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ENERGY DECAY OF A VARIABLE-COEFFICIENT WAVE
EQUATION WITH NONLINEAR TIME-DEPENDENT
LOCALIZED DAMPING

JIEQIONG WU, FEI FENG, SHUGEN CHAI

ABSTRACT. We study the energy decay for the Cauchy problem of the wave
equation with nonlinear time-dependent and space-dependent damping. The
damping is localized in a bounded domain and near infinity, and the principal
part of the wave equation has a variable-coefficient. We apply the multiplier
method for variable-coefficient equations, and obtain an energy decay that
depends on the property of the coefficient of the damping term.

1. INTRODUCTION

Let n > 2 be an integer. We consider the energy decay for the solution to the
Cauchy problem of the wave equation with time-dependent and space-dependent
damping,

ug — div(A(z)Vu) +u+o(t)p(r,u;) =0, x€R™ t>0, (1.1)

u(0,2) = uo(z), w(0,2) =u1(x), =R, (1.2)

where A(z) = (a;;(z)) is a symmetric, positive matrix for each z € R"; o : RT —

RT is a non-increasing function of class C'. Let € and ; be two bounded domains
such that Q7 C . We assume that

) a(@)uy, x e R™\ O
pla,w) = {a(w)h(ut), € (1.3)

where h : R — R is a nonlinear continuous nondecreasing function satisfying
h(s)s > 0 for all s # 0 and a(-) € L*°(R™) is a nonnegative function satisfying

a(x) >eg >0, z€QUQ (1.4)

When x € 4,
erfu|™ < [h(ue)| < eaue V™, ugl <1, (1.5)
cslue] < [h(we)] < ealuel,  Jue] =1 (1.6)

where m > 1 and ¢; > 0 (i = 1,2,3,4) are given numbers.
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Since implies that the dissipation may vanish in 2\ Q1, we call the damping
o(t)p(x,us) a time-dependent localized damping,.

Many studies concerning energy decay of wave equations in the bounded domain
are available in the literature. We refer the readers to [3| 8l [0 [16]. The author of
[8] derived precise energy decay estimates for the initial-boundary value problem
to the wave equation with a localized nonlinear dissipation which depended on the
time as well as the space variable. The result of [§] is a generalization of the work
[9], where the dissipation was independent of the time. A wave equation with time-
dependent but space-independent damping was investigated in [3] and the decay
rate was obtained by solving a nonlinear ODE.

For the energy decay of wave equation in the exterior domain or on the whole
space, many results have been obtained for the case of constant coefficients, that
is A(z) = I (see [11, 2, 4, 10, 1T}, 12} 17]). The damping in [4, 1l [I'7] were time-
independent and localized in a sub-domain of R™. Energy decay of the Cauchy
problem for the wave equation with time-dependent damping was studied in [2]
where the coefficient of the damping did not depend on the space variable. It is
interesting to study the case where the damping is time-dependent and exists on
a local domain of R™. [I] addressed the decay for a wave equation on an exterior
domain where the damping is time-dependent and effective only in a ball of R™.
The dimension of the space variable was restricted to be odd since the Lax-Phillips’
scattering theory was used in [I]. Nakao [I0] considered the Cauchy problem of wave
equation with a dissipation effective outside of a given ball of R"™.

However, in the case of variable coefficient, few results about the energy decay of
wave equation in the exterior domain or on the whole space can be seen (see[5] [13]).
Yao [I3] studied the energy decay for the Cauchy problem of the variable-coefficient
wave equation with a linear damping. The authors of [5] considered the energy
decay of variable-coefficient wave equation with nonlinear damping in an exterior
domain.

The purpose of this paper is to derive the energy decay for — with the
assumptions —. Our first main goal is to dispense with the restriction
A(z) = I. We will use the Riemannian geometry method which was introduced
by Yao [I4] (see also [15]) to deal with controllability for the wave equation with
variable-coefficient principal part and has been viewed as an important method for
variable-coefficient models.

