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CRITICAL EXPONENT FOR A DAMPED WAVE SYSTEM WITH
FRACTIONAL INTEGRAL

MIJING WU, SHENGJIA LI, LIQING LU

Abstract. We shall present the critical exponent

F (p, q, α) := max
˘
α+

(α+ 1)(p+ 1)

pq − 1
, α+

(α+ 1)(q + 1)

pq − 1

¯
−

1

2

for the Cauchy problem

utt − uxx + ut = Jα0|t(|v|
p), (t, x) ∈ R+ × R,

vtt − vxx + vt = Jα0|t(|u|
q), (t, x) ∈ R+ × R,

(u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ R,
(v(0, x), vt(0, x)) = (v0(x), v1(x)), x ∈ R,

where p, q ≥ 1, pq > 1 and 0 < α < 1/2; that is, the small data global

existence of solutions can be derived to the problem above if F (p, q, α) < 0.

Furthermore, in the case of F (p, q, α) ≥ 0 the non-existence of global solution
can be obtained with the initial data having positive average value.

1. Introduction and statement of main results

In this article, we consider the Cauchy problem of damped wave system

utt − uxx + ut = Jα0|t(|v|
p), (t, x) ∈ R+ × R,

vtt − vxx + vt = Jα0|t(|u|
q), (t, x) ∈ R+ × R,

(u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ R,
(v(0, x), vt(0, x)) = (v0(x), v1(x)), x ∈ R,

(1.1)

where p, q ≥ 1, pq > 1 and 0 < α < 1/2. The initial values satisfy

supp{ui, vi} ⊂ {|x| ≤ K}, K > 0, i = 0, 1, (1.2)

(u0, u1, v0, v1) ∈ H1(R)× L2(R)×H1(R)× L2(R). (1.3)

The notation Jα0|t stands for the Riemann-Liouville fractional integral [9]

Jα0|tf(t) :=

{
1

Γ(α)

∫ t
0
(t− s)α−1f(s)ds, α > 0,

f(t), α = 0,

2010 Mathematics Subject Classification. 35B33.
Key words and phrases. Damped wave equation; fractional integral; critical exponent;

global solution.
c©2015 Texas State University - San Marcos.

Submitted July 24, 2015. Published August 12, 2015.

1



2 M. WU, S. LI, L. LU EJDE-2015/211

for f ∈ Lp(0, T )(1 ≤ p ≤ ∞) and Γ(·) is the Euler gamma function.
In recent decades, nonlinear hyperbolic equations and systems have been studied

extensively (see, for example, [4, 5, 9, 10, 11, 18, 19] and the rich references therein).
Todorova and Yordanov [17] considered the semilinear wave equation

utt −∆u+ ut = |u|p, (t, x) ∈ (0,∞)× Rn,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,

(1.4)

and proved that the critical exponent of (1.4) is pc(n) = 1 + 2/n. More precisely, if
p > pc(n) there exists a unique global solution of (1.4) for sufficiently small initial
data, while, if 1 < p < pc(n) any solution with positive initial data must blow up in
finite time. Later Zhang [20] proved that the exponent 1 + 2/n belongs to the blow
up region. Fino [2] considered the damped wave equation with nonlinear memory
term

utt −∆u+ ut = Jα0|t(|u|
p)(t). (1.5)

The existence of global solutions and the asymptotic behavior of small data solu-
tions to (1.5) as t→∞ were established when 1 ≤ n ≤ 3. If p > 1+2(1+α)/(n−2α),
the blow up result was also derived under some positive data in any dimensional
space. Comparing the results of [17] with that of [2], we derive that the fractional
integral Jα0|t has an influence on the solution. The problems with the fractional
integral term are interesting.

The problem (1.1) with α = 0 can be considered as the following weakly coupled
system

utt −∆u+ ut = |v|p, (t, x) ∈ (0,∞)× Rn,
vtt −∆v + vt = |u|q, (t, x) ∈ (0,∞)× Rn,
(u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ Rn,
(v(0, x), vt(0, x)) = (v0(x), v1(x)), x ∈ Rn.

(1.6)

Sun and Wang [16] considered (1.6) and obtained the critical exponent

F (p, q, n) := max
{ p+ 1
pq − 1

,
q + 1
pq − 1

}
− n

2
.

