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NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME
NONLINEAR SPACE-NONLOCAL EVOLUTION EQUATIONS ON

THE HEISENBERG GROUP

BASHIR AHMAD, AHMED ALSAEDI, MOKHTAR KIRANE

Abstract. This article presents necessary conditions for the existence of weak

solutions of the following space-nonlocal evolution equations on H× (0, +∞),
where H is the Heisenberg group:

∂2u

∂t2
+ (−∆H)α/2|u|m = |u|p,

∂u

∂t
+ (−∆H)α/2|u|m = |u|p,

∂2u

∂t2
+ (−∆H)α/2|u|m +

∂u

∂t
= |u|p,

p ∈ R, p > 1, m ∈ N. Moreover, the life span for each equation is estimated

under some suitable conditions. Our method of proof is based on the test
function method.

1. Introduction and preliminaries

In this article we are concerned with the nonexistence of global solutions of
nonlinear wave equations, of nonlinear wave equations with linear damping, and
of nonlinear parabolic equations with nonlocal diffusion posed on the Heisenberg
group. We start with the wave equation

∂2u

∂t2
+ (−∆H)α/2|u|m = |u|p, (1.1)

where p ∈ R, p > 1, m ∈ N, posed in R2N+1 × R+ = R2N+1,1
+ , supplemented with

the initial data

u(η, 0) = u0(η),
∂u

∂t
(η, 0) = u1(η), η = (x, y, τ).

The operator (−∆H)α/2 (0 < α < 2) accounts for anomalous diffusion (see below
for the definition). Following the lines of the paper of Véron and Pohozaev [22]
and using a variant of Cordoba-Cordoba’s inequality [3] for the Heisenberg group
proved in this paper, we find an exponent for (1.1) similar to Kato’s exponent [9]
but with the improvement on the data given in [22].
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In a second case, we prove a Fujita-Galaktionov type result for the heat equation

∂u

∂t
+ (−∆H)α/2|u|m = |u|p, (1.2)

where p ∈ R, p > 1, posed in R2N+1,1
+ , supplemented with the initial data u(η, 0) =

u0(η).
Next, we present the critical exponent for the wave equation with linear damping

∂2u

∂t2
+ (−∆H)α/2|u|m +

∂u

∂t
= |u|p, (1.3)

where p ∈ R, p > 1, posed in R2N+1,1
+ , supplemented with the initial data u(η, 0) =

u0(η), ∂u
∂t (η, 0) = u1(η).

For the reader’s convenience, let us briefly recall the definition and the basic
properties of the Heisenberg group.

Heisenberg group. The Heisenberg group H, whose points will be denoted by
η = (x, y, τ), is the Lie group (R2N+1, ◦) with the non-commutative group operation
◦ defined by

η ◦ η̃ = (x+ x̃, y + ỹ, τ + τ̃ + 2(〈x, ỹ〉 − 〈x̃, y〉)),
where 〈·, ·〉 is the usual inner product in RN . The Laplacian ∆H over H is obtained
from the vector fields Xi = ∂

∂xi
+ 2yi ∂∂τ and Yi = ∂

∂yi
− 2xi ∂∂τ , as

∆H =
N∑
i=1

(X2
i + Y 2

i ). (1.4)

Observe that the vector field T = ∂
∂τ does not appear in (1.4). This fact makes us

presume a “loss of derivative” in the variable τ . The compensation comes from the
relation

[Xi, Yj ] = −4T, i, j ∈ {1, 2, · · ·, N}. (1.5)

The relation (1.5) proves that H is a nilpotent Lie group of order 2. Incidently,
(1.5) constitutes an abstract version of the canonical relations of commutation
of Heisenberg between momentum and positions. Explicit computation gives the
expression

∆H =
N∑
i=1

( ∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2

i + y2
i )
∂2

∂τ2

)
. (1.6)

A natural group of dilatations on H is given by

δλ(η) = (λx, λy, λ2τ), λ > 0,

whose Jacobian determinant is λQ, where

Q = 2N + 2 (1.7)

is the homogeneous dimension of H.
The natural distance from η to the origin is introduced by Folland and Stein,

see [5]

|η|H =
(
τ2 +

( N∑
i=1

(x2
i + y2

i )
)2
)1/4

. (1.8)



