t1
F (t, ηε)dt

η2
,

where ε = (1, 0, . . . , 0) ∈ RN .
Then, for each

λ ∈
( (1 +K)DMη2

2
∫ tp
t1
F (t, ηε)dt

,
(1−K)θ2

2c2
∫ T

0
max|ξ|≤θ F (t, ξ)dt

)
,

problem (1.1) has a non-trivial periodic solution u∗ ∈ E such that

0 <
1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds−
∫ T

0

H(u∗(t))dt <
1
2

(1−K)
(θ
c

)2
.

Proof. Choosing θ1 = 0 and θ2 = θ, we have

bη(θ) <

(
1− c2(1+K)DMη2

(1−K)θ2

) ∫ T
0

max|ξ|≤θ F (t, ξ)dt
1
2 (1−K)θ2 − 1

2c
2(1 +K)DMη2

=

∫ T
0

max|ξ|≤θ F (t, ξ)dt
1
2 (1−K)θ2

<
1

1
2c

2(1 +K)DM

∫ tp
t1
F (t, ηε)dt

η2
= bη(0).

In particular,

bη(θ) <

∫ T
0

max|ξ|≤θ F (t, ξ)dt
1
2 (1−K)θ2

.

The conclusion then follows from Corollary 3.3. �

Next, we present an application of Theorem 2.2 that will be used to obtain
multiple solutions to problem (1.1).

Theorem 3.5. Assume there exist a constant r̄ > 0 and a function w̄ with 2r̄
1−K <

‖w̄‖2 such that

(B1)
∫ T

0
max|ξ|≤c( 2r̄

1−K )1/2 F (t, ξ)dt <
∫ T

0
F (t, w̄(t))dt;

(B2) lim sup|ξ|→+∞
F (t,ξ)
|ξ|2 ≤ 0 uniformly for t ∈ [0, T ].

Then, for each λ ∈
(
λ̄,+∞

)
, where

λ̄ :=
1
2 (1 +K)‖w̄‖2 − r̄∫ T

0
F (t, w̄(t))dt−

∫ T
0

max|ξ|≤c( 2r̄
1−K )1/2 F (t, ξ)dt

,
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problem (1.1) has at least one non-trivial periodic solution ū ∈ E such that

1
2
‖ū‖2 +

p∑
j=1

N∑
i=1

∫ ūi(tj)

0

Iij(s)ds−
∫ T

0

H(ū(t))dt > r̄.

Proof. Choose λ as in the conclusion of the theorem. Taking X and the functionals
Φ and Ψ as in the proof of Theorem 3.1, we see that all the regularity assumptions
required in Theorem 2.2 are satisfied. By (B2), there is a constant ε and a function
hε ∈ L1([0, T ]) with 0 < ε < 1−K

2λc2 such that

F (t, ξ) ≤ ε|ξ|2 + hε(t) for all t ∈ [0, T ], ξ ∈ RN . (3.7)

From the definitions of Φ and Ψ, (2.2), (3.3) and (3.7), we obtain

Iλ(u) ≥ 1
2

(1−K)‖u‖2 − λε
∫ T

0

|u(t)|2dt− λ
∫ T

0

hε(t)dt

≥ 1
2

(
1−K − λεc2

)
‖u‖2 − λ‖hε‖L1([0,T ]).

Since 1 −K − λεc2 > 0, the functional Iλ is coercive. Arguing as in the proof of
Theorem 3.1 shows that

ρ2(r̄) ≥

∫ T
0
F (t, w̄(t))dt−

∫ T
0

max|ξ|≤c( 2r̄
1−K )1/2 F (t, ξ)dt

1
2 (1 +K)‖w̄‖2 − r̄

> 0

by (B1) and (B2). By Theorem 2.2, the functional Iλ admits at least one local
minimum ū ∈ X such that 1

2‖ū‖
2 +
∑p
j=1

∑N
i=1

∫ ūi(tj)
0

Iij(s)ds−
∫ T

0
H(ū(t))dt > r̄,

and the conclusion follows. �

The following corollary provides a sufficient condition for applying Theorem 3.5
that does not require knowledge of a constant r and a test function w satisfying
(B1) and (B2).