Our second goal is to generalize the work [2], where the damping exists on the
whole space. In this paper, we assume that the damping is localized near the origin
point and near infinity and may disappear in a large area. We try to explain how the
time-dependence of the damping affect the decay when the dissipation is effective
in a localized domain. Energy decay is obtained under some conditions on A(zx)
and the coefficient of the damping.

We introduce a Riemanian metric on R™ by

g(x) = A" (z) for zeR™ (1.7)

We denote by V f and V, f the gradients of f in the standard metric of the Euclidean
space R™ and in the metric g, respectively.

The energy of the model (1.1)-(1.2) is defined by

1
Bt =5 /n(uf [V gul? + u?)da. (1.8)
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where V,u = A(z)Vu and

- Ju Ju
|Vgu|3 = (Vgu,Vgu)y = (A(z)Vu, Vu) = E aij(m)i&p‘i@x"
] 4

ij=1

We refer the readers to [14] and [15] for more information about the metric g(z).
We use the following assumption in this article

(H1) There is a vector field H on (R™, g) such that
DyH(X,X)>0o|X[?, X eR}

€T

r€Q, (1.9)

where ¢ > 0 is a constant and D, is the Levi-Civita connection of the
metric g.

Our main result read as follows.

Theorem 1.1. Let (ug,u1) € H'(R™) x L?(R™). In addition to (H1) assume that
o : Rt — R is a non-increasing C* function and o(t) > oq > 0 for all t > 0.
Then (1.1)-(1.2) admits a unique solution u satisfying

1

2
mo1 X
W) 5 YVt >0 me > ].,

BE(t) < CE(O)(

and
t
E@t) < CE(O)exp(—w/ o(s)ds), Vt>0 ifm=1,
0

for some w >0 and C > 0.

2. PROOF OF MAIN RESULT

To prove our main result we use the following lemma.

Lemma 2.1 ([6]). Let E: RT — R™ be a non-increasing function and ¢ : R™ — R*
a strictly increasing C! function such that

$(0) =0, @) — 400 ast— +oo.
Assume that there exist v > 0 and w > 0 such that
1
EY ()¢ (t)dt < —E"(0)E(S), 0< 8 < +oo.
S w

Then

1 1/r
E@t) < E(O)(Hw;r;(t)) for allt >0, if r >0,

E(t) < CE(0)e'=“?®)  for allt >0, if r = 0.

To apply Lemma [2.I] we need some estimates on the energy terms, which are
based on the identities below. Multiply (L.1) by u; and integrate by parts over R™
with respect to the variable z to obtain

GEO =~ [ atp(e,uu do (21)
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Let H be a vector field on R™. Multiply (1.1)) by H(u) and integrate by parts
over R™ with respect to the variable x to obtain

4 / ueH (u)dx + DyH(V4u,Vgu)dx
1 .
+ - H(u)udz + 3 /n(uf — |Vgu|3)d1Vde (2.2)

=— /n o(t)p(x, us)H (u)dx.

Let ¢ € C*(R") be a function. Multiply (1.1)) by qu and integrate by parts over
R™ with respect to the variable x to obtain

d
a/ quu d + / q(IVgul? —u7) da — / u? div AVqdx + / qudx
RTI, RTL n

" (2.3)
=— /n quo (t)p(z, ug)dz.

Proof of Theorem[I]. Let the vector field H be such that the assumption (H1)

holds. Let Q C R™ and 2 C R” be two bounded domains such that Q ¢ O c Q c Q.
Let ¢ and 7 be two C§° functions and 0 < ¢ <1, 0 <1 <1, and

1, xGQ, 17 Z'EQ,
= . A P = A (2.4)
0, z€Q°=R"\Q, 0, zeR"\ Q.

