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S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR
ABSTRACT NEUTRAL DIFFERENTIAL EQUATIONS

MICHELLE PIERRI, DONAL O’REGAN

Abstract. In this article we study the existence of S-asymptotically ω-pe-

riodic solutions for abstract neutral functional differential equations recently,
introduced in the literature. An application involving a partial neutral differ-

ential equation is presented.

1. introduction

In this work we study the existence of S-asymptotically ω-periodic solutions for
a class of abstract neutral differential equations of the form

u′(t) = Au(t) + f(t, ut, u′t), t ∈ [0,∞), (1.1)

u0 = ϕ ∈ B, (1.2)

where A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup of
bounded linear operators (T (t))t≥0 defined on a Banach space (X, ‖ ·‖), the history
ut belongs to an abstract Banach space (B, ‖ · ‖B) defined axiomatically, u′t denotes
the derivative at t of the function s→ us and f(·) is a suitable function.

The neutral system (1.1)–(1.2) was introduced recently by Hernández and O’
Regan [21]. As pointed out in [21], the study of the existence of solutions for this
class of problems via semigroup methods and fixed point techniques is highly non-
trivial since the temporal derivative of the solution appears in the integral equation
used to define the concept of mild solution of (1.1)–(1.2), see Definition 2.4. As a
consequence, it is necessary to work on spaces of differentiable functions which is a
complex problem under the semigroup framework.

To the best of our knowledge, the paper [21] is the first and only work treating
neutral problems described in the abstract form (1.1)–(1.2). On the current state
of the theory of abstract neutral differential equations we cite [1, 7, 10, 11, 15, 16,
17, 18, 19, 20, 22, 23, 33] and the references therein.

The concept of S-asymptotically ω-periodic was introduced recently in the lit-
erature, see [13, 14]. We note that a continuous function u(·) defined on [0,∞) is
said to be S-asymptotically periodic if there exists ω ∈ R such that limt→∞[f(t+
ω)− f(t)] = 0.
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For qualitative properties of S-asymptotically ω-periodic functions, we cite [13,
28, 14]. Concerning the problem of the existence of S-asymptotically ω-periodic
solutions for differential equations, we cite [8, 12, 31, 32, 34] for ordinary differential
equations on finite dimensional spaces and [4, 5, 6, 13, 14] for ordinary differential
equations defined on abstract Banach spaces.

The abstract problem (1.1)–(1.2) arises, for example, in the theory of heat con-
duction in fading memory material. In the classical theory of heat conduction, it
is assumed that the internal energy and the heat flux depends linearly on the tem-
perature u(·) and on its gradient ∇u(·). Under these conditions, the classical heat
equation describes sufficiently well the evolution of the temperature in different
types of materials. However, this description is not satisfactory in materials with
fading memory. In the theory developed in [9, 29], the internal energy and the heat
flux are described as functionals of u and ux. The next system, see [2, 3, 25], has
been frequently used to describe these phenomena,

d

dt
(u(t, x) +

∫ t

−∞
k1(t− s)u(s, x)ds) = c∆u(t, x) +

∫ t

−∞
k2(t− s)∆u(s, x)ds,

u(t, x) = 0, x ∈ ∂Ω.
(1.3)

In this system, Ω ⊂ Rn is open, bounded and has smooth boundary, (t, x) ∈
[0,∞)× Ω, u(t, x) denotes the temperature in x at time t, c is a physical constant
and ki : R → R, i = 1, 2, are the internal energy and the heat flux relaxation
respectively. If we assume that k1 = γ1 + γ2 and the solution u(·) is known on
(−∞, 0], we can study the above system via the initial-value problem

d

dt
(u(t, x) +

∫ t

−∞
γ1(t− s)u(s, x)ds)

= c∆u(t, x) +
∫ t

−∞
k2(t− s)∆u(s, x)ds−

∫ t

−∞
γ2(t− s)u′(s, x)ds,

u(s, x) = ϕ(s, x), s ≥ 0, x ∈ Ω,

(1.4)

which can be represented in the abstract form (1.1)–(1.2). For additional appli-
cations and examples on neutral differential equations we cite our recent papers
[18, 21] and the references therein.

Next, we include some notations, definitions and technicalities. Let (Z, ‖ · ‖Z)
and (W, ‖ · ‖W ) be Banach spaces. In this paper, L(Z,W ) denotes the space of
bounded linear operators from Z into W endowed with the norm of operators
denoted ‖ · ‖L(Z,W ) and we write L(Z) and ‖ · ‖L(Z) when Z = W . We use the
notation Z ↪→W to indicate that Z is continuously included in W .

Let I ⊂ R. As usual, C(I;Z) is the space formed by all the bounded contin-
uous functions from I into Z endowed with the sup-norm denoted by ‖ · ‖C(I;Z)

and C1(I;Z) the space formed by all the functions u ∈ C(I;Z) such that u′ ∈
C(I;Z) endowed with the norm ‖u‖C1(I;Z) = ‖u‖C(I;Z) + ‖u′‖C(I;Z). In addi-
tion, Cγ([0,∞);Z) (with γ ∈ (0, 1)) is the space formed by all the functions
ξ ∈ C([0,∞);Z) such that

[ξ]Cγ([0,∞);Z) = sup
t,s∈[0,∞),t6=s

‖ξ(s)− ξ(t)‖Z
| t− s |γ
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is finite, provided with the norm ‖ξ‖Cγ([0,∞);Z) = ‖ξ‖
C([0,∞);Z) + [ξ]Cγ([0,∞);Z).

The notation C1+γ([0,∞);Z) is used for the space of all the differentiable func-
tions ξ ∈ Cγ([0,∞);Z) such that ξ′ ∈ Cγ([0,∞);Z) endowed with the norm
‖ξ‖C1+γ([0,∞);Z) = ‖ξ‖Cγ([0,∞);Z) + ‖ξ′‖Cγ([0,∞);Z).