EJDE-2015/227 NONEXISTENCE OF GLOBAL SOLUTIONS 3

Fractional powers of sub-elliptic Laplacians. Here, we recall a result on frac-
tional powers of sub-Laplacian in the Heisenberg group taken from [6]. Let N (t, x)
be the fundamental solution of ∆H + ∂

∂t . For all 0 < β < 4, the integral

Rβ(x) =
1

Γ(β2 )

∫ +∞

0

t
β
2−1N (t, x) dt

converges absolutely for x 6= 0. If β < 0, β /∈ {0,−2,−4, . . . }, then

R̃β(x) =
β
2

Γ(β2 )

∫ +∞

0

t
β
2−1N (t, x) dt

defines a smooth function in H \ {0}, since t 7→ N (t, x) vanishes of infinite order as
t→ 0 if x 6= 0. In addition, R̃β is positive and H-homogeneous of degree β − 4.

Theorem 1.1. For every v ∈ S(H), (−∆H)sv ∈ L2(H) and

(−∆H)sv(x) =
∫

H
(v(x ◦ y)− v(x)− χ(y)〈∇Hv(x), y〉)R̃−2s(y) dy

= P.V

∫
H

(v(y)− v(x))R̃−2s(y−1 ◦ x) dy,

where χ is the characteristic function of the unit ball Bρ(0, 1), (ρ(x) = R
−1
2+α
2−α(x),

0 < α < 2, ρ is an H-homogeneous norm in H smooth outside the origin).

Before we present our results, let us dwell a while some literature concerning non-
existence or blowing-up solutions to wave equations and parabolic equations posed
in the Heisenberg group. A lot has been said on the non-existence or blowing-
up solutions to the wave equation (1.1), with α = 2 and p = 1, with a final
result in [23], for the parabolic equation [7] (for the pioneering paper) and [1] (for
the alternative proof that will be used here), for the wave equation with a linear
damping [10, 21, 26] where the critical has been decided mainly in [21], when the
equations are posed in the Euclidian space.

Concerning (1.1), (1.2) and (1.3) with α = 2 and p = 1, posed on the Heisenberg
group, a few papers appeared; we may cite [4, 8, 15, 16, 17, 22, 24, 25, 26]. As far
as we know, no blowing-up solutions or non-existence results for (1.1), (1.2) and
(1.3) have been published.

Evolution equation with fractional power of the Laplacian posed on the Heisen-
berg space are mentioned, for example, in [11, 12, 13, 19, 20].

Our method of proof relies on a method due to Baras and Pierre [1]; it had been
remained dormant until Zhang [24, 25, 26] revived it. Later, this method has been
successfully applied in a great number of situations by Mitidieri and Pohozaev [14].

2. Main results

Proposition 2.1. Consider a convex function F ∈ C2(R). Assume that ϕ ∈
C∞0 (R2N+1). Then

F ′(ϕ)(−∆H)α/2ϕ ≥ (−∆H)α/2F (ϕ) (2.1)

holds point-wise. In particular, if F (0) = 0 and ϕ ∈ C∞0 (R2N+1), then∫
R2N+1

F ′(ϕ)(−∆H)α/2ϕdη ≥ 0. (2.2)
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Proof. We have F (θ)−F (%)−F ′(%)(θ− %) ≥ 0 for all θ, %. We substitute then θ =
ϕ(x− y), % = ϕ(x) and integrate against R̃α(y−1x) dy (recall that R̃α(y−1x) ≥ 0).

Let us mention that hereafter we will use inequality (2.1) for F (ϕ) = ϕσ,
σ � 1, ϕ ≥ 0; in this case it reads

σϕσ−1(−∆H)α/2ϕ ≥ (−∆H)α/2ϕσ. (2.3)

�

We need the following Lemma taken from [18].

