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PIECEWISE UNIFORM OPTIMAL DESIGN OF A BAR WITH
AN ATTACHED MASS

BORIS P. BELINSKIY, JAMES W. HIESTAND, JOHN V. MATTHEWS

Abstract. We minimize, with respect to the cross sectional area, the mass of
a bar given the rate of heat transfer. The bar enhances the heat transfer surface

of a larger known mass to which the bar is attached. This article is an extension

of a previous publication by two coauthors, where heat transfer from the sides
of the bar was neglected and only conduction through its length was considered.

The rate of cooling is defined by the first eigenvalue of the corresponding

Sturm-Liouville problem. We compare the mass of the computed variable
cross-section bar with the mass of a bar with constant cross-sectional area and

the same rate of heat transfer, and conclude that a fin design with constant,
or near constant, cross-sectional area is best.

1. Introduction

Removal of waste heat to another material or the environment by convection
and radiation is important in everyday life and industrial applications. Heat must
be removed from devices such as computers, refrigerators, and engines, large and
small. Convective heat transfer utilizes the bulk motion of a fluid; heat transfer
by radiation utilizes electromagnetic waves driven by the temperature difference
between the source and the target.

The rate of heat transfer depends on the temperature difference, the area of
the heat transfer surface, the heat transfer coefficient (for convection) and surface
conditions and orientation (for radiation). Sometimes the temperature difference is
fixed. The convective heat transfer coefficient depends on the flow rate between the
surface and the surrounding medium. This may be enhanced by a fan, if available.
Computers have fans, for example. We note that radiation is not considered in the
analysis that follows. This effect is more important at high temperatures.

The condition most easily modified is the surface area between the source and
the disposal medium for the heat transfer. To increase the surface area without
unduly increasing the weight, material used, and hence cost of the application, ex-
tended surfaces are often used. Such surface extensions for convective heat transfer
frequently are called fins. Several examples of fins are (a) donuts placed at regular
intervals around pipes, (b) protrusions like hairs from surfaces, and (c), layers of
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thin sheets of material, which have high surface-to-volume ratios. Human and an-
imal bodies are also dependent on adequate heat transfer to prevent overheating.
Elephants, for example, increase their effective heat transfer surface areas through
their large ears, which function as fins. On the other hand animals in cold cli-
mates need to retain body heat and hence tend to have larger bodies with lower
surface-to-volume ratios.
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Figure 1. Example of a fin attached to a larger mass, indicated
by dotted boundary. Not to scale.

As shown in the tapered fin in Figure 1, in usual engineering practice the area
A(x) decreases in the direction away from the body to which the extended surface
is attached. This practice is based on the steady-state analysis as justified in [16,
p. 79] to minimize the area and hence the material used when a fixed amount of
heat is to be continuously removed from the body to which the extended surface is
attached. In contrast the present analysis is for transient cooling for a fixed amount
of heat. This results in the opposite dependence of A(x); it is slightly increasing in
the direction away from the body. However, this result is consistent with Turner’s
and Taylor’s results [22, 20] for a parallel problem in mechanical vibration (see also
[21, 19]).

This article is a continuation of a previous publication [2] where we discussed a
particular case when convective heat transfer from the side of a fin is neglected. In
the present work we do account for convective heat transfer but assume that the
cross-section of the fin varies little along its length. To make the presentation here
coherent, we sometimes repeat the results of [2] briefly.

Convective heat transfer is modeled by the equation

Q̇ = hAs(T − T∞) (1.1)

where Q̇ is the heat transfer rate, h is an empirical heat transfer coefficient, As is
the surface area, T is the temperature of the surface and T∞ is the temperature of
the surrounding medium. We want to maximize the surface-to-volume ratio since
the heat transfer rate is proportional to the surface area. On the other hand, we
want to minimize the volume of the heat transfer surface, in order to keep its weight
and material cost as low as possible. Hence fin design is an optimization problem.
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Assume the extended surface is a surface of revolution with radius r(x) attached
to a given base mass, M0. The mass of the added extended surface is small compared
to the base mass M0. Heat transfer along a bar is by conduction, with the rate
given by

Q̇ = −kA∆T
L

(1.2)

where k is the thermal conductivity of the material, A is the cross-sectional area,
and L is the length of the material. Moreover, ∆T is the temperature difference
between the end points of the heat transfer. The equations above, along with the
corresponding physical background, may be found in [11].

If an energy balance is performed for the region of the bar between x and x+∆x,
energy enters by conduction at x and leaves by conduction at x+∆x and also from
the side by convection (see Equation (1.1)). The difference is the rate of change of
the energy content of that region of the bar. We find

Rate of change of the region energy content equals conducted energy
in minus conducted energy out and convected energy out.