The authors proved that if F (p, q, n) < 0, there exists a unique global solution of
(1.6) with suitably small initial data for n = 1 or n = 3, and if F (p, q, n) ≥ 0,
any solution of (1.6) with initial data having positive integral values does not exist
globally for any n ≥ 1. Based on some conditions on nonlinear term, the asymptotic
behavior of solutions of (1.6) was considered in [12]. Recently, Kenji and Yuta
[13] showed that the number F (p, q, n) is the critical exponent of (1.6) for any
dimensional space.

Motivated by the work of [2] and [16], we aim at determining the critical exponent
of (1.1). The global result is proved by the weighted energy method (see [17]). For
the non-existence of a global solution, we shall use the test function method (see
[2]). Our basic definition of the solution to problem (1.1) is the following.

Definition 1.1. Let T > 0. We say that a pair of functions (u, v) in Lq((0, T ),
Lqloc(R))× Lp((0, T ), Lploc(R)) is a weak solution of the Cauchy problem (1.1) with
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the initial data (ui, vi) ∈ [Lloc(R)]2 if (u, v) satisfies∫ T

0

∫
Rn
u(ϕtt − ϕxx + ϕt) dx dt

=
∫ T

0

∫
Rn

(Jα0|t|v|
p)ϕdx dt+

∫
Rn
u1(x)ϕ(0, x)dx+

∫
Rn
u0(x)(ϕ(0, x)− ϕt(0, x))dx,∫ T

0

∫
Rn
v(ϕtt − ϕxx + ϕt) dx dt

=
∫ T

0

∫
Rn

(Jα0|t|u|
q)ϕdx dt+

∫
Rn
v1(x)ϕ(0, x)dx+

∫
Rn
v0(x)(ϕ(0, x)− ϕt(0, x))dx,

(1.7)

for all compactly supported test functions ϕ ∈ C2([0, T ]× R) with ϕ(T, ·) = 0 and
ϕt(T, ·) = 0. If T =∞, we say that (u, v) is a global weak solution of (1.1).

We remark that the above definition of a weak solution is a very weak form
which will be used in the proof of non-existence of a global solution. However, to
prove the global result we need a much stronger form. We have the following local
existence result.

Proposition 1.2. Let T > 0. Under assumptions (1.2) and (1.3), there exists a
unique solution (u, v) ∈ X(T )×X(T ) for (1.1) satisfying

supp{u, v} ⊂ B(t+K) = {(t, x) : |x| ≤ t+K}, K > 0

where X(T ) = C([0, T );H1(R)) ∩ C1([0, T );L2(R)).

Using [6, Proposition 2.3] and [2, Proposition 1], the local solvability and unique-
ness of (1.1) can be established by a standard estimation and compactness theory.

Denote ‖·‖r and ‖·‖Hm the norms of Lr(R) and Hm(R) respectively. Throughout
this article, we use C to stand for a generic positive constant which may be different
from line to line. Set

F (p, q, α) := max
{
α+

(α+ 1)(p+ 1)
pq − 1

, α+
(α+ 1)(q + 1)

pq − 1
}
− 1

2
.

Based on Proposition 1.2, our main results read as follows

Theorem 1.3. Assume that (1.2) and (1.3) hold. If F (p, q, α) < 0, then there is
a small constant ε such that under the conditions

I0,u = ‖u0‖H1 + ‖u0‖1 + ‖u1‖2 + ‖u1‖1 < ε,

I0,v = ‖v0‖H1 + ‖v0‖1 + ‖v1‖2 + ‖v1‖1 < ε,
(1.8)

problem (1.1) admits a unique global solution

(u, v) ∈ [C((0,∞);H1(R)) ∩ C1((0,∞);L2(R))]2.

Moreover,

‖Du(t)‖2 ≤ (1 + t)−
(α+1)(p+1)

(pq−1) − 1
4 , t→∞,

‖Dv(t)‖2 ≤ (1 + t)−
(α+1)(q+1)

(pq−1) − 1
4 , t→∞,

(1.9)

where Du = (ut, ux).
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Theorem 1.4. Assumed that (1.2), (1.3) hold and∫
R
uidx > 0,

∫
R
vidx > 0, i = 0, 1. (1.10)

If F (p, q, α) ≥ 0, then the weak solution (u, v) of (1.1) does not exist globally.

