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MILD SOLUTIONS FOR NON-AUTONOMOUS IMPULSIVE
SEMI-LINEAR DIFFERENTIAL EQUATIONS WITH ITERATED

DEVIATING ARGUMENTS

ALKA CHADHA, DWIJENDRA N. PANDEY

Abstract. In this work, we consider an impulsive non-autonomous semi-
linear equation with iterated deviating arguments in a Banach space. We

establish the existence and uniqueness of a mild solution. Also we present an
example that illustrates our main result.

1. Introduction

In the previous decades, impulsive differential equations have received much at-
tention of researchers mainly because its demonstrated applications in widespread
fields of science and engineering. Differential equation systems which are charac-
terized by the occurrence of an abrupt change in the state of the system are known
as impulsive differential equations. These changes occur at certain time instants
over a period of negligible duration. Such process is investigated in various fields
such as biology, physics, control theory, population dynamics, economics, chemical
technology, medicine and so on. Impulsive differential equations are an appropriate
model to hereditary phenomena for which a delay argument arises in the mod-
elling equations. For more details for impulsive differential equation, we refer to
the monographs [2, 20] and papers [3, 4, 5, 6, 19, 21, 22, 27] and references given
therein.

In this article, we investigate the existence and uniqueness of solution for impul-
sive differential equation with iterated deviating arguments in a complex Banach
space (E, ‖ · ‖). We study the differential equation

d

dt
[u(t) +G(t, u(a(t)))] = −A(t)[u(t) +G(t, u(a(t)))]

+ F (t, u(t), u(h1(t, u(t)))), t > 0
(1.1) geq1

u(0) = u0, u0 ∈ E, (1.2)

∆u(ti) = Ii(u(ti)), i = 1, . . . , δ ∈ N, (1.3) geq2

where h1(t, u(t)) = b1(t, u(b2(t, . . . , u(bδ(t, u(t))) . . . ))) and−A(t) : D(A(t)) ⊆ E →
E, t ≥ 0 is a closed densely defined linear operator. The functions F , bi, G,
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Ii : E → E (i = 1, . . . , δ) are appropriate functions to be mentioned later. Here,
0 = t0 < t1 < · · · < tδ < tδ+1 = T are fixed numbers, 0 < T < ∞, ∆u|t=ti =
u(t+i )− u(t−i ) and u(t−i ) = limε→0− u(ti + ε) and u(t+i ) = limε→0+ u(ti + ε) denote
the left and right limits of u(t) at t = ti, respectively. In (1.1), −A(t) is assumed to
be the infinitesimal generator of an analytic semigroup of bounded linear operators
on a Banach space E.

A Differential equation with a deviated argument is a valuable tool for the model-
ing of many phenomena in several fields of science and engineering such as theory of
automatic control, biological systems, problems of long-term planning in economics,
theory of self-oscillating systems, study of problems related to combustion in rocket
motion and so on. The existence and uniqueness of the solution to the differential
equations with deviated argument have been discussed by many authors (see [11]-
[14]). For a detailed discussion of differential equations with iterated deviating ar-
guments, we refer to monograph [7] and papers [11, 12, 14, 17, 19, 21, 23, 25, 28, 29]
and references given therein.

The existence and uniqueness of the solution for the following problem with a
deviated argument has been established by Gal [11],

u′(t) = Au(t) + F (t, u(t), u(h(u(t), t))), t > 0, (1.4)

u(0) = u0, u0 ∈ E, (1.5)

in a Banach space (E, ‖·‖). Where −A generates an analytic semigroup of bounded
linear operators on E and the function F : [0,∞) × Eα × Eα−1 → E, h : Eα ×
[0,∞) → [0,∞) are Hölder continuous with exponent µ1 ∈ (0, 1] and µ2 ∈ (0, 1]
respectively. For 0 < α ≤ 1, Eα denotes the domain of (−A)α which is a Banach
space with the norm ‖u‖α = ‖(−A)αu‖, u ∈ D((−A)α).

In [14], authors considered the following problem in a Banach space (E, ‖ · ‖),

u′(t) +A(t)u(t) = F (t, u(t), u(h(u(t), t))), t > 0, (1.6) req1

u(0) = u0, u0 ∈ E, (1.7)

where A is a closed, densely defined linear operator with domain D(A) ⊂ E. In
(1.6), −A generates an analytic semigroup of bounded linear operators on Banach
space E. The function F : R × Eα × Eα−1 → E, h : Eα × R+ → [0,∞) are
appropriated functions. The authors have established the existence of the solution
for (1.6) by using Banach fixed point theorem.

The rest of this article is organized as follows: Section 2 provides some basic
definitions, lemmas and theorems, assumptions as these are useful for proving our
results. Section 3 focuses on the existence of a mild solution to problem (1.1)-(1.3).
Section 4 present an example to illustrate the theory.

2. Preliminaries

In this section, we provide basic definitions, preliminaries, lemmas and assump-
tions which are useful for proving main result in later section.