Since conduction in the positive direction requires a negative temperature gradient,
we find

ρcA∆x
∆T
∆t

= −kA∆T
∆x

∣∣∣
x

+ kA
∆T
∆x

∣∣∣
x+∆x

− hAs(T − T∞). (1.3)

Here T (x, t) is the temperature distribution. The surface area of a differential slice
through the fin is As(x) = P (x)∆x, where

P (x) = 2πr(x)
√

1 + (r′(x))2
.

The ratio ∆T
∆t is the rate of change of temperature with time and ∆T

∆x is the local
temperature gradient. The bar material parameters are the material density, ρ,
the specific heat capacity, c, and the thermal conductivity, k. The convective heat
transfer coefficient is h. It is assumed that ρ, c, k, andh are positive constants.

Dividing by ∆x, and taking the limit as ∆x and ∆t → 0, yields the partial
differential equation

A
∂T

∂t
=

k

ρc

∂

∂x

(
A
∂T

∂x

)
− hP

ρc
(T − T∞), (x, t) ∈ (0, l)× (0,∞). (1.4)

In a previous paper [2] we discussed a particular case of this general equation
when convective heat transfer from the side of the bar is neglected, i.e., the limiting
case h → 0 was considered. Now we shall remove this restriction and allow h to
have a constant and positive value along the bar. The presence of positive h is
very realistic, for the purpose of the fin is to increase the surface area involved in
convection. Our purpose is to find the optimal distribution of the cross-sectional
area, A, of a surface of revolution of a given heat transfer rate for a given h. This
will produce minimum mass and may be considered the optimum solution.

When studying the limiting case h→ 0 in [2], i.e. convective heat transfer from
the side of the bar is neglected, it was possible to use the methods of the Calculus
of Variations to find explicitly the optimal form of the cross-sectional area, A(x),
that maximizes the cooling rate subject to the given mass of the bar. The same
form minimizes the mass given the cooling rate.

The methods of the Calculus of Variations are usually applied to optimal design
problems of this sort. Many structural problems have been considered using these
methods, including the maximization of a column’s buckling load [19, 21], the



4 B. P. BELINSKIY, J. W. HIESTAND, J. V. MATTHEWS EJDE-2015/206

minimization of the mass of an oscillating bar [20, 22], the maximization of a
column’s height [12] and the minimization of the moment of inertia of an oscillating
turbine [3]. See also [5, 6, 7]. Only a few of the design problems mentioned, for
example [22] and [2], have boundary conditions that contain a spectral parameter,
as we will have here. A more detailed review of results in the area can be found in
[8] and the references therein.

In general, convective heat transfer may not be neglected. It is the purpose of
this paper to find the optimal distribution of the cross-sectional area A(x) of a
surface of revolution with the given heat transfer rate such that the mass of the bar
is minimal. It appears, though, that the application of the Calculus of Variation
methods does not lead in this case to an explicitly solvable equation as in the case
of h = 0.

The optimal shape determined below was obtained by dividing the fin into a
series of constant cross area segments. This was mathematically necessary to solve
the formulated equations. In practice these segments could be fit by a smooth
curve. This is facilitated by the small variation in area among adjacent segments
found below.

Hence, we find a piecewise uniform design for the bar under consideration. The
corresponding mechanical problem, i.e. piecewise uniform optimum design of a
bar with the minimal mass and of a given first eigenfrequency, was considered in
[22, 17, 18]. The exact solution for two uniform regions was found. The next
step was made in [4], where a closed form of the exact solution was found for an
arbitrary number of uniform regions. The author then used it to show, at the
numerical level, the convergence of discrete optimization to the continuous one,
which is known explicitly in this case, see [22, 19].

Computationally we use two different approaches on the two different problems.
Specifically, in the problem without convection for a bar of n equal-length pieces
each with its own constant cross-sectional area, we may write the optimization in
terms of quantities known from the problem with (n − 1) pieces, eliminating all
but a single unknown. As a result, we may obtain exact solutions for an arbitrary
number of pieces, and demonstrate this for several small values of n.

For the problem with convection and a bar of n equal-length pieces each with
its own constant cross-sectional area, the resulting equations permit no such exact
solution. Rather, we formulate the optimization problem with the help of a La-
grange multiplier. With the help of a computer algebra system we obtain an exact
reformulation of the optimization problem as a large system of nonlinear equations
and then use numerical software to obtain an approximation of the exact solution.
We verify that as the convective term approaches zero, our numerical solutions
converge to the value of an exact solution of the system without convection.