Remark 1.5. F (p, q, α) is the critical exponent of (1.1).

Remark 1.6. If α = 0, F (p, q, α) is consistent with the critical exponent of (1.6)
for n = 1.

The remainder of this paper is organized as follows. In Section 2, some prelim-
inaries are collected. We will prove our global result (Theorem 1.3) in Section 3.
Section 4 is devoted to proving the blow up result (Theorem 1.4).

2. Preliminaries

We shall start this section with some basic definitions and properties on the
Riemann-Liouville fractional calculus. We refer to [7]-[3] for more details.

Let AC[0, T ] denote the space of all absolutely continuous functions on [0, T ].
Then, if f ∈ AC[0, T ], the left-sided and the right-sided Riemann-Liouville frac-
tional derivatives of the function f of order α ∈ (0, 1) are defined by

Dα
0|tf(t) := ∂tJ

1−α
0|t f(t), Dα

t|T f(t) := − 1
Γ(1− α)

∂t

∫ T

t

(s− t)−αf(s)ds.

Set
ACn+1[0, T ] := {f : [0, T ]→ Rtextand∂nt f ∈ AC[0, T ]}.

Then for all f ∈ ACn+1[0, T ], the following propositions are obtained in [7, 14, 15],
respectively.

Proposition 2.1 ([7]). Let 0 < α < 1 and p ≥ 1. If f ∈ Lp(0, T ),

(Dα
0|tJ

α
0|tf)(t) = f(t), (−1)n∂nt D

α
t|T f = Dn+α

t|T f,

for almost everywhere on [0, T ].

Proposition 2.2 ([15]). Let 0 < α < 1. For every f, g ∈ C([0, T ]) such that
(Dα

0|tf)(t), (Dα
t|T g)(t) exist and are continuous, the formula of integration by parts

is ∫ T

0

(Dα
0|tf)(t)g(t)dt =

∫ T

0

f(t)(Dα
t|T g)(t)dt, t ∈ [0, T ].

Proposition 2.3 ([14]). Set ϕ2(t) := (1− t/T )η+. Then ϕ2(t) satisfies

Dα
t|Tϕ2(t) = CT−η(T − t)η−α+ , Dα+1

t|T ϕ2(t) = CT−η(T − t)η−α−1
+ ,

Dα+2
t|T ϕ2(t) = CT−η(T − t)η−α−2

+ ,

and

Dα
t|Tϕ2(T ) = 0, Dα

t|Tϕ2(0) = CT−α,

Dα+1
t|T ϕ2(T ) = 0, Dα+1

t|T ϕ2(0) = CT−α−1.
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Consider the linear damped wave equation

Utt − Uxx + Ut = 0, (t, x) ∈ (0,∞)× R,
(U(0, x), Ut(0, x)) = (U0(x), U1(x)), x ∈ R.

(2.1)

When U0 = 0, the unique solution U(t, x) to (2.1) can be denoted by S(t)U1. Then
the Duhamel’s principle implies the solution to (1.4) solves the integral system

u(t, x) = S(t)(u0 + u1) + ∂t(S(t)u0) +
∫ t

0

S(t− τ)Jα0|τ (|v|p)dτ

= uL +
∫ t

0

S(t− τ)Jα0|τ (|v|p)dτ,

v(t, x) = S(t)(v0 + v1) + ∂t(S(t)v0) +
∫ t

0

S(t− τ)Jα0|τ (|u|q)dτ

= vL +
∫ t

0

S(t− τ)Jα0|τ (|u|q)dτ.

(2.2)

The following lemmas will be used in the proof of Theorem 1.3.

Lemma 2.4 ([17, Proposition2.5]). Let m ∈ [1, 2]. Then

‖∂kt∇νxS(t)f‖2 ≤ C(1 + t)n/4−n/(2m)−|ν|/2−k(‖f‖m + ‖f‖Hk+|ν|−1), (2.3)

for each f ∈ Lm(Rn)
⋂
Hk+|ν|−1(Rn).