Corollary 3.6. Assume that (A3), and (B2) hold and there exist positive constants
θ̄ and η̄ with θ̄

c
√
Dm

< η̄ such that

(B3) ∫ T

0

max
|ξ|≤θ̄

F (t, ξ)dt <
∫ tp

t1

F (t, η̄ε)dt

where ε = (1, 0, . . . , 0) ∈ RN .
Then, for each λ ∈ (λ̄′,+∞), where

λ̄′ :=
1
2 (1 +K)DMη̄2 − 1

2 (1−K)
(
θ̄
c

)2∫ tp
t1
F (t, η̄ε)dt−

∫ T
0

max|ξ|≤θ̄ F (t, ξ)dt
,

problem (1.1) has at least one non-trivial periodic solution ū ∈ E such that

1
2
‖ū‖2 +

p∑
j=1

N∑
i=1

∫ ūi(tj)

0

Iij(s)ds−
∫ T

0

H(ū(t))dt >
1
2

(1−K)
( θ̄
c

)2
.

Proof. Choose r̄ = 1
2 (1−K)( θ̄c )2 and let w̄ be as in (3.4) with η replaced by η̄. The

conclusion follows from an application of Theorem 3.5. �
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Next, we point out some results for which the function F is in factored form. To
be precise, consider the problem

−ü(t) +A(t)u(t) = λb(t)∇G(u(t)) +∇H(u(t)), a.e.t ∈ [0, T ],

∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . , p,

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
(3.8)

where b ∈ L1([0, T ]), b(t) ≥ 0 a.e. t ∈ [0, T ], b 6≡ 0, G ∈ C1(RN ,R), G(0, . . . , 0) = 0,
and each component of the vector ∇G : RN → RN is a non-negative continuous
function.

Remark 3.7. Since the first term on the right hand side of the equation in (3.8)
is nonnegative, any weak solution of (3.8) is nonnegative. To see this, assume that
the set A =

{
t ∈ [0, T ] : u0(t) < 0

}
is non-empty and of positive measure. Let

v̄(t) = min{0, u0(t)} for all t ∈ [0, T ]. Clearly, v̄ ∈ E. Using the fact that u0 is a
weak solution of (3.8), we have∫ T

0

(
(u̇0(t), ˙̄v(t)) + (A(t)u0(t), v̄(t))− (∇H(u0(t)), v̄(t))

)
dt

+
p∑
j=1

N∑
i=1

Iij(u0i(tj))v̄i(tj)

= λ

∫ T

0

(b(t)∇G(u0(t)), v̄(t))dt.

Thus,

0 ≤
(

1− c2LT − c2
p∑
j=1

N∑
i=1

Lij

)∫
A

[(u̇0(t), u̇0(t)) + (A(t)u0(t), u0(t))]dt

≤
∫
A

(
(u̇0(t), u̇0(t)) + (A(t)u0(t), u0(t))− (∇H(u0(t)), u0(t))

)
dt

+
p∑
j=1

N∑
i=1

Iij(u0i(tj))u0i(tj) ≤ 0.

Now c2LT + c2
∑p
j=1

∑N
i=1 Lij < 1, so u0 = 0 is in A, which is a contradiction.

We will now present some existence results that are consequences of Corollaries
3.3, 3.4, and 3.6, respectively. For a given nonnegative constant θ and a positive
constant η, with

(1−K)θ2 6= c2(1 +K)DMη2,

define

cη(θ) :=
max|ξ|≤θ G(ξ)

∫ T
0
b(t)dt−G(ηε)

∫ tp
t1
b(t)dt

1
2 (1−K)θ2 − 1

2c
2(1 +K)DMη2

,

where ε = (1, 0, . . . , 0) ∈ RN .

Corollary 3.8. Assume that there exist constants θ1 ≥ 0, θ2 > 0, and η > 0 with
θ1

c
√
Dm

< η < θ2
c

√
1−K

DM(1+K) such that

(A6) cη(θ2) < cη(θ1).
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Then, for each λ ∈
(

1
c2

1
cη(θ1) ,

1
c2

1
cη(θ2)

)
, problem (3.8) has a positive periodic solu-

tion u∗ ∈ E such that

1
2

(1−K)
(θ1

c

)2
<

1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds−
∫ T

0

H(u∗(t))dt

<
1
2

(1−K)
(θ2

c

)2
.

Corollary 3.9. Assume that there exist constants θ > 0 and η > 0 with η <
θ
c

√
1−K

DM(1+K) such that

(A7)

max|ξ|≤θ G(ξ)
∫ T

0
b(t)dt

θ2
<

1−K
c2(1 +K)DM

G(ηε)
∫ tp
t1
b(t)dt

η2
,

where ε = (1, 0, . . . , 0) ∈ RN .
Then, for each

λ ∈
( (1 +K)DMη2

2G(ηε)
∫ tp
t1
b(t)dt

,
(1−K)θ2

2c2 max|ξ|≤θ G(ξ)
∫ T

0
b(t)dt

)
,

problem (3.8) has a positive periodic solution u∗ ∈ E such that

1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds−
∫ T

0

H(u∗(t))dt <
1
2

(1−K)
(θ
c

)2
.