The paper is organized as follows. In Section 2 we give the mathematical descrip-
tion of the model, apply separation of variables, and describe some spectral prop-
erties of the corresponding Sturm–Liouville problem. We also give the solution for
an elementary case of the problem when the cross-sectional area is constant, which
we need later for comparison with the solution in case of variable cross-sectional
area. In Section 3 we formulate the design problem and we derive the necessary
conditions of optimality in the form of a nonlinear differential equation for the first
eigenfunction of the Sturm–Liouville problem. We briefly summarize the analysis
from [2] in Section 4 for a bar with no convective heat transfer and find an optimal
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form of the bar. In Section 5 we develop another approach based on the discretiza-
tion of the bar, i.e. we assume the cross-section A(x) to be piece–wise constant.
Our algorithm allows us to find an optimal form of the bar (within the class of the
piece-wise constant cross-sections). In this Section we proceed for the case without
convective heat transfer. In Section 6 we develop the similar approach for a bar
with convective heat transfer. In Section 7 we give the numerical comparison of
the bar of optimal shape and the bar having the same cooling properties but with
the constant cross-sectional area, and discuss the results of the study from an engi-
neering point of view. We conclude that, from this perspective, our results suggest
a fin design with constant, or near constant, cross-sectional area.

2. Heat transfer of a bar of a variable cross-sectional area:
separation of variables and the Sturm-Liouville problem

We consider the heat transfer in a cylindrical bar {0 < x < l} with a base
mass M0 attached at the end point x = 0. The temperature distribution T :
[0, l]× [0,∞)→ R satisfies the transient one-dimensional conduction equation

A
∂T

∂t
=

k

ρc

∂

∂x

(
A
∂T

∂x

)
− hP

ρc
(T − T∞), (x, t) ∈ (0, l)× (0,∞). (2.1)

Here A,P are continuous differentiable positive functions from [0, l] to R+. As was
mentioned in the Introduction, parameters k, ρ, c are positive constants. The end
point x = l is kept at the (constant) temperature of the surrounding medium,

T (l, t) = T∞, t ∈ [0,∞). (2.2)

The rate of change of the energy content of the base is given by the difference
between the energy flow into and out of it, as in the derivation of (1.3). For energy
flow only by conduction outward at x = 0 this becomes

cM0
∆T
∆t

= kA
∆T
∆x

∣∣
x=0

. (2.3)

In the limit as ∆t and ∆x→ 0 this becomes

cM0
∂T

∂t

(
0, t
)

= kA(0)
∂T

∂x

(
0, t
)

t ∈ [0,∞). (2.4)

The initial distribution T0 : [0, l]→ R of the temperature is given,

T (x, 0) = T0(x). (2.5)

It is well known that the initial boundary value problem (2.1)–2.5 has a unique
solution [15, 14]. It is convenient to extract the term T∞ from the solution,

τ(x, t) := T (x, t)− T∞. (2.6)

The new unknown function τ : [0, l] × [0,∞) → R is the unique solution of the
initial boundary value problem

A
∂τ

∂t
=

k

ρc

∂

∂x

(
A
∂τ

∂x

)
− hP

ρc
τ, (x, t) ∈ (0, l)× (0,∞), (2.7)

τ(l, t) = 0, t ∈ [0,∞), (2.8)

cM0
∂τ

∂t

(
0, t
)

= kA(0)
∂τ

∂x

(
0, t
)
, t ∈ [0,∞), (2.9)

τ(x, 0) = τ0(x), x ∈ [0, l]; here τ0(x) := T0(x)− T∞. (2.10)
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If we use the standard procedure of the separation of variables

τ(x, t) := e−σt u(x) (2.11)

and introduce the notation
ρc

k
σ := λ so that

cσ

k
=
λ

ρ
, (2.12)

then the function u : [0, l]→ R satisfies the Sturm-Liouville problem

(Au′)′ + λAu− hP

k
u = 0, x ∈ (0, l); (2.13)

u(l) = 0, A(0)u′(0) +
M0

ρ
λu(0) = 0. (2.14)

Although the spectral parameter λ appears in the second boundary condition, a
general theory for Sturm-Liouville problems of this type developed in [23, 9, 10, 1]
may be used. It can be verified that the conditions of the corresponding theorems
are satisfied. In particular, the eigenparameter dependent Sturm-Liouville problem
(2.13)–(2.14) has a pure discrete positive real spectrum with the only point of
accumulation at +∞. The set of eigenfunctions satisfies two orthogonality relations
for λn 6= λj : ∫ l

0

Aunujdx+
M0

ρ
un(0)uj(0) = 0,∫ l

0

(
Au′nu

′
j +

hP

k
unuj

)
dx = 0.

