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POROSITY OF THE FREE BOUNDARY FOR SINGULAR
p-PARABOLIC OBSTACLE PROBLEMS

ABDESLEM LYAGHFOURI

Abstract. In this article we establish the exact growth of the solution to the

singular quasilinear p-parabolic obstacle problem near the free boundary from
which follows its porosity.

1. Introduction

Let Ω be an open bounded domain of Rn, n ≥ 2, T > 0. We consider the
problem: Find u ∈ Lp(0, T ;W 1,p(Ω)) such that:

(i) u ≥ 0 in ΩT = Ω× (0, T ),
(ii) Lp(u) = ut −∆pu = −f(x) in {u > 0},

(iii) u = g on ∂pΩT = (Ω× {0}) ∪ (∂Ω× (0, T )),

where p > 1, ∆p is the p-Laplacian defined by ∆pu = div
(
|∇u|p−2∇u

)
, and f , g

are functions defined in ΩT and satisfying for two positive constants λ0 and Λ0

λ0 ≤ f ≤ Λ0 a.e. in ΩT . (1.1)

Moreover we assume that

f is non-increasing in t. (1.2)

g(x, 0) = 0 a.e. in Ω. (1.3)

g is non-decreasing in t. (1.4)

The variational formulation of the above problem is: Find

u ∈ Kg = {v ∈ V 1,p(ΩT )/v = g on ∂pΩT , v ≥ 0 a.e. in ΩT }

such that for all h > 0 and t < T − h:∫
Ω

∂tuh(v − u)dx+
∫

Ω

(
|∇u|p−2∇u

)
h
.∇(v − u)dx+

∫
Ω

fh(v − u)dx ≥ 0, (1.5)

a.e. in t ∈ (0, T ), and for all v ∈ Kg, where

V 1,p(ΩT ) = L∞(0, T ;L1(Ω)) ∩ Lp(0, T ;W 1,p(Ω)),
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and vh is the Steklov average of a function v defined by

vh(x, t) =
1
h

∫ t+h

t

v(x, s)ds, if t ∈ (0, T − h] vh(x, t) = 0, if t > T − h .

Let us recall the following existence and uniqueness theorem of the solution of
the problem (1.5) [8].

Theorem 1.1. Assume that f and g satisfy (1.1)–(1.4). Then there exists a unique
solution u of the problem (1.5) which satisfies

0 ≤ u ≤M = ‖g‖∞,ΩT
in ΩT , (1.6)

ut ≥ 0 in ΩT .

fχ{u>0} ≤ ∆pu− ut ≤ f a.e. in ΩT . (1.7)

Remark 1.2. We deduce from (1.6)–(1.7) (see [4, Theorems 7 and 8]) that u ∈
C0,α
loc (ΩT ) ∩ C1,α

x,loc(ΩT ) for some α ∈ (0, 1).

The main result of this article is as follows.

Theorem 1.3. Assume that 1 < p < 2 and that f and g satisfy (1.1)–(1.4), and
let u be the solution of (1.5). Then for every compact set K ⊂ ΩT , the intersection
(∂{u > 0}) ∩K ∩ {t = t0} is porous in Rn with porosity constant depending only
on n, p, λ0, Λ0, M , and dist(K, ∂pΩT ).

We recall that a set E ⊂ Rn is called porous with porosity δ, if there is an r0 > 0
such that for all x ∈ E and all r ∈ (0, r0), there exists y ∈ Rn such that

Bδr(y) ⊂ Br(x) \ E.
A porous set has Hausdorff dimension not exceeding n−cδn, where c = c(n) > 0

is a constant depending only on n. In particular a porous set has Lebesgue measure
zero.

Theorem 1.3 extends the result established in [8] in the quasilinear degenerate
and linear cases p ≥ 2. The proof is based on the exact growth of the solution of
the problem (1.5) near the free boundary which is given by the next theorem.

Theorem 1.4. Assume that 1 < p < 2 and that f and g satisfy (1.1)–(1.4), and
let u be the solution of the problem (1.5). Then there exists two positive constants
c0 = c0(n, p, λ0) and C0 = C0(n, p, λ0,Λ0,M) such that for every compact set
K ⊂ ΩT , (x0, t0) ∈ (∂{u > 0}) ∩K, the following estimates hold

c0r
q ≤ sup

Br(x0)

u(., t0) ≤ C0r
q, (1.8)

where q = p/(p− 1) is the conjugate of p.

Since the proof of Theorem 1.3 relies on the one of Theorem 1.4, it will be enough
to prove the latter one. On the other hand we observe that the left hand side
inequality in (1.8) was established in [8, Lemma 2.1] for any p > 1, while the right
hand side inequality in (1.8) was established only for p ≥ 2. In the next section, we
shall establish the second inequality for a class of functions in the singular case i.e.
for 1 < p < 2. Then the right hand side inequality will follow exactly as in [8] and
we refer the reader to that reference for the details. Hence the proof of Theorem
1.3 will follow.

For similar results in the quasilinear elliptic case, we refer to [5, 1, 2], respectively
for the p-obstacle problem, the A-obstacle problem, and the p(x)-obstacle problem.
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For the obstacle problem for a class of heterogeneous quasilinear elliptic operators
with variable growth, we refer to [3].