Lemma 2.2 ([18, Lemma 3.1]). Let f ∈ L1(R2N+1) and
∫

R2N+1 fdη ≥ 0. Then
there exists a test function 0 ≤ ϕ ≤ 1 such that∫

R2N+1
fϕ dη ≥ 0. (2.4)

Let us set ∫
QT

=
∫ T

0

∫
R2N+1

,

∫
Q

=
∫ ∞

0

∫
R2N+1

.

3. Wave equation (1.1)

Definition 3.1. A locally integrable function u ∈ L
max{p,m}
loc (R2N+1 × (0, T )) is

called a local weak solution of (1.1) in R2N+1 × (0, T ) subject to the initial data
u0, u1 ∈ L1

loc(R2N+1) if the equality∫
QT

(
u
∂2ϕ

∂t2
+ |u|m(−∆H)α/2ϕ

)
dη dt

=
∫
QT
|u|pϕdη dt−

∫
R2N+1

u0(η)
∂ϕ

∂t
(η, 0) dη +

∫
R2N+1

u1(η)ϕ(η, 0) dη
(3.1)

is satisfied for any regular function

ϕ ∈ C2((0, T ];Hα(R2N+1)) ∩ C1([0, T ];Hα(R2N+1)),

with ϕ(·, T ) = 0, ϕ ≥ 0, where Hα(R2N+1) is the homogeneous Sobolev space of
order α. The solution is called global if T = +∞.

Theorem 3.2. Let 1 < m < p < pm,α := 2mQ+α
2Q−α , and

∫
R2N+1 u1(η) dη > 0. Then,

(1.1) does not have a nontrivial weak solution.

Proof. The proof is by contradiction. For that, let u be a solution and ϕ be a
smooth nonnegative test function such that

A(ϕ) :=
∫
Q

∣∣∣σ(σ − 1)
(∂ϕ
∂t

)2

+ σϕ
∂2ϕ

∂t2

∣∣∣ p
p−1

ϕ(σ− 2p
p−1 ) dη dt <∞,

B(ϕ) :=
∫
Q
|(−∆H)α/2ϕ|

p
p−mϕ(σ− p

p−m ) dη dt <∞.
(3.2)
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Then, taking ϕσ, σ � 1 instead of ϕ in (3.1) and using inequality (2.3), we obtain∫
Q
|u|pϕσ dη dt+

∫
R2N+1

u1(η)ϕσ(η, 0) dη − σ
∫

R2N+1
u0(η)ϕσ−1 ∂ϕ

∂t
(η, 0) dη

≤
∫
Q

(
u(σ(σ − 1)ϕσ−2

(∂ϕ
∂t

)2

+ σϕσ−1 ∂
2ϕ

∂t2
)
)
dη dt

+ σ

∫
Q
|u|mϕσ−1(−∆H)α/2ϕdη dt

≤ 1
2

∫
Q
|u|pϕσ dη dt+ C

(
A(ϕ) + B(ϕ)

)
(3.3)

by means of the ε-Young’s inequality ab ≤ εap +C(ε)bp
′
, p+ p′ = pp′, a ≥ 0, b ≥ 0.

Choosing ϕ such that
∂ϕ

∂t
(η, 0) = 0, (3.4)

from (3.3), (3.4), and using Lemma 2.2, we obtain∫
Q
|u|pϕσ dη dt ≤ C

(
A(ϕ) + B(ϕ)

)
. (3.5)

Set

ϕ(η, t) = ϕ1(η)ϕ2(t) = Φ
(τ2 + |x|4 + |y|4

R4

)
Φ
( t2
R2ρ

)
, ρ =

α(p− 1)
2(p−m)

,

where R > 0, and Φ ∈ D([0,+∞[) is the standard cut-off function

Φ(r) =


1, 0 ≤ r ≤ 1,
↘, 1 ≤ r ≤ 2,
0, r ≥ 2.

Set
Ω1 =

{
η̃ ∈ H; 0 ≤ τ̃2 + |x̃|4 + |ỹ|4 ≤ 2

}
, Ω2 =

{
t̃; 0 ≤ t̃2 ≤ 2

}
.