(2.15)

The Rayleigh quotient

λn =

∫ l
0
Au′2n dx+ h

k

∫ l
0
Pu2dx∫ l

0
Au2

ndx+M0u2
n(0)/ρ

(2.16)

immediately follows.
The unique solution of the initial boundary value problem (2.7)-(2.10) may be

represented by

τ(x, t) :=
∑
n≥1

bne
−σn tun(x) (2.17)

where

σn :=
k

ρc
λn

and

bn =
ρ
∫ l

0
Aτ0undx+M0τ0(0)un(0)

ρ
∫ l

0
Au2

ndx+M0u2
n(0)

. (2.18)

We note that if the cross-sectional area is constant, then A(x) = A and P (x) =
α
√
A where the parameter α := 2

√
π connects the perimeter and cross-sectional

area of a cylindrical bar. The mass of the bar is M = ρAl, and the exact solution
of the problem (2.7)-(2.10) is given by

τ(x, t) :=
∑
n≥1

bne
−σnt sin

((
λn −

αh

k
√
A

)1/2

(x− l)
)
.
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Here λn are the positive solutions of the transcendental equation

λnl
2 tan

(√
λn − αh

k
√
A
l
)

√
λn − αh

k
√
A
l

=
M

M0
, n = 1, 2, . . . (2.19)

3. Design problem. Necessary condition of optimality (smooth bar
surface)

The representation (2.17)-(2.18), and (2.6) for the solution shows that the tem-
perature T (x, t) approaches the level T∞ exponentially fast, and the rate of ap-
proach is determined by the first eigenvalue λ1. We now formulate the problem of
optimal design.

Design Problem. Given the first eigenvalue λ1 of the bar find the shape A(x) > 0
of the bar such that its mass

M = ρ

∫ l

0

A(x) dx (3.1)

is a minimum.
Our admissible class of designs is given by

ad =
{
r : 0 < r(x) <∞, x ∈ [0, l];

∫ l
0
Au′21 dx+ h

k

∫ l
0
P u2

1dx∫ l
0
Au2

1dx+M0u2
1(0)/ρ

= λ1

}
(3.2)

where u1(x) is the first eigenfunction.
We seek the necessary conditions of optimality. It appears that the correspond-

ing differential equation is too complex to be solved explicitly. For the purposes
of illustration, we first consider the specific case h = 0, following the derivation
originally given in [2].

Since we have already known that the spectrum is discrete, we may use standard
Calculus of Variations techniques to derive an optimality condition in the form of
a differential equation. Consider the functional

F (A) :=
∫ l

0

ρAdx+
∫ l

0

Λ1

(
(Au′)′ + λ1Au

)
dx

+ Λ2

(
A(0)u′(0) +

M0

ρ
λ1u(0)

) (3.3)

where Λj , j = 1, 2 are Lagrange multipliers, and equate the first variation to zero.
Note that while Λ1 is a function of x, the multiplier Λ2 is merely a constant. The
next few equations are quite cumbersome. To simplify them, we omit the limits of
integration since they are the same in all integrals. We find

δF =
∫
ρδAdx

+
∫

Λ1

(
(Aδu′)′ + (u′δA)′ + λ1(Aδu+ uδA)

)
+ Λ2

(
u′(0)δA(0) +A(0)δu′(0) +

M0

ρ
λ1δu(0)

)
= 0.
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The underlined terms are integrated by parts and produce the following terms

Λ1(Aδu′ + u′δA)
∣∣x=l

x=0
− Λ′1Aδu

∣∣x=l

x=0
+
∫ (

(AΛ′1)′δu− Λ′1u
′δA
)
dx (3.4)

We further consider the equality δF = 0 and equate to zero the coefficients in front
of all variations, δA(x), δu(x), etc. thus deriving the system of necessary conditions
for optimality

δA(x) : ρ− Λ′1u
′ + λ1Λ1u = 0; (3.5)

δu(x) : (AΛ′1)′ + λ1AΛ1 = 0; (3.6)

δA(0) : Λ2u
′(0)− Λ1(0)u′(0) = 0; (3.7)

δu′(0) : Λ2A(0)− Λ1(0)A(0) = 0; (3.8)

δu(0) : Λ2
M0

ρ
λ1 +A(0)Λ′1(0) = 0; (3.9)

δA(l) : Λ1(l)u′(l) = 0; (3.10)

δu(l) : Λ′1(l)A(l) = 0; (3.11)

δu′(l) : Λ1(l)A(l) = 0. (3.12)

Recall that we chose λ = λ1, which is positive (see the Rayleigh quotient (3.2)).
Hence, the boundary condition at the end of the bar x = 0 (see (2.14)) implies that
u′(0) 6= 0. The equality (3.7) then implies

Λ2 = Λ1(0). (3.13)

The very same equality appears in (3.8) since the admissible class of designs (3.2)
requires A(0) > 0. With (3.13) in mind, we conclude that the equality (3.9) is
similar to the boundary condition at the end x = 0 but for Λ(x),

A(0)Λ′1(0) +
M0

ρ
λ1Λ1(0) = 0. (3.14)

Similarly, since the admissible class of designs (3.2) requires A(l) > 0, the equalities
(3.11)–(3.12) imply the boundary condition at the end x = l of the bar,

Λ1(l) = 0 or Λ′1(l) = 0. (3.15)

Following [22, 20], we fix u(l) to be any non-zero number, since the admissible
class remains the same for any factor included in u(x). After that, the term
δu(l)Λ′1(l)A(l) vanishes and we obtain only Λ1(l) = 0.