Throughout the work, we assume that (E, ‖ · ‖) is a complex Banach space.
The notation C([0, T ], E) stands for the space of E-valued continuous functions on
[0, T ] with the norm ‖z‖ = sup{‖z(τ)‖, τ ∈ [0, T ]} and L1([0, T ], E) denotes the
space of E-valued Bochner integrable functions on [0, T ] endowed with the norm
‖F‖L1 =

∫ T
0
‖F(t)‖dt, F ∈ L1([0, T ], E). We denote by Cβ([0, T ];E) the space of
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all uniformly Hölder continuous functions from [0, T ] into E with exponent β > 0.
It is easy to verify that Cβ([0, T ];E) is a Banach space with the norm

‖y‖Cβ([0,T ];E) = sup
0≤t≤T

‖y(t)‖+ sup
0≤t,s≤T, t 6=s

‖y(t)− y(s)‖
|t− s|β

. (2.1)

Let {A(t) : 0 ≤ t ≤ T}, T ∈ [0,∞) be a family of closed linear operators on the
Banach space E. We impose following restrictions as [8]:

(P1) The domain D(A) of {A(t) : t ∈ [0, T ]} is dense in E and D(A) is indepen-
dent of t.

(P2) For each 0 ≤ t ≤ T and Reλ ≤ 0, the resolvent R(λ;A(t)) exists and there
exists a positive constant K (independent of t and λ) such that

‖R(λ;A(t))‖ ≤ K/(|λ|+ 1), Reλ ≤ 0, t ∈ [0, T ].

(P3) For each fixed ξ ∈ [0, T ], there are constants K > 0 and 0 < µ ≤ 1 such
that

‖[A(τ)−A(s)]A−1(ξ)‖ ≤ K|τ − s|µ, for all τ, s ∈ [0, T ] (2.2)

where µ and K are independent of τ, s and ξ.

The assumptions (P1)–(P3) allow the existence of a unique linear evolution system
(linear evolution operator) U(t, s), 0 ≤ s ≤ t ≤ T which is generated by the
family {A(t) : t ∈ [0, T ]} and there exists a family of bounded linear operators
{Φ(t, s) : 0 ≤ s ≤ t ≤ T} such that ‖Φ(t, s)‖ ≤ K

|t−s|1−µ . We also have that U(t, s)
can be written as

U(t, s) = e−(t−s)A(t) +
∫ t

s

e−(t−τ)A(τ)Φ(τ, s)dτ. (2.3)

Assumption (P2) guarantees that −A(s), s ∈ [0, T ] is the infinitesimal generator
of a strongly continuous analytic semigroup {e−tA(s) : t ≥ 0} in B(E), where the
symbol B(E) stands for the Banach algebra of all bounded linear operators on E.

The assumptions (P1)–(P3) allow the existence of a unique fundamental solution
{U(t, s) : 0 ≤ s ≤ t ≤ T} for the homogenous Cauchy problem such that

(i) U(t, s) ∈ B(E) and the mapping (t, s) → U(t, s)z is continuous for z ∈ E,
i.e., U(t, s) is strongly continuous in t, s for all 0 ≤ s ≤ t ≤ T .

(ii) For each z ∈ E, U(t, s)z ∈ D(A), for all 0 ≤ s ≤ t ≤ T .
(iii) U(t, τ)U(τ, s) = U(t, s) for all 0 ≤ s ≤ τ ≤ t ≤ T .
(iv) For each 0 ≤ s < t ≤ T , the derivative ∂U(t,s)

∂t exists in the strong operator
topology and an element of B(E), and strongly continuous in t, where
s < t ≤ T .

(v) U(t, t) = I.
(vi) ∂U(t,s)

∂t +A(t)U(t, s) = 0 for all 0 ≤ s < t ≤ T .

We have also the following inequalities:

‖e−tA(τ)‖ ≤ Ke−dt, t ≥ 0; (2.4)

‖A(τ)e−tA(τ)‖ ≤ Ke−dt

t
, t > 0, (2.5)

‖A(t)U(t, τ)‖ ≤ K|t− τ |−1, 0 ≤ τ ≤ t ≤ T. (2.6)
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for all τ ∈ [0, T ]. Where d is a positive constant. For α > 0, we may define the
negative fractional powers A(t)−α as

A(t)−α =
1

Γ(α)

∫ ∞
0

sα−1e−sA(t)ds. (2.7)

Then, the operator A(t)−α is a bounded linear and one to one operator on E.
Therefore, it implies that there exists an inverse of the operator A(t)−α. We can
define A(t)α ≡ [A(t)−α]−1 which is the positive fractional powers of A(t). The
operator A(t)α ≡ [A(t)−α]−1 is a closed densely defined linear operator with domain
D(A(t)α) ⊂ E and for α < β, we get D(A(t)β) ⊂ D(A(t)α). Let Eα = D(A(0)α)
be a Banach space with the norm ‖y‖α = ‖A(0)αy‖. For 0 < ω1 ≤ ω2, we have
that the embedding Eω2 ↪→ Eω1 is continuous and dense. For each α > 0, we may
define E−α = (Eα)∗, which is the dual space of Eα. The dual space is a Banach
space with natural norm ‖y‖−α = ‖A(0)−αy‖.