Corollary 3.10. Assume there exist constants θ̄ > 0 and η̄ > 0 with θ̄
c
√
Dm

< η̄

such that
(B4)

max
|ξ|≤θ̄

G(ξ)
∫ T

0

b(t)dt < G(η̄ε)
∫ tp

t1

b(t)dt,

where ε = (1, 0, . . . , 0) ∈ RN ;
(B5) lim sup|ξ|→+∞

G(ξ)
|ξ|2 ≤ 0.

Then, for each λ ∈ (λ̂,+∞), where

λ̂ :=
1
2 (1 +K)DMη̄2 − 1

2 (1−K)( θ̄c )2

G(η̄ε)
∫ tp
t1
b(t)dt−max|ξ|≤θ̄ G(ξ)

∫ T
0
b(t)dt

, (3.9)

problem (3.7) has at least one positive periodic solution ū ∈ E such that

1
2
‖ū‖2 +

p∑
j=1

N∑
i=1

∫ ūi(tj)

0

Iij(s)ds−
∫ T

0

H(ū(t))dt >
1
2

(1−K)
( θ̄
c

)2
.

One consequence of Corollary 3.9 is the following existence result.

Theorem 3.11. Assume that

lim
x→0+

max|ξ|≤xG(ξ)
|x|2

= +∞. (3.10)
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Then, for each λ ∈ (0, λ∗), where

λ∗ :=
1−K

2c2
∫ T

0
b(t)dt

sup
θ>0

θ2

max|ξ|≤θ G(ξ)
,

problem (3.8) has a positive periodic solution.

Proof. For fixed λ ∈ (0, λ∗), there exists a positive constant θ such that

λ <
1−K

2c2
∫ T

0
b(t)dt

θ2

max|ξ|≤θ G(ξ)
.

Moreover, by (3.10), we can choose η > 0 satisfying η < θ
c

√
1−K

DM(1+K) such that

(1 +K)DM

2λ
∫ tp
t1
b(t)dt

<
G(ηε)
η2

,

where ε = (1, 0, . . . , 0) ∈ RN . The conclusion then follows from Corollary 3.9. �

The following examples illustrates some of our results.

Example 3.12. Take N = 1 and consider the problem

−u′′(t) + u(t) = λb(t)g(u(t)) + h(u(t)), a.e. t ∈ [0, 3],

∆(u′(tj)) = Ij(u(tj)), j = 1, 2,

u(0)− u(3) = u′(0)− u′(3) = 0,

(3.11)

where b(t) = et for every t ∈ [0, 3], t1 = 1, t2 = 2, g(x) = 1 + 3x|x|ex4
+ 4x|x|5ex4

,
h(x) = 1

12x
+, x+ = max{x, 0}, and Ij(x) = 1

8x for j = 1, 2 for every x ∈ R. It is
easy to see that G(x) = x+ |x|3ex4

, and

lim
x→0+

max|ξ|≤xG(ξ)
x2

= +∞.

Moreover, since c =
√

6, L = 1
72 , and L1j = 1

48 for j = 1, 2, we see that K = 3
4 < 1.

Hence, applying Theorem 3.11, for each λ ∈
(

0, 1
48(e3−1)(1+e)

)
, problem (3.11) has

a positive periodic solution.

Example 3.13. Let N = 2, p = 2, T = 3, t1 = 1, and t2 = 2. Let A : [0, 3]→ R2×2

be the identity matrix, let G(ξ1, ξ2) = ξ1 + ξ2 + 1
4ξ

4
1 + 1

4ξ
4
2 for all (ξ1, ξ2) ∈ R2,

b ∈ L1([0, 3]) be a positive function, Iij(s) = 1
96s(1 + e−s) for all s ∈ R, for i = 1, 2

and j = 1, 2, and H(ξ1, ξ2) = 1
72
√

2
( 1

2ξ
2
1 + ξ1ξ2 + 1

2ξ
2
2) for all (ξ1, ξ2) ∈ R2. It is clear

that

lim
x→0+

max|ξ|≤xG(ξ)
x2

= +∞.