Equations (3.6) and (2.13) now imply that the functions Λ1(x) and u(x) are
proportional. After that, the equation (3.5) leads to the following equation for the
optimal eigenfunction u(x):

u′2 − λ1u
2 − ρ = 0.

For the case where h 6= 0 and an arbitrary function A(x), we probably have no
hope to solve the corresponding differential equation analytically. For example, for
|r′| � 1, the equation has the form

u′2 +
(
− λ1 +

αh

2k
√
A(x)

)
u2 − ρ = 0. (3.16)
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4. A bar with no convective heat transfer (h = 0) - analytic
approach

As shown above, we begin with the simplified version of the optimization prob-
lem, h = 0. In this case, the equation has the form

u′2 − λ1u
2 − ρ = 0 (4.1)

and, along with the boundary condition at the end x = l of the bar (see (2.14)),
may be solved explicitly,

u(x) =
√
R sinh

√
λ1(x− l), (4.2)

for an arbitrary constant
√
R. The original Sturm–Liouville problem (2.13) may

now be considered as a differential equation for the cross-sectional area A(x),

(A
√
λ1 cosh

√
λ1(x− l))′ + λ1A sinh

√
λ1(x− l) = 0. (4.3)

After integration of this equation we arrive at

A(x) =
C

cosh2√λ1(x− l)
. (4.4)

The arbitrary constant C, as well as the connection between the parameter λ1 and
parameters of the model, may be found if we use the boundary condition at x = 0
from (2.14) and evaluate the total mass of the bar. We omit the details since they
were discussed in [2], and only give the results. The optimal form of the bar is

A(x) =
M0

√
λ1 sinh

√
λ1l cosh

√
λ1l

ρ cosh2√λ1(x− l)
(4.5)

and the connection holds that

M = M0

∫ l

0

√
λ1 sinh

√
λ1l cosh

√
λ1l

cosh2√λ1(x− l)
dx = M0 sinh2

√
λ1l. (4.6)

We note that the optimal form of the bar is the same as that found in [22, 20], see
also [3, 2]. Equation (4.6) may be solved for λ1 to produce the explicit expression
for the optimal rate of cooling for the bar with the given mass

λ1 =
(1
l

ln
(√M

M0
+
√
M

M0
+ 1

))2

. (4.7)

We introduce the dimensionless cooling rate, as

zopt :=
√
λ1 l (4.8)

and find, from the representation (4.7)

zopt :=
√
λ1l = ln

(√M

M0
+
√
M

M0
+ 1

)
. (4.9)

In particular, we may compare the dimensionless cooling rate with the similar
parameter z for the constant cross-section. The last parameter satisfies

z tan z =
M

M0
(4.10)

which is just (2.19) for h = 0. In [2], we show that the inequality

zopt > z (4.11)
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holds for any (positive) ratio M/M0 and confirm it by the numerical results. Hence,
indeed, the optimal cooling rate for the bar with the optimal cross-section A(x)
given by (4.5) is higher than for the bar with a constant cross-section.

We now describe the strategy for the remaining part of the paper. Since we
see no possibility to proceed with the equation (3.16) for the optimal eigenfunction
analytically, we use a numerical algorithm. The natural idea is to use piecewise
uniform design, as it was suggested for axial vibration problems (see [4], [17], [18]
and the references therein). To accumulate numerical experience, we first study the
optimization problem from the current section, i.e. for a bar without convective
heat transfer.

5. A bar without convective heat transfer - discretized approach

We consider the differential equation (2.13) with h = 0 subject to the boundary
conditions (2.14) and discretize this problem. Let the bar be split into n equal
pieces, xj − xj−1 = l

n := ∆, j = 1, 2, . . . , n, so that x1 = 0, xn+1 = l, and the
cross-section A(x) be piecewise constant, A(x) = Aj for x ∈ (xj , xj+1). It is more
convenient to introduce local coordinates, so that 0 < x < ∆ on each piece and
u(x) := uj(x) on x ∈ (xj , xj+1). Along with the boundary conditions, we need to
introduce the continuity conditions, i.e.

uj(∆− 0) = uj+1(0+), j = 1, 2, . . . , n− 1
duj
dx

(∆− 0) =
duj+1

dx
(+0), j = 1, 2, . . . , n− 1

(5.1)

if there are at least two pieces (n > 1). The boundary conditions (2.14) result in

A1u
′
1(0) +

M0

ρ
λu1(0) = 0, un(∆) = 0. (5.2)