From [13] we note the following concept.

Definition 1.1. A function f ∈ C([0,∞), Z) is said to be S-asymptotically periodic
if there exists ω ∈ R such that limt→∞[f(t + ω) − f(t)] = 0. In this case, we say
that ω is an asymptotic period of f(·) and that f(·) is S-asymptotically ω-periodic.

Here SAPω(Z) denotes the space formed by the Z-valued S-asymptotically ω-
periodic functions provided with the norm ‖ · ‖C([0,∞);Z).

In this article, A : D(A) ⊂ X → X is the generator of an uniformly stable
analytic semigroup of bounded linear operators (T (t))t≥0 on X and γ, Ci, i ∈ N,
are positive constants such that

‖AiT (t)‖L(X) ≤
Cie
−γt

ti

for all t > 0 and each i ∈ N. For β > 0, we represent by Xβ the domain of
the fractional power (−A)β of −A endowed with the norm ‖x‖β = ‖(−A)βx‖. In
addition, for β > 0 we assume that Cβ > 0 is such that

‖AT (t)‖L(Xβ ,X) ≤
Cβe

−γt

tβ
, ∀t > 0.

The notation DA(η,∞), η ∈ (0, 1), stands for the space

DA(η,∞) = {x ∈ X : [x]η,∞ = sup
t∈(0,1)

‖t1−ηAT (t)x‖ <∞},

with the norm ‖x‖η,∞ = [x]η,∞+ ‖x‖ and we assume that for all k ∈ N∪ {0} there
exits a constant Ck,η such that

‖AkT (t)‖L(DA(η,∞),X) ≤
Ck,ηe

−γt

t1−η

for all t > 0. For additional details on analytic semigroups and interpolation spaces
we cite [26].

In this article, (B, ‖ · ‖B) is a Banach space formed by functions defined from a
connected interval {0} ⊂ J ⊂ (−∞, 0] into X, satisfying the following conditions.

(A1) If x : (J + {σ}) ∪ [σ, σ + b) → X, b > 0, σ ∈ R, is continuous on [σ, σ + b)
and xσ ∈ B, then for every t ∈ [σ, σ + b) the following conditions hold:

(i) the function s→ xs belongs to C([σ, σ + b),B),
(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖B, where
H > 0 is a constant; K,M ∈ C([0,∞); R+) and H,K(·),M(·) are
independent of x(·).

(iv) If (ψn)n∈N is a sequence in C(J,X) ∪ B and ψn → ψ uniformly on
compact subsets of J , then ψ ∈ B and ‖ψn − ψ‖B → 0 as n→∞.

Remark 1.2. For β > 0, we represent by Bβ the space Bβ = {(−A)−βψ : ψ ∈ B}
endowed with the norm ‖ψ‖Bβ = ‖(−A)βψ‖Bβ . We note that Bβ verifies the axiom
(A1) with Xβ in place X.

Remark 1.3. In the remainder of this paper, to simplify, we assume that K > 0
is a constant such that max{K(t),M(t)} ≤ K for all t ≥ 0.
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From from [21] we note the following result. In this result, Pu is the function
defined by Pu(t) = ut. We will use this notation for the remainder of this article.

Lemma 1.4. If u ∈ C1(J ∪ [0, b];X), then Pu ∈ C1([0, b];B) and d
dtPu(t) = P du

dt
(t)

for all t ∈ [0, b].

This article has three sections. In the next section we study the existence of
S-asymptotically ω-periodic strict solutions for the problem (1.1)–(1.2). In the last
section, an application involving a partial neutral differential equation is presented.

2. Existence results

In this section we study the existence of S-asymptotically ω-periodic strict solu-
tion for the abstract neutral problem (1.1)–(1.2). To prove our results, we consider
the following conditions.

(H1) There are α ∈ (0, 1), β ∈ (0, 1] and functions f1 ∈ Cα([0,∞);L(Bβ , X)),
f2 ∈ Cα([0,∞);L(B, X)) such that f(t, ψ1, ψ2) = f1(t, ψ1) + f2(t, ψ2) for
all t ≥ 0, ψ1 ∈ Bβ and ψ2 ∈ B.

(H2) There is a Banach space (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖), a integrable function
H ∈ L1([0,∞); R+), a continuous function Lf ∈ C([0,∞); R+) and ω > 0
such that f ∈ C([0,∞)× Bβ × B;Y ), ‖AT (s)‖L(Y,X) ≤ H(s) for all s > 0,
and

‖f(t, ψ1, ζ1)− f(t, ψ2, ζ2)‖Y ≤ Lf (t)(‖ψ1 − ψ2‖Bβ + ‖ζ1 − ζ2‖B), (2.1)

for all ψi ∈ Bβ , ζi ∈ B, i = 1, 2, and every t ≥ 0.
(H3) There is a Banach space (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖), such that the function f(·)

belongs to C([0,∞) × Bβ × B;Y ) and f(·) is uniformly S-asymptotically
ω-periodic on bounded sets; that is,

lim
t→∞

sup
‖ψ‖Bβ≤r,‖ξ‖B≤r

‖f(t+ ω, ψ, ξ)− f(t, ψ, ξ)‖Y = 0.

To prove our results, is convenient to include some comments on the problem

u′(t) = Au(t) + ξ(t), t ∈ I, (2.2)

u(0) = x ∈ X, (2.3)

with I = [0, a] or I = [0,∞) and ξ ∈ L1(I;X). We note that the function u : I → X

given by u(t) = T (t)x+
∫ t

0
T (t− s)ξ(s)ds is called a mild solution of (2.2)-(2.3) on

I and that a function v ∈ C(I;X) is said to be a strict solution (2.2)-(2.3) on I if
v ∈ C1(I;X) ∩ C(I;X1) and v(·) satisfies (2.2)-(2.3).