In particular, by the assumption (P3), we conclude a constant K > 0, such that

‖A(t)A(s)−1‖ ≤ K, for all 0 ≤ s, t ≤ T. (2.8)

For 0 < α ≤ 1, let Uα and Uα−1 be open sets in Eα and Eα−1, respectively.
For every v′ ∈ Uα and v′′ ∈ Uα−1, there exist balls such that Bα(v′, r′) ⊂ Uα
and Bα−1(v′′, r′′) ⊂ Uα−1, for some positive numbers r′ and r′′. Let F , a, h and
Ii (i = 1, . . . , δ) be the continuous functions satisfying following conditions:

(P4) The nonlinear map F : [0, T ]×Uα×Uα−1 → E is a Hölder continuous and
there exist positive constants LF ≡ LF (t, v′, v′′, r′, r′′) and 0 < µ1 ≤ 1 such
that

‖F (t, z1, w1)− F (s, z2, w2)‖
≤ LF (|t− s|µ1 + ‖z1 − z2‖α + ‖w1 − w2‖α−1),

(2.9) Feq1

for all (z1, w1), (z2, w2) ∈ Bα ×Bα−1 and s, t ∈ [0, T ].
(P5) The functions bi : [0,∞) × Uα−1 → [0,∞), (i = 1, . . . , δ) are continuous

functions and there are positive constants Lbi ≡ Lbi(t, v′, r′) and 0 < µ2 ≤ 1
such that

|bi(t, z)− bi(s, w)| ≤ Lbi(|t− s|µ2 + ‖z − w‖α−1), (2.10) aeq1

for all (t, z), (s, w) ∈ [0, T ]×Bα.
(P6) For 0 ≤ α < β < 1, G : [0, T ]× Uα−1 → Eβ is a continuous map and there

exists a positive constant LG = LG(t, v′′, r′′, β) such that

‖AβG(t1, z1)−AβG(t2, z2)‖ ≤ LG[|t1 − t2|+ ‖z1 − z2‖α−1], (2.11)

4LG‖A(0)α−β−1‖ < 1, (2.12)

for each (t1, z1), (t2, z2) ∈ [0, T ]×Bα−1.
(P7) The function a : [0, T ] → [0, T ] is a continuous function and satisfies the

following conditions:
(i) a(t) ≤ t for all t ∈ [0, T ].
(ii) There exist a constant La > 0 such that

|a(t1)− a(t2)| ≤ La|t1 − t2|, (2.13)

for all t1, t2 ∈ [0, T ] and La‖A−1‖ < 1.
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(P8) Ii : Uα → Uα (i = 1, . . . , δ) are continuous functions and there exist positive
constants Li ≡ Li(t, v′, r′) such that

‖Ii(z)− Ii(w)‖α ≤ Li‖z − w‖α, i = 1, . . . , δ, (2.14)

‖Ii(z)‖ ≤ Ci, i = 1, . . . , δ, (2.15)

for all z, w ∈ Bα, where Ci are positive constants.

Now, we turn to the Cauchy problem which is illustrated as follows,

u′(t) = −A(t)u(t) + f(t), (2.16) cheq1

u(t0) = u0, t ≥ 0. (2.17) cheq2

thm1 Theorem 2.1 ([26]). Assume that (P1)–(P3) hold. If f is a Hölder continuous
function from [t0, T ] into E with exponent β. Then, there exists a unique solution
of the problem (2.16)-(2.17) given by

u(t) = U(t, t0)u0 +
∫ t

t0

U(t, s)f(s)ds, ∀t0 ≤ t ≤ T. (2.18)

Indeed, u : [t0, T ]→ E is strongly continuously differentiable solution on (t0, T ].

We also have following results.

lem1 Lemma 2.2 ([8]). Suppose that (P1)–(P3) are satisfied. If 0 ≤ γ ≤ 1, 0 ≤ β ≤
α < 1 + µ, 0 < α− γ ≤ 1, then for any 0 ≤ τ < t < t+ ∆t ≤ t0, 0 ≤ ζ ≤ T ,

‖Aγ(ζ)[U(t+ ∆t, τ)− U(t, τ)]A−β(τ)‖ ≤ K(γ, β, α)(∆t)α−γ |t− τ |β−α. (2.19)

lem2 Lemma 2.3 ([8]). Suppose that (P1)–(P3) are satisfied and let 0 ≤ γ < 1. Then
for any 0 ≤ τ ≤ t ≤ t+ ∆t ≤ t0 and for any continuous function f(s),

‖Aγ(ζ)[
∫ t+∆t

t

U(t+ ∆t, s)f(s)ds−
∫ t

τ

U(t, s)f(s)ds]‖

≤ K(γ)(∆t)1−γ(| log(∆t)|+ 1) max
τ≤s≤t+∆t

‖f(s)‖.
(2.20)

For more details, we refer to the monographs [8, 26].