Since the cross-section A(x) is piecewise constant, the differential equation (2.13)
may be solved explicitly. We find

uj(x) = Cj sin(
√
λx+ ϕj), j = 0, 1, . . . , n. (5.3)

Substituting the form uj(x) of the solution in the boundary conditions (5.1) and
(5.2) leads to a system of transcendental equations. To formulate it in a relatively
simple form, we introduce the parameters

µ :=
M0

√
λ

ρ
, ν := cot

√
λ∆. (5.4)

The system of equations has the form

A1 cotϕ1 + µ = 0; (5.5)

Cj sin(
√
λ∆ + ϕj) = Cj+1 sinϕj+1, (5.6)

AjCj
√
λ cos(

√
λ∆ + ϕj) = Aj+1Cj+1

√
λ cosϕj+1, (5.7)

√
λ∆ + ϕn = πm (5.8)

for j = 1, . . . , n− 1 with an arbitrary integer m, so that

cotϕn = −ν. (5.9)

For each j = 1, . . . , n− 1, dividing (5.7) by (5.6) yields

Aj cot(
√
λ∆ + ϕj) = Aj+1 cotϕj+1. (5.10)
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Now with the help of an angle sum identity for cotangent,

cot(θ1 + θ2) =
cot(θ1) cot(θ2)− 1
cot(θ1) + cot(θ2)

,

we may rewrite the system of equations (5.5)–(5.10) in the form

A1 cotϕ1 + µ = 0; (5.11)

Aj
ν cotϕj − 1
ν + cotϕj

= Aj+1 cotϕj+1, j = 1, . . . , n− 1; (5.12)

cotϕn = −ν. (5.13)

We can express cotϕ1 from the first of these equations, substitute into the second
equation, solve it for cotϕ2, etc. We see that the transcendental functions may
be excluded from the system (5.11)-(5.13) finally yielding the algebraic connection
between the Aj ’s.

We then evaluate the volume of the bar (with a piece-wise constant cross section)
as follows

V (A1, . . . , An) = ∆
n∑
j=1

Aj . (5.14)

Minimization of the volume may be finally performed by the standard calculus
method; the algebraic connection between the cross-sections Aj is a constraint for
this minimization problem.

We now make the observation that the system of equations given by (5.11)-(5.13)
for a bar subdivided into n pieces of equal length is a subset of the corresponding
system of equations given by (5.11)-(5.13) for a bar subdivided into (n+ 1) pieces.
Given the pairwise dependence of the variables, we can use the solution of the
optimization problem (5.14) with n pieces to reduce the optimization problem (5.14)
with (n+ 1) pieces to a problem in a single unknown.

By way of explanation, when n = 2 the optimization problem (5.14) yields
optimal A1, A2 with the ratio

A1

A2
=

ν2

ν2 + 2
. (5.15)

To see how one arrives at this value, the three relations (5.11)-(5.13) can be reduced
to the single relation

A1

A2
=
ν(νA1 − µ)
νµ+A1

and from that point one may write A2 in terms of A1 as

A2 =
A1(νµ+A1)
ν(νA1 − µ)

.

To minimize (5.14), we may instead simply minimize

A1 +A2 = A1 +
A1(νµ+A1)
ν(νA1 − µ)

.

This explicit expression for A1 has its minimum at A1 = 2µ/ν and then the corre-
sponding value of A2 is

A2 =
A1(2 + ν2)

ν2
. (5.16)

Immediately one arrives at the ratio (5.15) indicated above.
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Our observation above then leads to the conclusion that when n = 3 we will find
an optimal solution to (5.14) for which

A2

A3
=

ν2

ν2 + 2
.

With this additional relationship, we may find an expression for (5.14) in which we
have replaced A2 and A3 with functions of A1, and we may then optimize in the
single variable A1.

In a similar way, once that optimal solution is obtained in this way for n = 3,
the ratios amongst the three pieces A1, A2, A3 may then be used to reduce the
optimization problem for n = 4 to a single variable problem.

We give only a few examples and compare the results with the absolute minimum
of the volume given by (4.6).

• n = 1 We find

A1 =
µ

cot
√
λl

;
V1,min

µl
=

1
cot
√
λ∆

(5.17)

where we assume
√
λ∆ < π/2.

• n = 2 See the process outlined above, starting from (5.15) and arriving at
(5.16), which leads to

V2,min

µl
=

2
(
1 + cot2

(√
λl/2

))
cot3(

√
λl/2)

(5.18)

provided
√
λl < π.