The proof of Proposition 2.1 is similar to the proof of [26, Theorem 4.3.1]. We
include some details of the proof for completeness.

Proposition 2.1. Assume ξ ∈ Cα([0,∞);X), x ∈ X1 and Ax+ ξ(0) ∈ DA(α,∞).
If u(·) is the mild solution of (2.2)-(2.3) on [0,∞), then u(·) is a strict solution,
u ∈ Cα([0,∞);X1) and

u′(t) = AT (t)x+
∫ t

0

AT (t− s)(ξ(s)− ξ(t))ds+ T (t)ξ(t), ∀t ≥ 0. (2.4)

Moreover,

[u]Cα([0,∞);X1) ≤
C1,α

α
‖Ax+ ξ(0)‖α,∞ + Λ‖ξ‖Cα([0,∞);X), (2.5)
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[u′]Cα([0,∞);X) ≤
C1,α

α
‖Ax+ ξ(0)‖α,∞ + (Λ + 1)‖ξ‖Cα([0,∞);X), (2.6)

‖u‖C([0,∞);X1) ≤ C0‖Ax‖+ Λ1[ξ]Cα([0,∞);X) + Λ2‖ξ‖C([0,∞);X), (2.7)

‖u′‖C([0,∞);X) ≤ C0‖Ax‖+ Λ1[ξ]Cα([0,∞);X) + (Λ2 + 1)‖ξ‖C([0,∞);X), (2.8)

where Λ = (2C1
α + 3C0 + 1 + C2

α(1−α) ), Λ1 = C1( 1
γ + 1

α ) and Λ2 = (C0 + 1).

Proof. Let T > 0. From [26, Theorem 4.3.1] we know that u|[0,T ]
is a strict solution

of the problem (2.2)-(2.3) on [0, T ], u ∈ Cα([0, T ]);X1) and that the representation
(2.4) is valid on [0, T ]. Moreover, a review of the proof of [26, Theorem 4.3.1] permit
us to assert that

[u]Cα([0,T ];X1) ≤
C1,α

α
‖Ax+ ξ(0)‖α,∞ + (

2C1

α
+ 3C0 + 1 +

C2

α(1− α)
)[ξ]Cα([0,T ];X).

From the above, we infer that u(·) is a strict solution of the problem (2.2)-(2.3)
on [0,∞), the representation (2.4) is satisfied on [0,∞) and (2.5) is valid with
Λ = (2C1

α + 3C0 + 1 + C2
α(1−α) ). In addition, from the representation

Au(t) = T (t)Ax+
∫ t

0

AT (t− s)(ξ(s)− ξ(t))ds+ (T (t)− I)ξ(t),

it is easy to see that

‖u‖C([0,∞);X1) ≤ C0‖Ax‖+ C1(
1
γ

+
1
α

)[ξ]Cα([0,∞);X) + (C0 + 1)‖ξ‖C([0,∞);X),

which establish (2.7). Finally, from (2.5) and (2.7), and the fact that u(·) is a strict
solution we obtain (2.6) and (2.8). This completes the proof. �

For completeness, from [21] we quote the followings result.

Lemma 2.2. Assume the condition (H2) is satisfied, x ∈ X1 and ξ ∈ C([0, b];Y ).
Then, the mild solution w(·) of (2.2)-(2.3) is a strict solution and

w′(t) = T (t)Ax+
∫ t

0

AT (t− s)ξ(s)ds+ ξ(t), ∀t ∈ I.

Remark 2.3. In the remainder of this paper, for u ∈ C(J ∪ [0,∞);Xβ), v ∈
C(J ∪ [0,∞);X) with u0 ∈ Bβ and v0 ∈ B, we use the notations Pv, Pu and fu,v
for the functions Pv : [0,∞) → B, Pu : [0,∞) → Bβ and fu,v : [0,∞) → X given
by Pv(t) = vt, Pu(t) = ut and fu,v(t) = f(t, ut, vt).

By considering the above remarks, we adopt the following concepts of solution.

Definition 2.4. A function u : J ∪ [0,∞) → X is called a mild solution of the
abstract problem (1.1)–(1.2) if u0 = ϕ, Pu ∈ C1([0,∞);B) ∩ C([0,∞);Bβ) and

u(t) = T (t)ϕ(0) +
∫ t

0

T (t− s)fu,u′(s)ds, ∀t ∈ [0,∞).

Definition 2.5. A function u : J ∪ [0,∞) → X is said to be a strict solution
of (1.1)–(1.2) if Pu ∈ C1([0,∞);B) ∩ C([0,∞);Bβ), u ∈ C([0,∞);X1) and u(·)
satisfies (1.1)–(1.2).

Next, we include some results on S-asymptotically ω-periodic functions. In the
next results, (Z, ‖ · ‖Z) is a Banach space.
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Lemma 2.6. Assume (Z, ‖ · ‖Z) ↪→ (X, ‖ · ‖), u ∈ C(J ∪ [0,∞);Z) and u0 ∈ B. If
u
∣∣
[0,∞)

∈ SAPω(Z) and M(t) → 0 as t → ∞, then Pu ∈ SAPω(B). Similarly, if

(Z, ‖ · ‖Z) ↪→ (Xβ , ‖ · ‖), w ∈ C(J ∪ [0,∞);Z), w0 ∈ Bβ, w
∣∣
[0,∞)

∈ SAPω(Z) and
M(t)→ 0 as t→∞, then Pw ∈ SAPω(Bβ).