3. Existence result

In this section, the existence of mild solution for the problem (1.1)–(1.3) is
established by using fixed point theorem. Let (E, ‖ · ‖) be a complex Banach space.
The symbol CT0

α denotes the Banach space of all Eα-valued continuous functions
on J = [0, T0], 0 < T0 < T < ∞ endowed with the sup-norm supt∈J ‖z(t)‖, z ∈
C(J ;Eα).

We choose T0 sufficiently small, 0 < T0 < T such that

‖(U(t, 0)− I)(u0 +G(0, u0))‖α +K(α)
∑

0<ti<t

Ci ≤
r

6
, ∀t ∈ [0, T0], (3.1)

‖G(t, u(a(t)))−G(0, u0)‖α ≤
r

6
, t ∈ [0, T0], (3.2)

K(α)N
T0

1−α

1− α
≤ 2r

3
, ∀t ∈ [0, T0]. (3.3)
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We define
Y = PC([0, T0];Eα) = PC(Eα)

=
{
u : J → Eα : u ∈ C((ti, ti+1], Eα), i = 1, . . . , δ

and u(t+i ), u(t−i ) = u(ti) exist
}
.

(3.4)

Clearly, the space Y is a Banach space with the supremum norm

‖u‖PC,α = max{sup
t∈J
‖u(t+ 0)‖α, sup

t∈J
‖u(t− 0)‖α}. (3.5)

Consider

Yα−1 = PCL(J ;Eα−1) =
{
u ∈ Y : ‖u(t)− u(s)‖α−1 ≤ L|t− s|,

for all t, s ∈ (ti, ti+1], i = 0, 1, . . . , δ
}
,

(3.6)

where L > 0 is a constant to be defined later. It is easy to see that Yα−1 is a
Banach space under the supremum norm of CT0

α = C(J,Eα).
Before expressing and demonstrating the main result, we present the definition

of the mild solution to the problem (1.1)-(1.3).

def3.1 Definition 3.1. A piecewise continuous function u(·) : [0, T0] → E is called a
mild solution for the problem (1.1)-(1.3) if u(0) = u0 and u(·) satisfies the integral
equation

u(t) = U(t, 0)[u0 +G(0, u0)]−G(t, u(a(t)))

+
∫ t

0

U(t, s)F (s, u(s), u(h1(s, u(s))))ds+
∑

0<ti<t

U(t, ti)Ii(u(t−i )).
(3.7)

Let 0 < η < β − α be the fixed constants. For 0 < α ≤ 1, let

Sα =
{
y ∈ Y ∩ Yα−1 : y(0) = u0, sup

t∈J
‖y(t)− u0‖α ≤ r,

‖y(t1)− y(t2)‖α ≤ P |t1 − t2|η for all t1, t2 ∈ J
}
,

(3.8)

where P and r are positive constants to be defined later. Thus, Sα is a non-empty
closed and bounded subset of Yα−1. Next, we prove the following theorem for the
existence of a mild solution to the problem (1.1). We adopt the ideas of Friedman
[8] and Gal [11] to prove the theorem.

thm3.1 Theorem 3.2. Let u0 ∈ Eβ, where 0 < α < β ≤ 1. Suppose that assumptions
(P1)–(P8) are satisfied and

‖A(0)α−β‖LG +K(α)LF (2 + LLb)
T 1−α

0

(1− α)
+K(α)

δ∑
i=1

Li < 1. (3.9) thmeq1

Then, there exists a unique solution u(t) ∈ Sα for the problem (1.1)-(1.3) on [0, T0].

Proof. Let us assume that u0 ∈ Eβ . We define a map Q : Sα → Sα by

Qu(t) = U(t, 0)(u0 +G(0, u0))−G(t, u(a(t)))

+
∫ t

0

U(t, s)F (s, u(s), u(h1(u(s), s)))ds

+
∑

0<ti<t

U(t, ti)Ii(u(t−i )), u ∈ Sα, t ∈ [0, T0].

(3.10)
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We firstly claim that Q(Sα) ⊂ Sα. Clearly, it can easily be shown that Qu ∈ Y .
Now, we want to show that Qu ∈ Yα−1. Indeed, if τ1, τ2 ∈ J with τ2 > τ1, then we
have
‖Qu(τ2)−Qu(τ1)‖α−1 ≤ ‖[U(τ2, 0)− U(τ1, 0)](u0 +G(0, u0))‖α−1

+ ‖G(τ2, u(a(τ2)))−G(τ1, u(a(τ1)))‖α−1

+
∥∥∥[ ∫ τ2

0

U(τ2, s)F (s, u(s), u(h1(u(s), s)))ds

−
∫ τ1

0

U(τ1, s)F (s, u(s), u(h1(u(s), s)))ds
]∥∥∥
α−1

+
∑

0<ti<t

‖[U(τ2, ti)− U(τ1, ti)]Ii(u(t−i ))‖α−1,

(3.11) eqcts1

From Lemma 2.2 for the first term on the right hand side of (3.11), we obtain

‖[U(τ2, 0)− U(τ1, 0)](u0 +G(0, u0))‖α−1 ≤ K1‖(u0, G(0, u0))‖α(τ2 − τ1), (3.12) fteq1

where K1 is some positive constant. By the assumptions (P6) and (P7), it follows
that