• n = 3 Following an optimization process analogous to the above, we find

V3,min

µl
=

1
3

(
3 cot2

(√
λl/3

)
+ 4
)2

cot5
(√
λl/3

) . (5.19)

• n = 4 Again, using the same optimization process, we find

V4,min

µl
= 4

(
cot2

(√
λl/4

)
+ 2
)2( cot2

(√
λl/4

)
+ 1
)

cot7
(√
λl/4

) . (5.20)

• n =∞ It easily follows from the representation (4.6) for the optimal mass
(with no convective heat transfer and for the smooth surface bar A(x)) that

V∞,min

µl
=

sinh2
(√
λl
)

√
λl

. (5.21)

Normalization of the volume in the formulas (5.17) through (5.21), and below is
based on the fact that µl has the dimension of volume and

√
λ l is dimensionless.

It is easy to check that
V1 > V2 > V3 > V4 > V∞. (5.22)

6. A bar with convective heat transfer - discretized numerical
approach

The algorithm in Section 5, allows us to minimize the mass of the bar with the
given cooling rate and without convective heat transfer. For a general discretiza-
tion, the solution may be found exactly. In this section, we generalize that same
discretized approach to the optimization problem for a bar with convective heat
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transfer. Specifically, we consider the differential equation (2.13) with h 6= 0 sub-
ject to the boundary conditions (2.14) and then discretize this problem as we did
in Section 5. We represent the general solution to the equation (2.13) in the local
coordinates as follows

uj(x) = Cj sin(γjx+ ϕj), j = 1, . . . , n ,

where γj :=

√
λ− αh

k
√
Aj

(6.1)

The boundary conditions (5.1) and (5.2) result in the following system of equations
(we skip the derivation that is similar to one in Section 5)

A1γ1 cotϕ1 + µ
√
λ = 0;

Ajγj cot(γj∆ + ϕj) = Aj+1γj+1 cotϕj+1, j = 1, . . . , n− 1;
cotϕn = − cot γn∆.

(6.2)

Since γj is dependent on Aj (see (6.1)), we may not expect an explicit solution, as
in the case of a bar without convective heat transfer (h = 0). Yet, having a system
of equations of the same structure as in (5.11)-(5.13) we may use a numerical
approach.

The formulation of the problem which is then solved numerically proceeds as
follows:

• Starting with the first equation in (6.2), isolate cotϕ1.
• In the next equation, which includes only cotϕ1 and cotϕ2, isolate cotϕ2.
• Continuing in the natural way through each subsequent equation in (6.2),

eliminate cotϕj and leave an equation with only cotϕj+1.
• The final equation in (6.2) allows the elimination of cotϕn, and what re-

mains is a nonlinear equation only in terms of A1, . . . , An. We write this
in the form

f(A1, . . . , An ) = 0.

Finally, we utilize a Lagrange multiplier, β, and minimize an expression of the form

F (A1, . . . , An, β) =
( n∑
j=1

Aj

)
+ βf(A1, . . . , An) (6.3)

by finding roots of ∂F/∂Aj = 0 and ∂F/∂β = 0. Compare (6.3) with (5.14).
All of the algebraic manipulation and computation of partial derivatives is han-

dled algorithmically through the computer algebra system. The computer algebra
system also automatically generates expressions for the partial derivatives, which
then make up the function whose roots are found with a nonlinear solver based on
the Newton-Raphson method.

The solutions found are indeed minimizers of the F above and the corresponding
values for A1, . . . , An are roots of f .

7. Discussion and comparison of cooling properties for h = 0 and h > 0

For our numerical experiments we chose the following physical and material
parameters. We consider a steel fin of length l = 0.02m. The fin is assumed to
have ρ = 7800 kg/m3 and thermal conductivity of k = 40.0W/(m · K). For the
convective heat transfer coefficient h we considered a wide range of values, from
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h = 0 through h = 24. Typical values of h for natural convection (density driven
rather than forced by a fan) are 6− 30W/(m2 ·K) (see [13, p. 17]).

We first summarize the numerical results for h = 0 within the context of the
prior results in [2] where it is assumed that h = 0 and λ is maximized subject to
the given mass M . The dimensionless product z =

√
λl is a function of the ratio

M/M0 in both the constant area case (4.10) and the optimal case (4.7). In [2] the
equation (4.10) was solved numerically.

Numerical results in [2] and in this work show that the advantage of the optimum
cross-section over the constant cross-section is small and becomes less so as the base
mass, M0, increases. This is physically reasonable. Indeed, recall that convective
heat transfer from the side of the area has been neglected. Hence addition of the
extended surface does nothing but move the boundary condition at x = l that
distance from M0. Furthermore, as M becomes small compared to M0, its very
presence becomes negligible and hence its shape does not matter.

Though in agreement with the general results of Section 4, zopt ≥ z, the effect is
not large because of the physical reasons explained above. Moreover, for M/M0 →
0 the optimum and constant area results merge.