Proof. We only prove the assertion involving the space X. Let iZ,X : Z → X be
the inclusion map from Z into X. For 1 > ε > 0 there exists Lε > 0 such that
‖u(t+ ω)− u(t)‖Z ≤ ε and M(t) ≤ ε for all t ≥ Lε. Then, for t ≥ 2Lε we obtain

‖Pu(t+ ω)− Pu(t)‖B
= ‖ut+ω − ut‖B
≤M(t− Lε)‖uLε‖B +K‖iZ,X‖L(Z,X) sup

s≥Lε
‖u(s+ ω)− u(s)‖Z

≤M(t− Lε)
(
M(Lε)‖u0‖B +K‖iZ,X‖L(Z,X)‖u‖C([0,∞);Z)

)
+K‖iZ,X‖L(Z,X)ε

≤ ε
(
ε‖u0‖B +K‖iZ,X‖L(Z,X)‖u‖C([0,∞);Z) +K‖iZ,X‖L(Z,X)

)
,

which implies that limt→∞ ‖Pu(s+ ω)− Pu(s)‖B = 0 and Pu ∈ SAPω(B). �

Lemma 2.7. Assume Q ∈ C([0,∞);L(Z,X))∩L1([0,∞);L(Z,X)), v ∈ SAPω(Z)
and let u : [0,∞) → X be the function given by u(t) =

∫ t
0
Q(t − s)v(s)ds. Then

u ∈ SAPω(X).

Proof. From Bochner’s criteria for integrable functions and the estimate

‖u(t)‖ ≤
∫ t

0

‖Q(t− s)‖L(Z,X)‖v(s)‖Zds ≤ ‖Q‖L1([0,∞),L(Z,X))‖v‖C([0,∞);Z),

it follows that v ∈ C([0,∞);X). On the other hand, for ε > 0 given there is Lε > 0
such that ‖v(s+ω)−v(s)‖Z ≤ ε and ‖Q‖L1([Lε,∞),L(Z,X)) ≤ ε for all s ≥ Lε. Then,
for t ≥ 2Lε we obtain

‖u(t+ ω)− u(t)‖

≤
∫ ω

0

‖Q(t+ ω − s)‖L(Z,X)‖v(s)‖Zds

+
∫ t

0

‖Q(t− s)‖L(Z,X)‖v(s+ ω)− v(s)‖Zds

≤ ‖v‖C([0,∞);Z)

∫ t+ω

t

‖Q(s)‖L(Z,X)ds

+ 2‖v‖C([0,∞);Z)

∫ Lε

0

‖Q(t− s)‖L(Z,X)ds+ ε

∫ t

Lε

‖Q(t− s)‖L(Z,X)ds

≤ ‖v‖C([0,∞);Z)‖Q‖L1([Lε,∞);L(Z,X)) + 2‖v‖C([0,∞);Z)‖Q‖L1([Lε,∞);L(Z,X))

+ ε‖Q‖L1([0,∞);L(Z,X))

≤ ε(3‖v‖C([0,∞);Z) + ‖Q‖L1([0,∞);L(Z,X))),

which implies that limt→∞[u(s+ ω)− u(s)] = 0 and u ∈ SAPω(X). �

In addition to the above, from [13] we note (without proof) the following corol-
lary.
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Corollary 2.8 ([13, Corollary 3.2]). Let w : [0,∞) → Z be a S-asymptotically ω-
periodic function and assume that w′ is bounded and uniformly continuous. Then
w′ is S-asymptotically ω-periodic.

We include now some Lemmas on α-Hölder functions. We omit the proofs.

Lemma 2.9. Assume that u ∈ Cα([0, b];X), ψ ∈ B ∩ Cα(J ;X) and u(0) = ψ(0).
Let v be the function v : J ∪ [0, b] → X given by v = ψ on J and v = u on
[0, b]. Then v ∈ Cα(J ∪ [0, b];X) and [v]Cα(J∪[0,b];X) ≤ [ψ]Cα(J;X) + [u]Cα([0,b];X).
Moreover, the assertion is valid replacing X by Xβ.

Lemma 2.10. Assume that the condition (H1) is satisfied, z ∈ Cα([0,∞);Bβ) and
w ∈ Cα([0,∞);B). Then f1(·, w(·)) ∈ Cα([0,∞);X), f2(·, w(·)) ∈ Cα([0,∞);X)
and

[f1(·, z)]Cα([0,∞);X) ≤ [f1]Cα([0,∞);L(Bβ ,X))‖z‖C([0,∞);Bβ)

+ ‖f1‖C([0,∞);L(Bβ ,X))[z]Cα([0,∞);Bβ),

[f2(·, w)]Cα([0,∞);X) ≤ [f2]Cα([0,∞);L(B,X))‖w‖C([0,∞);B)

+ ‖f2‖C([0,∞);L(B,X))[w]Cα([0,∞);B).

We can establish now our first result on the existence of an S-asymptotically
ω-periodic strict solution for (1.1)–(1.2). Next, Λ,Λ1 and Λ2 are the constant in
Proposition 2.1 and ϕ̃ : J ∪ [0,∞) → X is the function given by ϕ̃(t) = ϕ(t) for
t ∈ J and ϕ̃(t) = T (t)ϕ(0) for t ≥ 0.

Theorem 2.11. Assume (H1) is satisfied, C(J ;X) ↪→ B, M(t) → 0 as t → ∞,
f1 ∈ SAPω(L(Bβ , X)) and f2 ∈ SAPω(L(B, X)). Suppose that the function ϕ(·)
belongs to C1+α(J ;X) ∩ Cα(J ;Xβ), ϕ(0) ∈ X1, d−ϕ

dt (0) = Aϕ(0) ∈ DA(α,∞),
f(0, ϕ, ϕ′) = 0, Pϕ̃ ∈ C1+α([0,∞);B) ∩ Cα([0,∞);Bβ) and

Ξ = K
[
(K + 1)(AΛ + 1) +A(Λ1 + Λ2) + 1

]
Θ(f1, f2) < 1,

where
Θ(f1, f2) = ‖f1‖Cα([0,∞);L(Bβ ,X)) + ‖f2‖Cα([0,∞);L(B,X))

and A = ‖A−1‖ + ‖(−A)β−1‖ + 1. Then there exists a unique S-asymptotically
ω-periodic strict solution u ∈ C1+α(J ∪ R+;X) ∩ C(J ∪ R+;Xβ) of (1.1)–(1.2).