‖G(τ2, u(a(τ2)))−G(τ1, u(a(τ1)))‖α−1 ≤ K2|τ2 − τ1|, (3.13)

where K2 = ‖A(0)α−β−1‖LG(1 +LLa) is a positive constant. By using Lemma 2.3
[8, Lemma 14.4], third term on the right hand side of the inequality (3.11) can be
calculated as ∥∥∥[ ∫ τ2

0

U(τ2, s)F (s, u(s), u(h1(u(s), s)))ds

−
∫ τ1

0

U(τ1, s)F (s, u(s), u(h1(u(s), s)))ds
]∥∥∥
α−1

≤ K3N
(
| log(τ2 − τ1)|+ 1

)
(τ2 − τ1),

(3.14) steq1

where N = sup
0≤s≤T

‖F (s, u(s), u(h1(u(s), s)))‖ and K3 are positive constants de-

pending on α. By Lemma 2.2, we conclude the last term of the right hand side of
(3.11),

‖[U(τ2, ti)− U(τ1, ti)]Ii(u(t−i ))‖ ≤ K4Ci(τ2 − τ1), (3.15) tteq1

where K4 is some positive constant and∑
0<ti<t

‖Ii(u(t−i ))‖ ≤
∑

0<ti<t

Ci, i = 1, . . . , δ.

From equations (3.11)-(3.14) and (3.15), we obtain

‖Qu(τ2)−Qu(τ1)‖α−1 ≤ L|τ2 − τ1|, (3.16)

where L is a constant such that

L = max
{
K1(u0, G(0, u0)),

‖A(0)α−β−1‖LG
1− LaLG‖A(0)α−β−1‖

,

K3N(log |(τ2 − τ1)|+ 1),
∑

0<ti<t

K4Ci},

which depends on K1,K2,K3, N, T0. Thus, we get Qu ∈ Yα.
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Next, we show that supt∈J ‖(Qu)(t) − u0‖α ≤ r for t ∈ [0, T0]. Since u0 ∈ Eα.
For u ∈ Sα, we have

‖Qu(t)− u0‖α ≤ ‖(U(t, 0)− I)(u0 +G(0, u0))‖α + ‖G(t, u(a(t)))−G(0, u0)‖α

+
∫ t

0

‖U(t, s)F (s, u(s), u(h1(u(s), s)))‖αds

+
∑

0<ti<t

‖U(t, ti)Ii(u(t−i ))‖α,

(3.17) beq12

Since u0 ∈ Eα and u0 + G(0, u0) ∈ Eα and for t ∈ [0, T0], we have following
inequalities

‖(U(t, 0)− I)(u0 +G(0, u0))‖α +K(α)
∑

0<ti<t

Ci ≤
r

6
, ∀t ∈ [0, T0], (3.18) beq2

‖G(t, u(a(t)))−G(0, u0)‖α ≤ LG[T0 + r] ≤ r

6
, t ∈ [0, T0], (3.19) beq01

K(α)N
T0

1−α

1− α
≤ 2r

3
, ∀t ∈ [0, T0]. (3.20) beq4

We estimate the third term on the right hand side of equation (3.17) as [see [8,
(14.13)page 160 and Line 12 page 163]]

‖
∫ t

0

U(t, s)F (s, u(s), u(h1(u(s), s)))ds‖α ≤ K(α)N
∫ t

0

(t− s)−αds

≤ K(α)N
T0

1−α

1− α
.

(3.21) beq3

Thus, from (3.17), (3.18),(3.20) and (3.21), we conclude that

sup
t∈J
‖(Qu)(t)− u0‖α ≤ r, t ∈ [0, T0], (3.22)

Now, we show that ‖Qu(t + h)−Qu(t)‖α ≤ Phη for 0 < η < 1 and some positive
constant P . If 0 ≤ t ≤ t+ h ≤ T0, then for 0 ≤ α < β ≤ 1, we have

‖Qu(t+ h)−Qu(t)‖α
≤ ‖[U(t+ h, 0)− U(t, 0)](u0 +G(0, u0)‖α + ‖G(t+ h, u(a(t)))−G(t, u(a(t)))‖α

+
∥∥∥[ ∫ t+h

0

U(t+ h, s)F (s, u(s), u(h1(u(s), s)))ds

−
∫ t

0

U(t, s)F (s, u(s), u(h1(u(s), s)))ds
]∥∥∥
α

+
∑

0<ti<t

‖[U(t+ h, ti)− U(t, ti)]Ii(u(t−i ))‖α,

(3.23) kp

From Lemmas 2.2 and 2.3, [8, Lemmas 14.1, 14.4], we obtain the following results

‖[U(t+ h, 0)− U(t, 0)]u0‖α ≤ K(α)‖u0 +G(0, u0))‖βhβ−α, (3.24) peq1

‖[U(t+ h, ti)− U(t, ti)]Ii(u(t−i ))‖α ≤ K(α)hβ−α‖Ii(u(t−i ))‖β , (3.25) peq2

‖G(t+ h, u(a(t+ h)))−G(t, u(a(t)))‖α ≤ ‖A(0)α−β‖LG(1 + LaL)h (3.26) peq21
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‖
∫ t+h

0

U(t+ h, s)F (s, u(s), u(h1(u(s), s)))ds

−
∫ t

0

U(t, s)F (s, u(s), u(h1(u(s), s)))ds‖α

≤ K(α)Nh1−α(1 + | log(h)|).