Let go = M — dp. Replacing H by ¢H in (2.2)) and replacing ¢ by ¢o in (2.3)),
respectively, we can obtain two identities. Then we add them up and obtain

d
7 (utng(u) + qouut)dm + Dy(¢H)(Vgu, Vgu)de
R R

+/ wH(uw)udz —|—/ o(ui — |Vgu|£27)dx
! R (2.5)
—/ |u\2diV(ng0)dx—|—/ qou?dz

— [ aowothp(o.w)ds~ [ ool u)eH (s
Let k be a large constant determined later. Combining (2.1)) with (2.5)), we have

d
% (upH (u) + qouwy)dx + kE'(t) + | Dy(pH)(Vgu, Vgu)dz
R® Rr

+/ cpH(u)ud;U+/ ap(u? — |Vgu|3)dx7/ lu? div(V 4q0)dz
+ / qou’da (2.6)
— [ awop(e,uis - [ oOpleupt (wds

R’n n

—k /n o(t)p(z, u)ug de.
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Set

Y(t) = Dy(pH)(Vgu, Vgu)d:ch/ 6<p(uf—|vgu\§)dz+k/ o(t)p(z, ur)ug de.
R’n Rn n

Set o1 = supg |Dy(¢H)(X, X)|. Noticing (1.3),(L.4),(L.9) and (2.4), we have the

following estimates on Y (¢):

Y(t) > Dy(p)H(Vgu,Vgu)dx —|—/

> Gpuidr — / 5<p|Vgu|§ dx
O\Q R7\Q O\Q

k k
+ - / oo (t)uldx +/ gudr + 3k o(t)p(x,uy)u, da

k
> (-0 — 6)/ |Vgu|3dm + / (=eoo(t) + o) ujda
aQ r\Q 4
_ 3k
+ [ ouidz+ T o(t)p(z, ur)us de .
Q n

Noticing o(t) > o9 > 0, we choose k large enough so that ’“f%ao > &. Then we have

3

k
Y(t)z/ 6|ut|2dx—ﬁ (01+6)|Vgu|!2]—|—1/ o(O)p(z,u)usdz.  (2.8)
n Q\Q n

Now we estimate the last term of the right side of ({2.8].

/n a(t)p(x, u)u, dx

> Yo (t)p(x, ug)uy de = / Yo (t)p(x, uy)u, da
. ¢ (2.9)
= [ vo(t)a(z)ujds + Yo (t)p(x, u)u de
Q\Q Q1

= [ vo(t)a(z)ui dz — / o(t)a(x)u? dr + Yo (t)p(x, up)us do .
Q o5 2

For the first term on the right of (2.9)), noticing o(t) > oo and using (L.4)), (2.4)
and (2.3) for ¢ = oppa(z), we have

ﬁ Yo (t)a(z)u? de > 00/2 Ya(z)u? de :/ oopa(z)u?dx
Q Q R™

d
> — / ooa(x)uus dx + ooeg / |Vgu|§ dx
dt n Q\Q

(2.10)

n

_ ao/ u® div AV (a(z)y)dz + 0’0/ a(x)pu’da

+ 09 / a(x)po(t)p(x, us)ude.

since supp ¥ C S:) and a(x) > ep > 0 for x € Q°.
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Combining (2.8)) with (2.9) and (2.10)), we have
k
Y(t) > ( L (01 +5))/ |Vgu\§ dach/ ou? dx
o\Q R"
k krd
+ 7/ o(t)p(x, us)us de + &{@/ a(x)puu dx
n RTL

2 4
—/n u2divAV(a(a?)w)da:+/ a(x)pu’de (2.11)

n

+ [ at@pwotote. wpuds] - § [ oltjateyui dr

k
—&-f/ o(t)p(x, us)u do
4 Ja,

Choose k large enough so that % > 0 + 01. Then it follows from (2.11)) and
(2.6) that

d k
@(/ (urpH (u) + qouwy)dz + kE(t) + % / a(x)puuy dx)
R™ "
+ / ou? de + k / o(t)p(x,us)u de — k / o(t)a(z)ypu? dx
. 2 Jo, 1 Jo,
O'()k‘

+ g /Ql O(t)P(m,ut)Ut dx + e [/ (az/) — diVAV(a(.’L‘)'(/)))uQ dr o

n

+ [ awwopteuuds] + [ eHwuds

—|—/ (qo—divvgqo)u2 dx—l—/ qouo (t)p(x, us)dz

+ / o(t)p(x, us)pH (u)dr < 0.