Proof. Let Y = C1+α(J ∪R+;X) ∩Cα(J ∪R+;Xβ) endowed with the norm ‖ · ‖Y
given by ‖ · ‖Y = ‖ · ‖C1+α(J∪R+;X) + ‖ · ‖C(J∪R+;Xβ) and S be the space

S = {u ∈ Y : u
∣∣
[0,∞)

∈ SAPω(X), Pu ∈ C1+α([0,∞);B) ∩ Cα([0,∞);Bβ)}, (2.9)

endowed with the metric

Φ(u, v) = ‖Pu − Pv‖C1+α([0,∞);B) + ‖Pu − Pv‖Cα([0,∞);Bβ).

Let Γ be the map Γ : S→ S given by (Γu)0 = ϕ and

Γu(t) = T (t)ϕ(0) +
∫ t

0

T (t− s)fu,u′(s)ds, t ≥ 0, (2.10)

where fu,u′ : [0,∞)→ X is the function defined by fu,u′(t) = f(t, ut, u′t).
In the remainder of this proof we show that Γ is a contraction on S. To this

end, next we assume that u, v ∈ S.
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Step 1. Γu|[0,∞)
∈ SAPω(X) ∩ Cα(R+;X1) and Γu ∈ C1+α(J ∪ R+;X) ∩ Cα(J ∪

R+;Xβ).
From the definition of Y we have that u′(·) is uniformly continuous on [0,∞),

which implies via Corollary 2.8 that u′ ∈ SAPω(X). Moreover, from Lemma 2.6
and Lemma 2.10 we infer that f1 ◦ Pu and f2 ◦ P ′u belong to SAPω(X) and from
Lemma 2.7 (with Q(s) = T (s) and Z = X) we obtain that Γu|[0,∞)

∈ SAPω(X).
On the other hand, from Lemma 2.10 we have that fu,u′ ∈ Cα([0,∞);X) which

implies via Proposition 2.1 that Γu|[0,∞)
∈ Cα([0,∞);X1) ∩ C1+α([0,∞);X) ∩

Cα([0,∞);Xβ) and

[Γu]Cα([0,∞);X1) ≤
C1,α

α
‖Aϕ(0)‖α,∞ + Λ[fu,u′ ]Cα([0,∞);X), (2.11)

‖Γu‖C([0,∞);X1) ≤ C0‖Aϕ(0)‖+ (Λ1 + Λ2)‖fu,u′‖Cα([0,∞);X), (2.12)

[(Γu)′]Cα([0,∞);X) ≤
C1,α

α
‖Ax‖α,∞ + (Λ + 1)[fu,u′ ]Cα([0,∞);X), (2.13)

‖(Γu)′‖C([0,∞);X) ≤ C0‖Aϕ(0)‖+ (Λ1 + Λ2 + 1)‖fu,u′‖Cα([0,∞);X), (2.14)

‖Γu‖C([0,∞);Xβ) ≤ ‖(−A)β−1‖Γu‖C([0,∞);X1), (2.15)

[Γu]Cα([0,∞);Xβ) ≤ ‖(−A)β−1‖[Γu]Cα([0,∞);X1). (2.16)

Moreover, by noting that (Γu)′(0) = Aϕ(0)+fu,u′(0) = Aϕ(0) = ϕ′(0) and Γu(0) =
ϕ(0), from the properties of the function ϕ̃ and Lemma 2.9 we infer that Γu ∈
C1+α(J ∪ [0, b];X) ∩ Cα(J ∪ [0, b];Xβ), which completes the proof of this step.

Step 2. PΓu ∈ C1+α([0,∞);B) and

[PΓu − PΓv]Cα([0,b];B) ≤ K(K + 1)‖A−1‖Λ[fu,u′ − fv,v′ ]Cα([0,∞);X), (2.17)

‖PΓu − PΓv‖C([0,b];B) ≤ K‖A−1‖(Λ1 + Λ2)‖fu,u′ − fv,v′‖Cα([0,∞);X), (2.18)

[(PΓu)′ − (PΓv)′]Cα([0,b];B) ≤ K(K + 1)(Λ + 1)[fu,u′ − fv,v′ ]Cα([0,∞);X), (2.19)

‖(PΓu)′ − (PΓv)′‖C([0,b];B) ≤ K(Λ1 + Λ2 + 1)‖fu,u′ − fv,v′‖Cα([0,∞);X)). (2.20)

From the properties of the space B it is easy to see that PΓu ∈ C([0,∞);B). To
show that PΓu ∈ Cα([0,∞);B) is convenient to estimate ‖PΓu(t)− ϕ‖B. By using
the properties of Pϕ̃, for t ≥ 0 we obtain

‖PΓu(t)− ϕ‖B
≤ ‖PΓu(t)− Peϕ(t)‖B + ‖Peϕ(t)− ϕ‖B
≤ K sup

s∈[0,t]

‖Γu(s)− ϕ̃(0)‖+K sup
s∈[0,t]

‖ϕ̃(0)− ϕ̃(s)‖+ tα[Peϕ]Cα([0,∞);B)

≤ tαK[Γu]Cα([0,∞);X) + tα(KH + 1)[Peϕ]Cα([0,∞);B).