(3.27) peq3

Using (3.24)-(3.27) in (3.23), we obtain

‖Qu(t+ h)−Qu(t)‖α
≤ hη[K‖u0 +G(0, u0)‖T0

β−α−η + ‖A(0)α−β‖LG(1 + LaL)h1−γ

+K(α)NT0
ςh1−α−η−ς(1 + | log(h)|) +K(α)hβ−α−η‖Ii(u(t−i ))‖β ],

(3.28)

where ς > 0 is a positive constant and ς < 1− α− η. Thus, for t ∈ [0, T0],

‖Qu(t+ h)−Qu(t)‖ ≤ Phη, (3.29)

for P > 0 defined as

P = K‖u0 +G(0, u0)‖T0
β−α−η + ‖A(0)α−β‖LG(1 + LaL)h1−γ

+K(α)NT0
ςh1−α−η−ς(1 + | log(h)|) +K(α)hβ−α−η‖Ii(u(t−i ))‖β .

(3.30)

Hence Q : Sα → Sα. Now, it remains to show that Q is a contraction map. For
z1, z2 ∈ Sα and t ∈ [0, T0], we have

‖(Qz1)(t)− (Qz2)(t)‖α
≤ ‖G(t, z1(a(t)))−G(t, z2(a(t)))‖α

+K(α)
∫ t

0

(t− s)−α[‖F (s, z1(s), z1(h1(s, z1(s))))

− F (s, z2(s), z2(h1(s, z2(s))))‖]ds

+
∑

0<ti<t

‖U(t, ti)[Ii(z1(t−i ))− Ii(z2(t−i ))]‖α.

(3.31) conteq1

Now, we estimate

‖F (t, z1(t), z1(h1(t, z1(t))))− F (t, z2(t), z2(h1(t, z2(t))))‖
≤ LF [‖z1(t)− z2(t)‖α + ‖z1(h1(t, z1(t)))− z2(h1(t, z2(t)))‖α−1]

≤ LF [‖z1(t)− z2(t)‖α + ‖A−1‖ ‖z1(h1(t, z2(t)))− z2(h1(t, z2(t)))‖α
+ ‖z1(h1(t, z1(t)))− z1(h1(t, z2(t)))‖α−1].

(3.32)

Let

hj(t, u(t)) = bj(t, u(bj+1(t, . . . u(t, bδ(t, u(t))) . . . ))), j = 1, 2, . . . , δ, u ∈ Sα,
with hδ+1(t, u(t)) = t [29, p. 2183].

Using the bounded inclusion Eα ↪→ Eα−1, we obtain

‖z1(hj(t, z2(t)))− z2(hj(t, z2(t)))‖α−1

= ‖Aα−1z1(hj(t, z2(t)))− z2(hj(t, z2(t)))‖,
≤ ‖A−1‖ × ‖z1(hj(t, z2(t)))− z2(hj(t, z2(t)))‖α.

(3.33)

Since hj ∈ R+, we have

‖z1(t)− z2(t)‖α = sup
hj(t,z2(t))∈[0,t]

‖z1(hj(t, z2(t)))− z2(hj(t, z2(t)))‖α.
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Therefore,

‖z1(hj(t, z2(t)))− z2(hj(t, z2(t)))‖α−1 ≤ ‖(A)−1‖ sup
t∈[0,T0]

‖z1(t)− z2(t)‖α,

≤ ‖A−1‖ × ‖z1 − z2‖PC,α.

Thus, we can estimate

|h1(t, z1(t))− h1(t, z2(t))|
= |b1(t, z1(h2(t, z1(t))))− b1(t, z2(h2(t, z2(t))))|,
≤ Lb1‖z1(h2(t, z1(t)))− z2(h2(t, z2(t)))‖α−1,

≤ Lb1 [‖z1(h2(t, z1(t)))− z1(h2(t, z2(t)))‖α−1,

+ ‖z1(h2(t, z2(t)))− z2(h2(t, z2(t)))‖α−1],

≤ Lb1 [L|b2(t, z1(h3(t, z1(t)))− b2(t, z2(h3(t, z2(t)))|+ ‖A−1‖ × ‖z1 − z2‖PC,α],
. . . ,

≤ [Lδ−1Lb1 . . . Lbδ + Lδ−2Lb1 . . . Lbδ−1 + · · ·+ LLb1Lb2
+ Lb1 ]‖A−1‖ × ‖z1 − z2‖PC,α.