Note that
∂ϕ

∂t
(η, t) = 2tR−2Φ

(τ2 + |x|4 + |y|4

R4

)
Φ′
( t2
R2ρ

)
=⇒ ∂ϕ

∂t
(η, 0) = 0;

so equality (3.4) is satisfied as required. Moreover, using the scaled variables

τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y, t̃ = R−ρt,

we obtain the estimates

A(ϕ) ≤ C1R
ϑ, B(ϕ) ≤ C2R

ϑ, (3.6)

with ϑ = − αp
p−m + Q + ρ; the constants C1, C2 are A(ϕ) and B(ϕ) evaluated on

Ω1 × Ω2. Now, if

− αp

p−m
+Q+ ρ < 0 ⇐⇒ p < pα,m,

by letting R→∞ in (3.5), we obtain∫
Q
|u|p dη dt = 0 =⇒ u ≡ 0;

this is a contradiction. �
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Remark 3.3. For the equation

∂2u

∂t2
+ (−∆H)α/2|u| = |u|p,

the found exponent is pα,1 := 2Q+α
2Q−α which, in the limiting case α = 2, gives

p2,1 = Q+1
Q−1 , the one obtained in [22].

Remark 3.4. For u0, u1 ∈ C∞0 (R2N+1), the solution exists locally and is very reg-
ular as it can be proved following the lines of [27]. So in this case, the nonexistence
result we have proved is in fact a blow-up result, that is, the solutions blows-up at
a finite time.

4. Parabolic equation (1.2)

Definition 4.1. A locally integrable function u ∈ Lploc(R2N+1 × (0, T )) is called a
local weak solution of the differential equation (1.2) in R2N+1 × (0, T ) subject to
the initial data u0 ∈ L1

loc(R2N+1) if the equality∫
QT
|u|pϕdη dt+

∫
R2N+1

u0(η)ϕ(η, 0) dη

=
∫
QT

(
− u∂ϕ

∂t
+ |u|m(−∆H)α/2ϕ

)
dη dt

(4.1)

is satisfied for any regular function

ϕ ∈ C1((0, T ];Hα(R2N+1)) ∩ C([0, T ];Hα(R2N+1)),

with ϕ(., T ) = 0, ϕ ≥ 0. The solution is called global if T = +∞.

Theorem 4.2. Let 1 < p < m + α
Q and

∫
R2N+1 u0(η) ≥ 0. Then, (1.2) does not

have a nontrivial global weak solution.

Proof. The proof is similar to the previous one. Let u be a global weak solution
and ϕ be a smooth nonnegative test function such that

E(ϕ) =
∫
Q

(∣∣∂ϕ
∂t

∣∣ p
p−1ϕσ−

p
p−1 + |(−∆H)α/2ϕ|

p
p−mϕσ−

p
p−m

)
dη dt <∞. (4.2)

Then, using inequality (2.3) in (4.1) with ϕσ as a test function and using ε-Young’s
inequality, we obtain∫

Q
|u|pϕσ dη dt+

∫
R2N+1

u0(η)ϕσ(η, 0) dη

=
∫
Q

(
− u∂ϕ

σ

∂t
+ |u|m(−∆H)α/2ϕσ

)
dη dt

≤ σ
∫
Q

(
− uϕσ−1 ∂ϕ

∂t
+ |u|mϕσ−1(−∆H)α/2ϕ

)
dη dt

≤ 1
2

∫
Q
|u|pϕdη dt+ C

∫
Q

∣∣∂ϕ
∂t

∣∣ p
p−1ϕσ−

p
p−1 dη dt

+ C

∫
Q
|(−∆H)α/2ϕ|

p
p−mϕσ−

p
p−m dη dt,

(4.3)
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so, using Lemma 2.2, we obtain∫
Q
|u|pϕσ dη dt ≤ C

∫
Q

∣∣∂ϕ
∂t

∣∣ p
p−1ϕσ−

p
p−1 dη dt

+ C

∫
Q
|(−∆H)α/2ϕ|

p
p−mϕσ−

p
p−m dη dt,

(4.4)

for some constant C > 0. Setting

ϕ(η, t) = Φ
(τ2 + |x|4 + |y|4

R4

)
Φ
( t

Rρ
)
, ρ =

α(p− 1)
p−m

and using the change of variables,

τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y, t̃ = R−ρt,

we obtain the estimates∫
Q

∣∣∂ϕ
∂t

∣∣ p
p−1ϕσ−

p
p−1 dη dt ≤ CR−

ρp
p−1+Q+ρ, (4.5)∫

Q
|(−∆H)α/2(ϕ)|

p
p−mϕσ−

p
p−m dη dt ≤ CR−

αp
p−m+Q+ρ. (4.6)