We may have equality by setting ¢ = % in (2.3). Then add that equality to (2.12)
to yield

d Uok

7 ( (upH (u) + gouwy)dz + kE(t) + - a(x)buuy dx

+
T

%uut d:c) + / %(|Vgu|3 +uj +u® + o(t)p(x, up)u)dz
R’n n

Jok

/91 o(t)p(x,u)u, dx + e [/n (az/J —div AV (a(x)w))uzdaﬁ (2.13)

+

o(t)p(x,us)uy do — % / o(t)a(x)ypu? dx

(951

2

+

+
— R

. a(x)wa(t)p(m,ut)udm} + /n H(u)udx

(g0 — div Vyqo)u’ dz + / qoo (t)p(x, uy)u dx

n

+

+

— 5

3

o(t)p(z,ur)H (u)dzx < 0.
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Set

i _
X(t) = / (uppH (u) + gouug)dx + kE(t) + % / a(x)Yuuy dx + / %uut dz.
n n Rn

From (2.13) and the definition of E(t), we have
GE(t)
a

<= 5X0 - [ Zowptwuuds— [ opeun)et(wds

n

- /nqoa(t)p(xmt)udx— g/na(t)p(:mut)ut dx

- i/ﬂ o)l e dr — 7% [/ (v — div AV (a(2)) )u? dz

n / na(x)zpa(t)p(x,ut)udx} +§ /Q 1 o(t)a(w)ui du (2.14)
— /Rn ©H (u)udz —/ (g0 — div Vyqo)u® dz

f—X +04‘/W xutud:ﬂ‘—ﬁE()

k k
+(ao402+ o3) \u| dx+4/ﬂ

o(t)a(x)ui dr + o / |V ul udz
Q

/ B)lp(, 1) |V g1l dx

where
oy = sup |ay — divVy(ap)|, o3 =sup g — divVyqol,

meé JJEQ
ooklaleo T
4 "2’

oy zmaX{ sup|qo|} o5 = sup [pH]|.

Q
For the second term, the sixth term and the last term on the right of (2.14)), we
use Young’s inequality to obtain

04| o(t)p(x, ur)udz| < 0'4/" (Celo(t)p(z, ur)|* + cu?)dz

e e (2.15)
<oy C.lo(t)p(w,us)|? + 2eC4B(t),
RTL
05/ |V gu|gudr < 05/ €|Vgu|3 dz + 0505/ u? da,
@ B @ (2.16)

< 2eC5E(t) + 0505/ u?dz,
9)
and

o5 [ o®lpte,u0)|[Vyul, ds
§€a5/ |Vgu|§dm+0505/ lo(t)p(, up)|? da (2.17)
R’n n

< 2eC5E(t) + 0505/ lo(t)p(z, uy) |*dz

n
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where € > 0 is small and C. is a constant dependent on &.
Let ¢ be a function satisfying the conditions in Lemma Let 7 > 0 be a
constant determined later. Multiplying (2.14) by E"¢’' and integrating on [S,T]

with respect to ¢, from (2.15) -(2.17]) we have

T
/ E™(t) ¢/ adt
S
T T
<_ / E ¢ X' (t)dt + (04C. + 05C.) / 26 [ o()p(wu)? dedt
S S R™

T T
k
+ (2e04 + 4e0s) / Ertgdt — o / E"¢'E'dt (2.18)
S S

]{10'00'2

T
+( +U3+CEU5)/ Erqﬁ’ﬁﬁdacdt
s &

k T
+ = / E"¢ | o(t)a(z)u? dxdt.
4Js oh

Using a similar argument as in [I3] and [7], we can prove that if T — S is large
enough, then

/ST E'T(b//éuz da dt < C, /ST Erd,/(/n o (t)p(, u) 2 d

. (2.19)
2 r—4+1 /
+/Ql U(t)utdx) dt+n/s BT ()¢ dt

holds for any n > 0.