From this estimate, for t > 0 and h > 0, we see that

‖PΓu(t+ h)− PΓu(t)‖B
≤ K‖PΓu(h)− ϕ‖B +K sup

s∈[0,t]

‖Γu(s+ h)− Γu(s)‖

≤ K2hα[Γu]Cα([0,∞);X) + hαK(KH + 1)[Peϕ]Cα([0,∞);B) +Khα[Γu]Cα([0,∞);X),

which implies that

[PΓu]Cα([0,∞);B) ≤ K(K + 1)[Γu]Cα([0,∞);X) +K(KH + 1)[Peϕ]Cα([0,∞);B), (2.21)
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and PΓu ∈ Cα([0,∞);B) since [Γu]Cα([0,∞);X) ≤ ‖A−1‖[Γu]Cα([0,∞);X1) < ∞.
Moreover, by noting that Γu−Γv is the mild solution of (2.2)-(2.3) with x = 0 and
ξ = fu,u′ −fv,v′ , from the above remarks, the estimative (2.21) and Proposition 2.1
we infer

[PΓu − PΓv]Cα([0,∞);B) ≤ K(K + 1)[Γu− Γv]Cα([0,∞);X)

≤ K(K + 1)‖A−1‖[Γu− Γv]Cα([0,∞);X1)

≤ K(K + 1)‖A−1‖Λ[fu,u′ − fv,v′ ]Cα([0,∞);X),

which establish the estimate (2.17).
Proceeding as above, we also can prove that (PΓu)′ ∈ Cα([0,∞);B). Since ϕ′ ∈ B

and (Γu)′0 = ϕ′ (note that (Γu)′(0) = Aϕ(0) + fu,u′(0) = Aϕ(0) = ϕ′(0)), from the
properties of B and the estimate (2.14) we obtain that (PΓu)′ ∈ C([0,∞);B). In
addition, for t ≥ 0 it is easy to see that

‖P(Γu)′(t)− ϕ′‖B ≤ tαK[(Γu)′]Cα([0,∞);X) + tα(KH + 1)[Peϕ′ ]Cα([0,∞);B). (2.22)

Using this estimate, we have that

‖P(Γu)′(t+ h)− P(Γu)′(t)‖B
≤ K‖P(Γu)′(h)− ϕ′‖B +K sup

s∈[0,t]

‖(Γu)′(s+ h)− (Γu)′(s)‖

≤ K(hαK[(Γu)′]Cα([0,∞);X) + hα(KH + 1)[Peϕ′ ]Cα([0,∞);B))

+Khα[(Γu)′]Cα([0,∞);X)

≤ hαK(K + 1)[(Γu)′]Cα([0,∞);X) + hαK(KH + 1)[Peϕ′ ]Cα([0,∞);B)),

which implies

[P(Γu)′ ]Cα([0,∞);B) ≤ K(K+1)[(Γu)′]Cα([0,∞);X)+K(KH+1)[Peϕ′ ]Cα([0,∞);B), (2.23)

and P(Γu)′ ∈ Cα([0,∞);B) since [(Γu)′]Cα([0,∞);X) is finite. This completes the
proof that PΓu ∈ C1+α([0,∞);B). Proceeding as above, we also note that

[P(Γu)′ − P(Γv)′ ]Cα([0,∞);B) ≤ K(K + 1)[(Γu)′ − (Γv)′]Cα([0,∞);X)

≤ K(K + 1)(Λ + 1)[fu,u′ − fv,v′ ]Cα([0,∞);X),

which establish (2.19).
Concerning the estimate (2.18), from Proposition 2.1 we have

‖PΓu(t)− PΓv(t)‖B
≤ K sup

s∈[0,t]

‖Γu(s)− Γv(s)‖

≤ K‖A−1‖ sup
s∈[0,t]

‖Γu(s)− Γv(s)‖X1

≤ K‖A−1‖(Λ1[fu,u′ − fv,v′ ]Cα([0,∞);X) + Λ2‖fu,u′ − fv,v′‖C([0,∞);X)),

which proves (2.18). Finally, from the estimate

‖(PΓu)′ − (PΓv)′‖C([0,b];B)

≤ K‖(Γu)′ − (Γv)′‖C([0,b];X)

≤ K(‖Γu− Γv‖C([0,b];X1) + ‖fu,u′ − fv,v′‖C([0,∞);X))

≤ K(Λ1[fu,u′ − fv,v′ ]Cα([0,∞);X) + Λ2‖fu,u′ − fv,v′‖C([0,∞);X))

+K‖fu,u′ − fv,v′‖C([0,∞);X),
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we obtain (2.20).
Step 3. The function PΓu belongs to Cα([0,∞);Bβ) and

‖PΓu − PΓv‖C([0,b];Bβ) ≤ K‖(−A)β−1‖(Λ1 + Λ2)‖fu,u′ − fv,v′‖Cα([0,∞);X)), (2.24)

[PΓu − PΓv]Cα([0,b];Bβ) ≤ K(K + 1)‖(−A)β−1‖Λ[fu,u′ − fv,v′ ]Cα([0,∞);X). (2.25)

From Proposition 2.1 it follows that

‖PΓu − PΓv‖C([0,b];Bβ) ≤ K‖Γu− Γv‖C([0,b];Xβ)

≤ K‖(−A)β−1‖‖Γu− Γv‖C([0,b];X1)

≤ K‖(−A)β−1‖(Λ1 + Λ2)‖fu,u′ − fv,v′‖Cα([0,∞);X),

which establish (2.24). Concerning (2.25) we note that

‖PΓu(t+ h)− PΓv(t+ h)− (PΓu(t)− PΓv(t))‖Bβ
≤ K‖PΓu(h)− PΓv(h)‖Bβ +K sup

s∈[0,h]

‖Γu(s+ h)− Γu(s+ h)− (Γu(s)− Γu(s))‖β

≤ K2 sup
s∈[0,h]

‖Γu(s)− Γu(h)− (Γu(0)− Γu(0))‖β

+K sup
s∈[0,t]

‖Γu(s+ h)− Γu(s+ h)− (Γu(s)− Γu(s))‖β

≤ K2‖(−A)β−1‖ sup
s∈[0,t]

‖Γu(s+ h)− Γu(s+ h)− (Γu(s)− Γu(s))‖X1

+K‖(−A)β−1‖ sup
s∈[0,t]

‖Γu(s+ h)− Γu(s+ h)− (Γu(s)− Γu(s))‖X1

≤ K(K + 1)‖(−A)β−1‖[Γu− Γu]Cα([0,∞);X1),

which, via Proposition 2.1, implies

[PΓu − PΓv]Cα([0,b];Bβ) ≤ K(K + 1)‖(−A)β−1‖Λ[fu,u′ − fv,v′ ]Cα([0,∞);X).