The constraint 1 < p < m+ α
Q allows us to obtain the contradiction∫

Q
|u|p dη dt = lim

R→∞

∫
Q
|u|pϕσ dη dt = 0 ⇒ u ≡ 0.

�

Remark 4.3. For m = 1, as in the Euclidian case, we can obtain analogous
estimates for the semi-group generated by the linear part of (1.2) via estimates of
the semi-group generated by the one of linear part with α = 2. Whereupon, the
existence of a local mild solution to (1.2) can be obtained by simple application of
the Banach fixed point theorem (see [17] for the case α = 2). This suggests that
the limiting exponent for (1.2) is in fact a Fujita’s exponent.

5. Wave equation with linear damping (1.3)

Now, we consider the wave equation with a linear damping.

Definition 5.1. A locally integrable function u ∈ L
max{p,m}
loc (R2N+1 × (0, T )) is

called a local weak solution of the differential equation (1.3) in R2N+1 × (0, T )
subject to the initial data u(η, 0) = u0(η), ∂u∂t (η, 0) = u1(η), u0, u1 ∈ L1

loc(R2N+1) if
the equality∫
QT
|u|pϕdη dt+

∫
R2N+1

(
u0(η)ϕ(η, 0) + u0(η)

∂ϕ

∂t
(η, 0) + u1(η)ϕ(η, 0)

)
dη

=
∫
QT

(
u
∂2ϕ

∂t2
− u∂ϕ

∂t
+ |u|m(−∆H)α/2ϕ

)
dη dt

(5.1)

is satisfied for any regular function

ϕ ∈ C2((0, T ];Hα(R2N+1)) ∩ C1([0, T ];Hα(R2N+1)),

with ϕ(., T ) = 0, ϕ ≥ 0. The solution is called global if T = +∞.

Theorem 5.2. Let 1 < p < m+ α
Q , and

∫
R2N+1(u1(η) + u0(η)) dη ≥ 0. Then (5.1)

does not admit a nontrivial weak solution.



8 B. AHMAD, A. ALSAEDI, M. KIRANE EJDE-2015/227

Proof. Choosing

ϕ(η, t) = Φ
(τ2 + |x|4 + |y|4

R4

)
Φ
( t2
R2ρ

)
, ρ =

α(p− 1)
p−m

(∂ϕ∂t (η, 0) = 0), and using Lemma 2.2 together with the estimates, as before, we
obtain ∫

Q
|u|pϕσ dη dt ≤ C

(
A(ϕ) + B(ϕ) + C(ϕ)

)
, (5.2)

where
C(ϕ) :=

∫
Q

∣∣∂ϕ
∂t

∣∣ p
p−1ϕσ−

p
p−1 dη dt <∞.

After using the scaled the variables

τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y, t̃ = R−ρt,

we obtain the estimate∫
Q
|u|pϕσ dη dt+

∫
R2N+1

u1(η)ϕ(η, 0) dη +
∫

R2N+1
u0(η)ϕ(η, 0) dη ≤ CR−

αp
p−m+Q+ρ.

The requirement 1 < p < m+ α
Q allows us to conclude as in the previous cases. �

Remark 5.3. We conjecture that the limiting exponent here is the critical exponent.
However to show that in fact it is, one needs to obtain similar results as in [21].

6. Life span of solutions

Our first result concerns the wave equation. We assume that the data u1(η)
satisfies the condition

u1(η) ≥ |η|−kH , x ∈ R2N+1, k > Q. (6.1)

Theorem 6.1. Suppose that (6.1) is satisfied, 1 < m < p < pm,α, and let u be the
solution of (1.1) with the initial data u(η, 0) = µu0(η), where µ > 0. Denote by
[0, Tµ) the life span of u. Then there exists a constant C > 0 such that

Tµ ≤ Cµ1/κ, (6.2)

where κ := k − α(p+1)
2(p−m) < 0.