Lemma 2.5 ([17, Proposition2.4]). Let θ(r) = n(1/2− 1/r) and 0 ≤ θ(r) ≤ 1, 0 <
δ ≤ 1. If u ∈ H1(Rn) with suppu ⊂ B(t+K), then

‖eδψ(t,·)u‖r ≤ C(1 + t)(1−θ(r))/2‖eψ(t,·)∇u‖δ2‖∇u‖1−δ2 , (2.4)

where ψ(t, x) = (t+K −
√

(t+K)2 − |x|2)/2.

Lemma 2.6 ([1]). Suppose that 0 ≤ θ < 1, a ≥ 0 and b ≥ 0. Then there exists a
constant C > 0 depending only on a, b and θ such that for all t > 0,∫ t

0

(t− τ)−θ(1 + t− τ)−a(1 + τ)−bdτ

≤


C(1 + t)−min{a+θ,b}, max{a+ θ, b} > 1,
C(1 + t)−min{a+θ,b} ln(2 + t), max{a+ θ, b} = 1,
C(1 + t)1−θ−a−b, max{a+ θ, b} < 1.

3. Proof of Theorem 1.3

Let Tmax be the maximal existence time of the local solution of (u, v) to the
problem (1.1). Denote

M(t) = sup
0≤τ<t

((1 + τ)k‖Du(τ)‖2 + (1 + τ)j‖Dv(τ)‖2), ∀t ∈ [0, Tmax), (3.1)

where k, j will be determined later. We will prove the estimate

M(t) ≤ C(ε+M(t)p +M(t)q), ∀t ∈ [0, Tmax), (3.2)

with C is independent of ε. Taking ε and C1 sufficiently small such that

Cε < C1, 2p−1CM(t)p−1 + 2q−1CM(t)q−1 < 1,



6 M. WU, S. LI, L. LU EJDE-2015/211

then as the argument in [4, Proposition 2.1], we find from (3.2) that

M(t) ≤ 2C1, ∀t ∈ [0, Tmax).

We have that

‖Du(t)‖2 ≤ C(1 + t)−k, ‖Dv(t)‖2 ≤ C(1 + t)−j , ∀t ∈ [0, Tmax),

which imply Tmax =∞, the solution of (1.1) exists globally in time.
Now, we prove (3.2). From (2.2), we deduce that

‖Du(t)‖2 ≤ ‖DuL(t)‖2 +
∫ t

0

‖DS(t− τ)Jα0|τ (|v|p)(τ)‖2dτ. (3.3)

Applying Lemma 2.4 with m = 1 and n = 1, we see that

‖DuL(t)‖2 ≤ CI0,u(1 + t)−3/4, (3.4)

and ∫ t

0

‖DS(t− τ)Jα0|τ (|v|p)(τ)‖2dτ

≤ C
∫ t

0

(1 + t− τ)−3/4(‖Jα0|τ (|v|p)(τ)‖1 + ‖Jα0|τ (|v|p)(τ)‖2)dτ

≤ C
∫ t

0

(1 + t− τ)−3/4

∫ τ

0

(τ − s)−(1−α)(‖v(s)‖pp + ‖v(s)‖p2p)dsdτ.

(3.5)

Next, we transform the Lp norm into a weighted L2p norm. Making use of the
Cauchy inequality and the fact ψ(t, x) ≥ |x|2/4(t+K) for x ∈ B(τ +K), we have

‖v(τ, ·)‖pp =
∫
B(τ+K)

|v(τ, x)|pdx

≤
(∫

B(τ+K)

e−2pδψ(τ,x)dx
)1/2(∫

B(τ+K)

e2pδψ(τ,x)|v(τ, x)|2pdx
)1/2

≤
(∫

B(τ+K)

e−pδ|x|
2/2(τ+K)dx

)1/2

‖eδψ(τ,·)v(τ)‖p2p

≤ CK,δ(τ +K)1/4‖eδψ(τ,·)v(τ)‖p2p,
(3.6)

where δ > 0. Obviously,

‖v(τ, ·)‖p2p ≤ (τ +K)1/4‖eδψ(τ,·)v(τ)‖p2p. (3.7)

From (3.5)-(3.7), we obtain∫ t

0

‖DS(t− τ)Jα0|τ (|v|p)(τ)‖2dτ

≤ C sup
[0,t)

[
(1 + τ)β1‖eδψ(τ,·)v(τ)‖2p

]p
×
∫ t

0

(1 + t− τ)−3/4

∫ τ

0

(τ − s)−(1−α)(1 + s)−(pβ1−1/4)dsdτ.