From Steps 2 and 3 we obtain that Φ(Γu,Γv) ≤ ΞΦ(u, v) which proves that Γ is a
contraction on S. Finally, from the contraction mapping principle and Proposition
2.1 we infer that there exists a unique S-asymptotically ω-periodic strict solution
u ∈ C1+α(J ∪ R+;X) ∩ C(J ∪ R+;Xβ) of the problem (1.1)–(1.2). �

In the next theorem we prove the existence of a strict solution via the conditions
(H2) and (H3). In this result, Y is the space in condition (H2) and iY,X denotes
the inclusion map from Y into X.

Theorem 2.12. Assume the conditions (H2) and (H3) are satisfied, C(J ;X) ↪→ B,
M(t) → 0 as t → ∞, ϕ ∈ C1(J ;X) ∩ Bβ, ϕ(0) ∈ X1, d−ϕ

dt (0) = Aϕ(0) and
f(0, ϕ, ϕ′) = 0. Suppose, in addition, there are ψ1 ∈ BB and ψ2 ∈ B such that
f(·, ψ1, ψ2) ∈ C([0,∞);Y ) and

Θ = K(‖(−A)β−1‖+ 1)‖H ∗ Lf‖C([0,∞);R+)

+K‖Lf‖C([0,∞);R+)‖iY,X‖L(Y,X)(
C0

γ
+ 1) < 1,

(2.26)

where H ∗Lf (t) =
∫ t

0
H(t−s)Lf (s)ds. Then there exists a unique S-asymptotically

ω-periodic strict solution u ∈ C1(J ∪ R+;X) ∩ C(J ∪ R+;Xβ) of (1.1)–(1.2).
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Proof. Let S = C1(J ∪ [0,∞);X) ∩ C(J ∪ [0,∞);Xβ) and

F = {u ∈ S : u
∣∣
[0,∞)

, u′
∣∣
[0,∞)

∈ SAPω(X),Pu ∈ C([0,∞);Bβ) ∩ C1([0,∞);B)},

endowed with the metric Φ(u, v) = ‖Pu − Pv‖C1([0,∞);B) + ‖Pu − Pv‖C([0,∞);Bβ).
Let Γ : F → F the map defined in the proof of Theorem 2.11. Next, we show that
Γ is a contraction on F. To begin, we show that Γ is a well defined function from
F into F. In the remainder of this proof we assume that u, v ∈ F.

By noting that fu,u′ ∈ C([0,∞);Y ), from condition (H2) it is easy to see that

‖(−A)βΓu(t)‖

≤ C0e
−γt‖(−A)βϕ(0)‖+ ‖(−A)β−1‖L(X)

∫ t

0

‖AT (t− s)‖L(Y,X)‖fu,u′(s)‖Y ds

≤ C0e
−γt‖(−A)βϕ(0)‖+ ‖(−A)β−1‖L(X)‖fu,u′‖C([0,∞);Y )‖H‖L1([0,∞),R+),

which implies that Γu ∈ C(J ∪ [0,∞);Xβ) and PΓu ∈ C([0,∞);Bβ) since ϕ ∈ Bβ .
Moreover, from Lemma 2.2 we have that Γu is continuously differentiable and

‖(Γu)′(t)‖ ≤ e−γt‖Aϕ(0)‖+ ‖fu,u′‖C([0,∞);Y )(‖H‖L1([0,∞),R+) + 1),

which shows that (Γu)′ ∈ C([0,∞);X). In addition to the above, from Lemma 1.4,
the compatibility condition d−ϕ

dt (0) = Aϕ(0)+f(0, ϕ, ϕ′) = Aϕ(0) and the fact that

(Γu)′(t) = AT (t)ϕ(0) +
∫ t

0

AT (t− s)fu,u′(s)ds+ f(t, ut, u′t), ∀t ≥ 0,

we infer that PΓu ∈ C1([0,∞);B) and (PΓu)′ = P(Γu)′ .
To complete the proof that Γ has values in F, it remain to prove that the functions

Γu
∣∣
[0,∞)

and (Γu)′
∣∣
[0,∞)

belong to SAPω(X). From Lemma 2.6 we have that Pu ∈
SAPω(Bβ), Pu′ ∈ SAPω(B) and from the conditions (H2) and (H3) is easy to
show that f(·,Pu(·),Pu′(·)) ∈ SAPω(Y ). In addition, by using Lemma 2.7 with
Z = X and Q(t) = T (t) we obtain that Γu ∈ SAPω(X). Moreover, arguing
as above, but using Lemma 2.7 with Z = Y and Q(t) = AT (t) it follows that
(Γu)′

∣∣
[0,∞)

∈ SAPω(X). This completes the proof that Γ is a F-valued function.
On the other hand, for u, v ∈ F and t ≥ 0 we obtain

‖Γu(t)− Γv(t)‖β ≤ ‖(−A)β−1‖
∫ t

0

‖AT (t− s)‖L(Y,X)Lf (s)Φ(u, v)ds,

and hence,

‖Γu− Γv‖C([0,∞);Xβ) ≤ ‖(−A)β−1‖‖H ∗ Lf‖C([0,∞);R+)Φ(u, v). (2.27)