Therefore, we have

‖F (t, z1(t), z1(h1(t, z1(t))))− F (t, z2(t), z2(h1(t, z2(t))))‖
≤ LF (2 + LLb‖A−1‖)‖z1 − z2‖PC,α
≤ LF (2 + LLb)‖z1 − z2‖PC,α,

(3.34) feq3

where Lb = [Lδ−1Lb1 . . . Lbδ+Lδ−2Lb1 . . . Lbδ−1+· · ·+LLb1Lb2+Lb1 ] > 0. Similarly,

‖G(t, z1(a(t)))−G(t, z2(a(t)))‖α ≤ ‖A(0)α−β‖LG
[
‖z1(t)− z2(t)‖α

]
. (3.35) geq3

Using inequalities (3.34), (3.35) in (3.31), we deduce that

‖(Qz1)(t)− (Qz2)(t)‖α ≤
[
‖A(0)α−β‖LG +K(α)LF (2 + LLb)

T 1−α
0

(1− α)

+K(α)
δ∑
i=1

Li

]
sup
t∈J
‖z1(t)− z2(t)‖α

(3.36)

Thus, for t ∈ [0, T0],

‖(Qz1)− (Qz2)‖PC,α

≤
[
‖A(0)α−β‖LG +K(α)LF (2 + LLb)

T 1−α
0

(1− α)
+K(α)

δ∑
i=1

Li

]
‖z1 − z2‖PC,α.

From inequality (3.9), we get that Q is a contraction map. Since Sα is a closed
subset of Banach space Y = PC([0, T0];Eα), therefore Sα is a complete metric
space. Thus, by Banach fixed point theorem, there exists a unique fixed point
u ∈ Sα of map Q which is unique fixed point, i.e., Qu(t) = u(t). From the Theorem
(2.1), we conclude that u is a solution for system (1.1)-(1.3) on [0, T0]. �
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4. Example

In this section, we consider an example to illustrate the discussed theory. We
study the following differential equation with deviated argument
∂t[v(t, x) + ∂xF1(t, v(b(t), x))]− ∂x(p(t, x)∂x)[v(t, x) + ∂xF1(t, v(b(t), x))],

= H̃(x, v(t, x)) + G̃(t, x, v(t, x)); 0 < x < 1, t ∈ (0,
1
2

) ∪ (
1
2
, 1)

(4.1) example1

v(t, 0) = v(t, 1) = 0, t > 0, (4.2)

v(0, x) = u0(x), x ∈ (0, 1), (4.3)

∆v|t=1/2 =
v( 1

2 )−

5 + v( 1
2 )−

, (4.4) example2

where

H̃(x, v(x, t)) =
∫ x

0

K(x, y)v(y,N(t))dy,

N(t) = g1(t)|v(x, g2(t)|v(x, . . . gδ(t)|v(x, t)|)|)|,

and the map G̃ ∈ C(R+ × [0, 1]×R; R) is locally Lipschitz continuous in v, locally
Hölder continuous in t, measurable and uniformly continuous in x. Here, we assume
that functions gi : R+ → R+, (i = 1, 2, . . . , δ) are locally Hölder continuous in t
such that gi(0) = 0 and K : [0, 1]× [0, 1]→ R is continuously differentiable function
i.e., K ∈ C1([0, 1]× [0, 1],R).

We assume that p is a function which is positive and has continuous partial
derivative px such that for each τ ∈ [0,∞) and 0 < x < 1, we have

(i) 0 < p0 ≤ p(τ, x) < p′0,
(ii) |px(τ, x)| ≤ p1,

(iii) |p(τ, x)− p(s, x)| ≤ C|τ − s|ε,
(iv) |px(τ, x)− px(s, x)| ≤ C|τ − s|ε,

for some ε ∈ (0, 1] and some constants p0, p
′
0, p1, C > 0. Let us consider E =

L2((0, 1); R) and

− ∂

∂x
(p(t, x)

∂

∂x
u(t, x)) = A(t)u(t, x),

with E1 = D(A(0)) = H2(0, 1) ∩ H1
0 (0, 1), E1/2 = D((A(0))1/2) = H1

0 (0, 1).
Clearly, the family {A(t) : t > 0} satisfies the hypotheses (P1)–(P3) on each
bounded interval [0, T ].

Now, we define the function f : R+ ×H2(0, 1)× E−1/2 → E as

f(t, ξ, ζ)(x) = H̃(x, ζ) + G̃(t, x, ξ), for x ∈ (0, 1), (4.5)

where H̃ : [0, 1]× E−1/2 → E is defined as

H̃(x, ζ) =
∫ x

0

K(x, y)ζ(y)dy, (4.6)

and G̃ : R+ × [0, 1]× E1/2 → E satisfies following condition

‖G̃(t, x, ξ)‖ ≤W (x, t)(1 + ‖ξ‖1/2), (4.7)

where Q is continuous in t and Q(·, t) ∈ X. Also, we assume that the map G :
R+ ×H1

0 (0, 1)→ L2(0, 1) is such that

G(t, v(b(t)))(x) = ∂xF1(t, v(b(t), x))
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and satisfies the assumption (P7). There are some possibilities of the map b as
follows:

(i) b(t) = lt for t ∈ [0, T ] and 0 < l ≤ 1;
(ii) b(t) = ltn for t ∈ [0, 1], n ∈ N and 0 < l ≤ 1;
(iii) b(t) = l sin(t) for t ∈ [0, π/2] and 0 < l ≤ 1.