Moreover, since c =
√

6, L = 1
72
√

2
and Lij = 1

96 for i = 1, 2, j = 1, 2, we have

K = 2+
√

2
4
√

2
< 1. Hence, applying Theorem 3.11, for each

λ ∈
(

0,
1− 2+

√
2

4
√

2

12
∫ T

0
b(t)dt

sup
θ>0

θ2

max|ξ|≤θ
(
ξ1 + ξ2 + 1

4ξ
4
1 + 1

4ξ
4
2

)),
problem (3.8) has a positive periodic solution.
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Our next theorem is for the existence of three positive periodic solutions to
problem (3.8). It is based on Corollaries 3.9 and 3.10. We use a combination of
algebraic conditions on the functions G and H that give two local minimums for the
functional Iλ, and then we apply the Pucci-Serrin mountain pass lemma to obtain
the third solution.

Theorem 3.14. Let (B5) hold and assume there exist constants θ > 0, η > 0,
θ̄ > 0, and η̄ > 0 with

c

√
DM(1 +K)

1−K
η < θ ≤ θ < c

√
Dmη

such that (A7) and (B4) hold. If

max|ξ|≤θ G(ξ)
∫ T

0
b(t)dt

θ2
<

1−K
2c2

max|ξ|≤θ̄ G(ξ)
∫ T

0
b(t)dt−G(η̄ε)

∫ tp
t1
b(t)dt

1
2 (1−K)( θ̄c )2 − 1

2 (1 +K)DMη̄2
,

(3.12)
where ε = (1, 0, . . . , 0) ∈ RN , then, for each

λ ∈ Λ :=
(

max
{
λ̂,

(1 +K)DMη2

2G(ηε)
∫ tp
t1
b(t)dt

}
,

(1−K)( θc )2

2 max|ξ|≤θ G(ξ)
∫ T

0
b(t)dt

)
,

where λ̂ is given in (3.9), problem (3.8) has at least three positive periodic solutions.

Proof. First we observe that (3.12) implies Λ 6= ∅. Fix λ ∈ Λ. Using Corollary
3.9, we obtain the first positive periodic solution u∗ as a local minimum of the
functional Iλ with

1
2
‖u∗‖2 +

p∑
j=1

N∑
i=1

∫ u∗i (tj)

0

Iij(s)ds−
∫ T

0

H(u∗(t))dt <
1
2

(1−K)
(θ
c

)2
.

Corollary 3.10 guarantees a second positive periodic solution ū with

1
2
‖ū‖2 +

p∑
j=1

N∑
i=1

∫ ūi(tj)

0

Iij(s)ds−
∫ T

0

H(ū(t))dt >
1
2

(1−K)
( θ̄
c

)2
.

The mountain pass theorem of Pucci and Serrin ([27]) then ensures the existence
of a third positive periodic solution. �

As a consequence of Theorem 3.14 we have the following result.

Theorem 3.15. Assume that

lim sup
|x|→0+

max|ξ|≤xG(ξ)
|x|2

= +∞, (3.13)

lim sup
|ξ|→+∞

G(ξ)
|ξ|2

= 0, (3.14)

and there are constants θ̄ > 0 and η̄ > 0 with θ̄
c
√
Dm

< η̄ such that

max|ξ|≤θ̄ G(ξ)
∫ T

0
b(t)dt

θ̄2
<

1−K
c2(1 +K)DM

G(η̄ε)
∫ tp
t1
b(t)dt

η̄2
(3.15)
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where ε = (1, 0, . . . , 0) ∈ RN . Then, for each

λ ∈
( (1 +K)DMη̄2

2G(η̄ε)
∫ tp
t1
b(t)dt

,
(1−K)θ̄2

2c2 max|ξ|≤θ̄ G(ξ)
∫ T

0
b(t)dt

)
,

(3.8) has at least three positive periodic solutions.

Proof. We can easily observe from (3.14) that (B5) is satisfied. Moreover, by choos-
ing η small enough and θ = θ̄, we see that (3.13) implies condition (A7) holds, and
(3.15) implies (B4) and (3.12) hold. We thus have the conclusion of the theorem. �

In conclusion, we would like to mention that we believe that this approach of
combining techniques to obtain multiple solutions of boundary value problems, with
or without impulses, will prove to be a valuable strategy.

Future research. One direction for future work would be to extend the results
here to the case where the right hand side of the equation in (1.1) is not continu-
ous. In this regard, we refer the reader to the paper of Molica Bisci and Repovš
[25]. Another possibility is to consider the situation where the equation in (1.1) is
replaced by an inclusion.

Acknowledgments. This article was written while the second author was visiting
The University of Tennessee at Chattanooga.
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