(3.8)
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Taking β1 = (α+1)(q+1)/(pq−1)−1/4p such that 1/4 < pβ1 < 5/4 and applying
Lemma 2.6, we have∫ t

0

‖DS(t− τ)Jα0|τ (|v|p)(τ)‖2dτ

≤ C(1 + t)−k sup
[0,t)

[
(1 + τ)β1‖eδψ(τ,·)v(τ)‖2p

]p
,

(3.9)

where k = (α + 1)(p + 1)/(pq − 1) + 1/4. To estimate the weighted L2p norm, we
use Lemma 2.5 with r = 2p and n = 1,

‖eδψ(τ,·)v(τ)‖2p ≤ C(1 + τ)(1−θ(2p))/2‖vx‖1−δ2 ‖eψ(τ,·)vx‖δ2
≤ C(1 + τ)(1−θ(2p))/2‖Dv‖2.

(3.10)

From (3.9), (3.10) and (3.1), we derive that∫ t

0

‖DS(t− τ)Jα0|τ (|v|p)(τ)‖2dτ ≤ C(1 + t)−k sup
[0,t)

[
(1 + τ)β1+(1−θ(2p))/2−jM(t)

]p
.

(3.11)
Multiplying (3.3) by (1 + t)k and from (3.4), (3.11), we obtain that

(1 + t)k‖Du(t)‖2 ≤ CI0,u(1 + t)k−3/4 + C sup
[0,t)

[
(1 + τ)β1+(1−θ(2p))/2−jM(τ)

]p
.

(3.12)
Similarly, we can deduce that

(1+t)j‖Dv(t)‖2 ≤ CI0,v(1+t)j−3/4+C sup
[0,t)

[
(1+τ)β2+(1−θ(2q))/2−kM(τ)

]q
, (3.13)

where we choose β2 = (α + 1)(p + 1)/(pq − 1) − 1/4q such that 1/4 < qβ2 < 5/4
and get j = (α+ 1)(q + 1)/(pq − 1) + 1/4. It can be easily checked that

β1 + (1− θ(2p))/2− j = 0,

β2 + (1− θ(2q))/2− k = 0,
. (3.14)

and
k − 3/4 < F (p, q, α)− α, j − 3/4 < F (p, q, α)− α.

As qβ2 < 5/4 and pβ1 < 5/4 imply F (p, q, α) < 0, we have

k − 3/4 < −α, j − 3/4 < −α. (3.15)

Combining (3.12)-(3.15), we have (3.2). Theorem 1.3 is proved.

4. Proof of Theorem 1.4

In this section we prove the theorem by contraction. In the following, we assume
that (u, v) is a global weak solution of (1.1).

Set ϕ1(x) := φl(|x|/R), l� 1 with the cut-off function φ(r) satisfying

φ(r) =

{
1, 0 ≤ r ≤ 1,
0, r ≥ 2,

(4.1)

0 ≤ φ(r) ≤ 1, |φ′(r)| ≤ C/r, |φ′′(r)| ≤ C/r, (4.2)

and ϕ2(t) := (1− t/T )η+, with η � 1. The supports of ϕ1 and (ϕ1)xx are denoted
as B2R and B2R \BR respectively, where

B2R = {x ∈ R : |x| ≤ 2R}, B2R \BR = {x ∈ R : R ≤ |x| ≤ 2R}.
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Denote

ϕ(t, x) := ϕ1(x)(Dα
t|Tϕ2)(t). (4.3)

From (4.1)-(4.3) and the Proposition 2.1-2.3, we obtain∫ T

0

∫
B2R

|v(t, x)|pϕ(x, t) dx dt

+ T−α
∫
B2R

(u1(x) + u0(x))ϕ1(x)dx+ T−α−1

∫
B2R

u0(x)ϕ1(x)dx

=
∫ T

0

∫
B2R

uϕ1(Dα+2
t|T ϕ2(t) +Dα+1

t|T ϕ2(t)) dx dt

−
∫ T

0

∫
B2R\BR

u(ϕ1)xx(Dα
t|Tϕ2)(t) dx dt,∫ T

0

∫
B2R

|u(t, x)|qϕ(x, t) dx dt+ T−α
∫
B2R

(v1(x) + v0(x))ϕ1(x)dx

+ T−α−1

∫
B2R

v0(x)ϕ1(x)dx

=
∫ T

0

∫
B2R

vϕ1(x)(Dα+2
t|T ϕ2(t) +Dα+1

t|T ϕ2(t)) dx dt

−
∫ T

0

∫
B2R\BR

v(ϕ1)xx(Dα
t|Tϕ2)(t) dx dt.