For v ∈ D(A) and λ ∈ R, with Av = λv, we have that

− ∂

∂x
(p(t, x)

∂

∂x
v(x)) = λv(x),

which is the standard Strum-Liouville problem having real eigenvalues. For v ∈
D(A) and λ ∈ R, with Av = λv = − ∂

∂x (p(t, x) ∂
∂xv(x)), we have that 〈Av, v〉 =

〈λv, v〉; that is,

〈− d

dx
(p(t, x)v′), v〉 = 〈p(t, x)v′, v′〉 ≥ p0‖v′‖2L2 (4.8)

Since we assume that p is a positive function with p′0 > p(t, x) > p0 > 0, where p0

is constant. Thus, we get λ|y|2L2 ≥ p0‖v′‖2L2 > 0. So λ > 0. In particular case for
p(t, x) = 1, we have

v′′ + λv = 0. (4.9) FQ1

Case 1 λ = 0. Then solution of above equation is v = C1x+ C2. Using boundary
condition v(0) = v(1) = 0, we get C1 = C2 = 0. Thus, v(x) = 0 be the solution of
v′′ = 0, which is not an eigenfunction.
Case 2 Let λ = −µ2 and µ 6= 0. Then equation (4.9) reduce to

[D2 − µ2]v = 0 (4.10) FQ2

whose auxiliary equation is D2 − µ2 = 0 i.e. D = ±µ. Thus solution of (4.10) is

v(x) = C1e
µx + C2e

−µx, (4.11) FQ3

Using the boundary conditions, we get C1 = C2 = 0. Thus, (4.11) gives v = 0
which is not an eigenfunction.
Cases 3 Let λ = µ2 with µ 6= 0. Thus, equation (4.9) reduce to

[D2 + µ2]v = 0. (4.12) FQ4

Therefore, the solution of (4.12) is

y = C1 sin(µx) + C2 cos(µx). (4.13) FQ5

Using the condition v(0) = v(1) = 0, we get C2 = 0 and C1 sin(µ) = 0. For the
non-trivial solution, we have C1 6= 0 and sin(µ) = 0. Thus, µ = nπ. Therefore
λn = µ2 = n2π2, n ∈ N. Hence, (4.13) reduces to v(x) = C1 sin(nπx) for n = 1, . . . ,
and then λ = µ2 = n2π2, n = 1, 2, . . . ,. Hence the required eigenfunction vn(x)
with the corresponding eigenfunction λn are given by

vn = C1 sin(
√
λnx), λn = n2π2, n = 1, 2, . . . .

Next, we show that H̃ : [0, 1]× E−1/2 → E is defined as

H̃(x, ζ(x, t)) =
∫ x

0

K(x, y)ζ(y, t)dy, (4.14)

where ζ(x, t) = v(x, h1(t, v(x, t))). It is easy to verify that f = H̃ + G̃ satisfies the
assumption (P4). Similarly, we show that the maps bi : [0, T ] × E−1/2 → [0, T ]
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defined as bi(t) = gi(t)|ξ(x, ·)| for i = 1, 2, . . . , δ and satisfies the assumption (P5).
For each t ∈ [0, T ], we get

|bi(t, ξ)| = |gi(t)||ξ(x, ·)| ≤ |gi|∞‖ξ‖L∞(0,1) ≤ N‖ξ‖−1/2,

where N is a positive constant, depending on the bounds on gi’s and we use the
embedding H1

0 (0, 1) ⊂ C[0, 1]. Since we have that gi satisfies the condition

|gi(t)− gi(s)| ≤ Lgi |t− s|µ, t, s ∈ [0, T ], (4.15)

where Lgi is a positive constant and µ ∈ (0, 1]. For z1, z2 ∈ X−1/2 and t ∈ [0, T ]

|bi(t, z1)− bi(t, z2)| ≤ ‖gi‖∞‖z1 − z2‖L∞(0,1) + Lgi |t− s|µ‖z2‖L∞(0,1),

≤ N‖gi‖∞‖z1 − z2‖−1/2 + Lgi |t− s|µ‖z2‖−1/2,

≤ max{N‖gi‖∞, Lgi‖z2‖∞}(‖z1 − z2‖−1/2 + |t− s|µ).

For z1, z2 ∈ D((−A)−1/2), then

‖Ii(z1)− Ii(z2)‖1/2 ≤
‖z1 − z2‖1/2

‖(5 + z1)(5 + z2)‖1/2
≤ 1

25
‖z1 − z2‖1/2. (4.16)

Thus, we can apply the results of previous sections to obtain the existence result
of the solution for (4.1)-(4.4).
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