We now discuss the numerical results for h ≥ 0 and a given value of λ chosen
according to (4.7) with M = 0.2M0. We use the numerical approach of Section
6 to minimize the mass of the fin. A range of values for n is considered here, up
to n = 5. For a larger value, say n = 10, the nonlinear system of 11 equations
in 11 unknowns can be generated procedurally by a computer algebra system and
imported into a numerical suite such as Matlab. However, just the representations
of these equations (in the millions of characters for n = 10) taxes the system to
the point of impracticality. An alternative would be to code the program in a
compiled language (like C) and then apply a similar Newton-type solver, but given
the guidance in [4], where an engineering problem with a similar discrete structure
was considered, we anticipate that the relative gains made would be quite small, as
the solution for n pieces is nearly optimal even for n small.

For the quantities Aj found exactly for the special case h = 0 in Section 5 and
the corresponding quantities found numerically for h > 0 in Section 6, we have
computed the shape of the corresponding bar. Specifically, for n pieces, with n
from 2 to 5, and for h = 0, 0.01, 10, and 24, the results are displayed in Figure
2. The Aj visualized in this figure arise from nondimensionalized versions of the
corresponding equations which result in 0 ≤ Aj ≤ 1. Consequently, we consider
the shape of the resulting bar to be the important feature, not the specific values
of the cross-sectional areas.

As we observe, the cross-sectional area A(x) is increasing slightly as we move to-
ward the tip of the extended surface. This is physically reasonable for the transient
problem. Indeed, as we proceed in this direction (away from the heated mass) with
h > 0, heat is convected away from the extended surface. This lowers the tempera-
ture within the material as x increases. Hence the temperature difference between
the material and the surrounding ambient medium decreases, and convective heat
flow to the surrounding medium would decrease for a constant surface area (see
(1.1)). However, if the surface area, As, increases the reduction in the temperature
difference may be offset by increasing As. A uniform heat flow along the external
surface is desirable; our results show this.
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Figure 2. Shapes of bars showing influence of the number of seg-
ments n and the parameter h.

We also observe that the results presented herein were for a range of values of h.
Over this range the areas computed changed little. Hence the trends observed are
essentially independent of this parameter. However, for the refined case n = 5, we
can compare the masses of the fins for the values h = 0.0, 0.01, 10, and 24W/(m2·K)
to the fin with homogeneous cross-section. Table 1 shows the computed masses of
these fins and the relative decrease in mass for a given value of h.

Table 1. Relative improvements in mass for a range of values of h

h Mass (kg) Mass (kg) Relative
W/(m2 ·K) homogeneous piecewise n = 5 decrease

0.00 3.12× 10−3 3.1157× 10−3 0.14%
0.01 3.12× 10−3 3.1156× 10−3 0.14%
10.0 3.12× 10−3 3.0732× 10−3 1.50%
24.0 3.12× 10−3 3.0107× 10−3 3.50%

However in usual engineering practice, see [16], extended surfaces are not built
this way for the following reasons. It would be structurally undesirable to have the
mass increase away from the body. This would result in the thinnest part of the
surface being adjacent to the larger body. The resulting rapid transition would be
an area most likely to break if subjected to an external load. Furthermore the flow
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area between adjacent extended surfaces would decrease in the direction of the tip.
This would restrict the flow of the external medium towards the tip and thus reduce
the ability of the medium to carry away heat. As further noted by [16], (see p. 79),
since the heat transfer rate Q̇ conducted through the extended surface decreases
in the direction of flow because of heat loss from the surface, reducing the cross-
sectional area in this direction tends to equalize the heat flux (heat/cross-sectional
area) in the direction of flow, a desirable result.

8. Conclusion

We have found the optimal distribution of the cross-sectional area of a bar in the
form of a surface of revolution for a given heat transfer rate, such that the mass of
the bar is a minimum. We use a variational principle in conjunction with numerical
analysis, which is based on a piece–wise approximation of the surface. It may be
expected by the Duality Principle that the very same form of the bar produces the
maximum cooling rate if the total mass is given. For h = 0, the optimal distribution
coincides with one found by Taylor [19] and Turner [22] for the design of a bar having
a maximum lowest eigenfrequency with the given mass. The influence of convection
on the optimal form of the bar is studied. We emphasize that no analytic approach
seems to be available in this case. In particular, the comparison of the optimal
design with the constant cross-section bar is studied.

Numerical experiments demonstrate that for a range of h values the areas com-
puted change very little. Moreover, the problem is generally not sensitive to the
number of segments in the bar. If one assumes a bar with constant cross-section
(i.e. n = 1 and the area A from (2.19)) and a range of h values, the new designs
we find in Section 6, say for n = 5, differ in mass by less than 3.5%.

In practical engineering the design of the extended surfaces is based on a steady-
state analysis. However, the current work has opened our way forward to the
corresponding analysis for the steady-state optimization problem. Our approach to
that problem will be the focus of a future work.
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