Similarly, from the inequality

‖Γu(t)− Γv(t)‖ ≤ C0

∫ t

0

e−γ(t−s)‖iY,X‖L(Y,X)‖fu,u′(s)− fv,v′(s)‖Y ds

we obtain

‖Γu− Γv‖C([0,∞);X) ≤
C0

γ
‖iY,X‖L(Y,X)‖Lf‖C([0,∞);R+)Φ(u, v). (2.28)

In addition, from Lemma 2.2, it follows that

‖(Γu)′(t)− (Γv)′(t)‖ ≤
∫ t

0

H(t− s)Lf (s)(‖us − vs‖Bβ + ‖u′s − v′s‖B)ds

+ Lf (t)‖iY,X‖L(Y,X)(‖ut − vt‖Bβ + ‖u′t − v′t‖B),
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from which we infer that

‖(Γu)′ − (Γv)′‖C([0,∞);X)

≤
(
‖H ∗ Lf‖C([0,∞);R+) + ‖Lf‖C([0,∞);R+)‖iY,X‖L(Y,X)

)
Φ(u, v).

(2.29)

From inequalities (2.27)-(2.29) we obtain that Φ(Γu,Γv) ≤ ΘΦ(u, v) which proves
that Γ is a contraction on F and there exits a unique mild solution u ∈ F of (1.1)–
(1.2). Finally, from Lemma 2.2 it follows that u(·) is a strict solution of the problem
(1.1)–(1.2). This completes the proof. �

3. Applications

Motivated by the examples presented in the introduction, in this section we
discuss the existence of a S-asymptotically ω-periodic strict solution for the partial
neutral differential problem

u′(t, ξ) = ∆u(t, ξ)−
∫ t

−∞
a(t)k(t− s)u′(s, ξ)ds+ g(t), (3.1)

u(t, 0) = u(t, π) = 0, (3.2)

u(s, ξ) = ϕ(s, ξ), s ≤ 0, (3.3)

for (t, ξ) ∈ [0,∞) × [0, π] where g ∈ SAPω(R) and ϕ(·) is a function defined from
(−∞, 0]× [0, π] into R.

To treat the problem (3.1)-(3.3) under the abstract framework in Section 1, we
take X = L2([0, π]) and A : D(A) ⊂ X → X be the operator Ax = x′′ on D(A) =
{x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A is the generator of
an analytic semigroup (T (t))t≥0 on X, A has discrete spectrum with eigenvalues
−n2, n ∈ N, and associated normalized eigenvectors zn(ξ) = ( 2

π )1/2 sin(nξ). We
note that ‖T (t)‖ ≤ e− t2 , ‖AT (t)‖ ≤ e− t2 t−1 and ‖A2T (t)‖ ≤ 4e−

t
2 t−2 for t > 0.

As a phase space we consider the space B = Cr×Lp(ρ,X). Let r ≥ 0, 1 ≤ p <∞
and ρ : (−∞,−r] → R be a nonnegative measurable function which satisfies the
conditions (g-5)-(g-7) in the terminology of [24]. The space Cr×Lp(ρ,X) is formed
by all classes of functions ψ : (−∞, 0] → X such that ψ|[−r,0] ∈ C([−r, 0], X), ψ(·)
is Lebesgue-measurable and ρ

1
pψ ∈ Lp((−∞,−r], X). The norm in Cr×Lp(ρ,D) is

given by ‖ψ‖B = ‖ψ‖C([−r,0];X) + ‖ρ
1
pψ‖Lp((−∞,−r],X). From [24], we know that B

satisfy the conditions in Section 2 and B is a uniform fading memory space, which
implies that M(t)→ 0 as t→∞ and K(·) is bounded, see [24, pp.190] for details.

Next we assume k ∈ C([0,∞); R), a ∈ Cα([0,∞),R) ∩ SAPω(R) for some α ∈
(0, 1) and ω > 0, and

Θ = 2‖a‖C([0,∞);R)

(∫ 0

−∞

k2(−τ)
ρ(τ)

dτ
)1/2

<∞.

Under these conditions, the function f : [0,∞) × B → X given by f(t, ψ)(ξ) =∫ 0

−∞ a(t)k(−τ)ψ(τ, ξ)dτ is well defined, f ∈ Cα([0,∞);L(B, X)) ∩ SAPω(L(B))
and ‖f‖Cα([0,∞);L(B,X)) ≤ Θ.

Next, we say that a function u ∈ C1(J ∪ R+;X) ∩ C(J ∪ R+;X1) is a strict
solution of (3.1)-(3.3) if u(·) is a strict solution of the associated problem (1.1)–
(1.2). In the next result, which follows directly from Theorem 2.11, Λ is the number
in Proposition 2.1 and DA(α,∞), K are as in Section 1. We also note that Λ appears
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explicitly in the end of the proof of Proposition 2.1 and that in the current case
Λ = ( 2

α + 4 + 4
α(1−α) ), Λ1 = (2 + 1

α ) and Λ2 = 2.

Proposition 3.1. Assume that ϕ(0, ·) ∈ X1, d−ϕ
dt (0, ·) = Aϕ(0, ·) ∈ DA(α,∞),

f(0, ϕ) + f2(0, ϕ′) = 0, ϕ ∈ C1+α(J ;X)∩Cα(J ;Xβ) and Pϕ̃ ∈ C1+α([0,∞);B). If

K
[
(K + 1)(AΛ + 1) +A(4 +

1
α

) + 1
]
Θ < 1, (3.4)

where A = ‖(−A)β−1‖ + ‖A−1‖ + 1, then there exists a unique S-asymptotically
ω-periodic strict solution of the problem (3.1)–(3.3).
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