(4.4)

Set

Jp =
∫ t

0

∫
B2R

|v(t, x)|pϕ(t, x) dx dt, (4.5)

Jq =
∫ t

0

∫
B2R

|u(t, x)|qϕ(t, x) dx dt. (4.6)

From (1.10) and (4.4), we have

Jp ≤ C
∫ T

0

∫
B2R

|u|ϕ1(D2+α
t|T ϕ2(t) +D1+α

t|T ϕ2(t)) dx dt

+ C

∫ T

0

∫
B2R\BR

|u(ϕ1)xx|(Dα
t|Tϕ2)(t) dx dt = I1 + I2.

(4.7)

Applying Holder’s inequality with exponents q and q/(q − 1), we can achieve that

I1 ≤ C
(∫ T

0

∫
B2R

|u(t, x)|qϕ(t, x) dx dt
)1/q

×
(∫ T

0

∫
B2R

ϕ1ϕ
− 1
q−1

2 (D2+α
t|T ϕ2 +D1+α

t|T ϕ2)q
′
dx dt

)1/q′

≤ C(T−(2+α)+1/q′ + T−(1+α)+1/q′)R1/q′J1/q
q ,

(4.8)
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with q′ = q/(q − 1). In the same way, I2 can be estimated by

I2 ≤ C
(∫ T

0

∫
B2R

|u(t, x)|qϕ(t, x) dx dt
)1/q

×
(∫ T

0

∫
B2R\BR

ϕ
1−2q′/l
1 ϕ

− 1
q−1

2 (|∆ϕ1|q
′
+ |∇ϕ1|2q

′
)(D2+α

t|T ϕ2)q
′
dx dt

)1/q′

≤ CT−α+1/q′R−2+1/q′J1/q
q .

(4.9)

From (4.8) and (4.9), we deduce that

Jp ≤ CS(q′, T,R)J1/q
q , (4.10)

where

S(q′, T,R) = T−(2+α)+1/q′R1/q′ + T−(1+α)+1/q′R1/q′ + T−α+1/q′R−2+1/q′ . (4.11)

Similarly, we can prove that

Jq ≤ CS(p′, T,R)J
1
p
p , (4.12)

where

S(p′, T,R) = T−(2+α)+1/p′R1/p′ + T−(1+α)+1/p′R1/p′ + T−α+1/p′R−2+1/p′ . (4.13)

This yields

Jp ≤ CS(q′, T,R)S(p′, T,R)1/qJ
1
pq
p . (4.14)

Taking R =
√
T in (4.10)-(4.14), and by Young’s inequality, we have

Jp ≤
1
2
Jp + CT 1/2−α−(1+p)(1+α)/(pq−1). (4.15)

Next, we divide into two cases to discuss the estimate of (4.15).
Case i. F (p, q, α) > 0. this implies the exponent of T in (4.15) is negative. Letting
T →∞ in (4.15), we derive that∫ ∞

0

∫ +∞

−∞
|u(t, x)|p dx dt = 0, (4.16)

which implies u(t, x) = 0 for all t and x ∈ R a.e.. This is a contradiction to (1.10).
Case ii. F (p, q, α) = 0, we have

lim
T→∞

Jp =
∫ ∞

0

∫
R
|u(x, t)|p dx dt ≤ D. (4.17)

It follows from (4.12) that for any ε > 0 there exists T1, such that

Jq ≤ Cε1/pT−(1+α)+3(p−1)/2p, T > T1, (4.18)

where C is independent of ε. Combining (4.10) and (4.18), we get that

Jp ≤ Cε1/(pq), (4.19)

and the constant C is also independent of ε. The arbitrary of ε yields a contradiction
with (1.10). This completes the proof of Theorem 1.4.
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