For the rest of this article, let ¢(t) = fot o(s)ds. Tt is clear that ¢(t) satisfies the
conditions of Lemma [2.1] Noticing that | X (t)| < CE(t) and E'(t) < 0, we have by
integrating by parts with respect to ¢,

T
7/ E"¢' X' (t)dt
S

T T
=B x|+ [ @y x

T T

< Ca(0)E™(S) + / IrE"VE' ¢ X (t)|dt + / \E"¢" X (¢)|dt (2.20)
s s

T

< Co(0)E™(S) + Co(0) /

T
rE”"(—E’)dt—i—/ E" Y (—¢at
S S

< C’ET+1(S).
We also have

T
- g/ E"¢'E'dt < CE"(9). (2.21)
S

Now we estimate the second term on the right of (2.18)). Set QF = {x € Q1; |u¢| >
1} and Q7 = {z € Qq;|us| < 1}. Then Q; = QF UQ; . Noticing (1.5), using Hélder
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inequality and Young’s inequality, we have

T
/ E"¢ lo(t)p(z, u)|? da dt
s h

_ /T B¢ | o2()|a(@)h(u)? de dt
s Qr

T 2
§02/ ET¢'02(t)/Q a®(x) (h(ue)ue) ™ dx dt

s N

= cz/s E"¢' - (c(t)a(z)h(us)u) T (a(av)a(t))Q_”‘%rl dzx dt

2

< C’|a|i.:%+l /ST ET¢/U(t)27mL+1 (/_ O’(t)a($)h(ut)ut)dx) "t

2-55T 2 r o _ 2 | m#l
S C|a/|oo m+ o (O) |:€1 (E d) O'(t) e ) m=T It
S

T
+C. / / o (t)a(z)h(ug)u; dz dt].
s T
Now, we set 7 = -1, Thus, we have from (2.22) and (2.1)

T
/ B [ o)p(z,w)? dedt
s oy

2 T m+1
gcmﬁ;rﬂa?(())[gl/ B gdt + C., B(S)).
S

Noticing (|1.6) and (2.1), it is easy to obtain
T T
[ B [ lowptaul dvit < co®lalu [ B (- (0)de
S Qf S
< CE™(9).
On the other hand, it is easy to obtain

T
/ E"¢ lo(t)p(z, us)|? de dt < CE™T(S)
S R7\ Q4

since p(z,ut) = a(x)uy when x € R™\ Q4.

From ([2.23)-(2.25)), we have
T
/ E"¢’ lo(t)p(z, u)|? da dt

S R

m

2 T 1
gogl|a|§.§m(f?(o)/ E"2 ¢/dt + C.,E(S) + CE™T(S).
S

Similarly, for the last term on the right side of (2.18)), we have

T
/ ET¢ o(t)a(x)u? dz dt

S Q

S CEl|CL

m—1 T 1
F(f(o)/ E*3 ¢dt + C., B(S) + CETY(S).
S

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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At this point, we choose ¢ and 1 small enough so that

k‘0'00'2

2e04 + 4eos + n( + o3+ Ceos) <

o Qi

Then using (2.19)-(2.21)), (2.18) becomes

_ T
7 / ET () dt
2 /s

kJOUQ

< CE™(8) + (04C: + 05C: + C”(T + 03+ C.03))

T T
X / E"¢’ lo(t)p(z, uy)|? da dt — 5/ E"¢'E'dt
S

S R

(2.28)

k kogo
+(Z+Cn( Zg

Once ¢ and 7 are fixed, we pick €1 small enough so that

T
+ 03+ Ce03)) / E"¢ | o(t)a(z)u? dxdt.
s o

Ce1lal&™ (o(0) + 0*(0)) (94C + 05C. + 7 + cn(% + o5+ Ceos)) <

W~ QI

Then using (2.26)-(2.27) in (2.28), we have

T
/ E™ ¢ldt < CE(S). (2.29)
S

Let T'— oo in (2.29). Then Theorem follows from Lemma and (12.29) with
r="-1 and §(t) = fg o(s)ds. O
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