Proof. We take, for Tµ > 0, ϕ(η, t) := ϕ1(η)ϕ2(t), where

ϕ1(η) := Φ
(τ2 + |x|4 + |y|4

T 4
µ

)
, ϕ2(t) :=

( t2
T 2ρ
µ

)
.

We clearly note that: ∂tϕ(η, 0) = 0. Now, as for the estimate (3.3), we have, with
Q := [0, T 2

µ ]× R2N+1,∫
Q

|u|pϕσ(η, t) dη dt+ µ

∫
R2N+1

u1(η)ϕ(η, 0) dη ≤ CA+ CB. (6.3)

Using the positivity of the first term in the left-hand side of (6.3), we have

µ

∫
R2N+1

u1(η)ϕ(η, 0) dη ≤ CA+ CB.

Next, by the assumption on the data u1(η), we get

µ

∫
R2N+1

|η|−kϕ(η, 0) dη ≤ µ
∫

R2N+1
u1(η)ϕ(η, 0) dη.
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Thus
µ

∫
R2N+1

|η|−kϕ(η, 0) dη ≤ CA+ CB.

We pass to the new variables t̃ = T−ρµ and η̃ = (τ̃ , x̃, ỹ) such that τ̃ = T−2
µ τ, x̃ =

T−1
µ x, ỹ = T−1

µ y, to obtain

µTQ−kµ

∫
R2N+1

|η̃|Φ(ν)σ dη̃ ≤ CT θµ .

Whereupon

µ ≤ CT k−
α(p+1)
2(p−m) =⇒ Tµ ≤ Cµ1/κ,

where κ := k − α(p+1)
2(p−m) < 0. This completes the proof of the theorem. �

The results concerning the heat equation and the damped wave equation are:
• For heat equation, we have the estimate Tµ ≤ Cµ1/κ, where κ := k− α

p−m <

0, with u0(η) ≥ |η|−kH ;
• For wave equation with linear damping, we have the estimate Tµ ≤ Cµ1/κ,

where κ := k − α
p−m < 0, with u0(η) + u1(η) ≥ |η|−kH ,

whose proofs are similar to the previous one and hence are omitted.
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185-212.

[2] Pierre Baras, Robert Kersner; Local and global solvability of a class of semilinear parabolic

equations, J. Differential Equations, 68 (1987), no. 2, 238252.
[3] A. Cordoba, D. Cordoba; A maximum principle applied to quasi-geostrophic equations, Co-

munn. Math. Phys, 249 (2004) 511-528.

[4] A. El Hamidi, M. Kirane; Nonexistence results of solutions to systems of semilinear differen-
tial inequalities on the Heisenberg group, Abstract and Applied Analysis Volume 2004 (2004),

Issue 2, Pages 155-164.
[5] G. B. Folland, E. M. Stein; Estimates for the ∂h complex and analysis on the Heisenberg

Group, Comm. Pure Appl. Math. 27 (1974), 492-522.

[6] F. Ferrari, B. Franchi; Harnack inequality for fractional sub-Laplacian in Carnot groups,
preprint.

[7] H. Fujita; On the blowing-up of solutions to the Cauchy problems for ut = ∆u + u1+α, J.
Fac. Sci. Univ. Tokyo, Sect. IA 13 (1966), 109-124.

[8] J. A. Goldstein, I. Kombe; Nonlinear degenerate parabolic equations on the Heisenberg group,
Int. J. Evol. Equ. (1) 1 (2005), 122.

[9] T. Kato; Blow-up of solutions of some nonlinear hyperbolic equations in three space dimen-
sions, Comm. Pure Appl. Math., 37 (1984), 443-455.

[10] M. Kirane, M. Qafsaoui; Fujita’s exponent for a semilinear wave equation with linear damp-
ing, Advanced Nonlinear Studies, (2) 1 (2002), 41-49.

[11] N. Laskin; Fractional Quantum Mechanics and Lévy Path Integrals, Physics Letters (268) A
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