2. A class of functions on the unit cylinder

In this section, we assume that 1 < p < 2 and consider the family F =
F(p, n,M,Λ0) of functions u defined on the unit cylinder Q1 = B1 × (−1, 1) by
u ∈ F if it satisfies

u ∈W 1,p(Q1), 0 ≤ −ut + ∆pu ≤ Λ0 in Q1, (2.1)

0 ≤ u ≤M in Q1, (2.2)

u(0, 0) = 0, (2.3)

ut ≥ 0 in Q1. (2.4)

The following theorem gives the growth of the elements of the family F . This
completes a result proved in [8] for the degenerate case p ≥ 2.

Theorem 2.1. There exists a positive constant C = C(p, n,M,Λ0) such that for
every u ∈ F , we have

u(x, t) ≤ Cd(x, t) ∀(x, t) ∈ Q1/2

where d(x, t) = sup{r : Qr(x, t) ⊂ {u > 0}} for (x, t) ∈ {u > 0}, and d(x, t) = 0
otherwise, and where Qr(x, t) = Br(x)× (s− rq, s+ rq).

To prove Theorem 2.1, we need to introduce some notation inspired from [8].
For a nonnegative bounded function u, we define the quantities

Q−r = Br × (−rq, 0), S(r, u) = sup
(x,t)∈Q−r

u(x, t).

Also for u ∈ F define the set

M(u) = {j ∈ N ∪ {0} : AS(2−j−1, u) ≥ S(2−j , u)} (2.5)

where A = 2q max
(
1, 1/C0

)
and C0 is the constant in (1.8). As in [8], we first show

a weaker version of the inequality.

Lemma 2.2. There exists a constant C1 = C1(p, n,M,Λ0) such that

S(2−j−1, u) ≤ C12−qj ∀u ∈ F , ∀j ∈M(u).

Proof. We argue by contradiction and assume that: for all k ∈ N there exist uk ∈ F
and jk ∈M(uk) such that

S(2−jk−1, uk) ≥ k2−qjk . (2.6)

Let αk = 2−pjk(S(2−jk−1, uk))2−p, and let

vk(x, t) =
uk(2−jkx, αkt)
S(2−jk−1, uk)

for (x, t) ∈ Q1. First we observe that since u(0, 0) = 0 and u is continuous, we have
αk → 0 as k →∞. Moreover, we have

∇vk(x, t) =
2−jk

S(2−jk−1, uk)
∇uk(2−jkx, αkt)

vkt(x, t) =
αk

S(2−jk−1, uk)
ukt(2−jkx, αkt) =

( 2−qjk

S(2−jk−1, uk)

)p−1

ukt(2−jkx, αkt)

(2.7)
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and
∆pvk(x, t)

= div
(
|∇vk|p−2∇vk

)
=
( 2−jk

S(2−jk−1, uk)

)p−1

div
(
|∇uk(2−jkx, αkt)|p−2∇uk(2−jkx, αkt)

)
= 2−jk

( 2−jk

S(2−jk−1, uk)

)p−1

∆puk(2−jkx, αkt)

=
( 2−qjk

S(2−jk−1
, uk)

)p−1

∆puk(2−jkx, αkt).

(2.8)

We deduce from (2.7)–(2.8) that

vkt −∆pvk(x, t) =
( 2−qjk

S(2−jk−1, uk)

)p−1

(ukt −∆puk)(2−jkx, αkt). (2.9)

Combining (2.1)–(2.6) and (2.9), we obtain

0 ≤ −vkt + ∆pvk ≤
Λ0

kp−1
in Q1, (2.10)

0 ≤ vk ≤
S(2−jk , uk)
S(2−jk−1, uk)

≤ A in Q−1 , (2.11)

vkt ≥ 0 in Q−1 , (2.12)

sup
Q−1/2

vk = 1, (2.13)

vk(0, t) = 0 ∀t ∈ (−1, 0). (2.14)

Taking into account (2.10)–(2.11), and using [6, Theorem 1.1] and [4, Theorem
1], we deduce that vk is locally uniformly bounded in L∞(Q1) independently
of k. Therefore we obtain from [4, Theorems 7 and 8], that vk is uniformly
bounded in C0,α(Q3/4) and in C1,α

x (Q3/4) independently of k, for a constant α =
α(n, p,A,Λ0) ∈ (0, 1). It follows then from Ascoli-Arzella’s theorem that there ex-
ists a subsequence, still denoted by vk, and a function v ∈ C0,α(Q3/4)∩C1,α

x (Q3/4)
such that vk → v and ∇vk → ∇v uniformly in Q3/4. Moreover, using (2.10)–(2.14),
we see that v satisfies

vt −∆pv = 0 in Q−3/4, v, vt ≥ 0 in Q−3/4,

sup
x∈Q−1/2

v(x, t) = 1, v(0, t) = 0 ∀t ∈ (−3/4, 0).

We discuss two cases:
Case 1: for all (x, t) ∈ Q−3/4 v(x, t) = 0. In particular we have v ≡ 0 in Q−1/2 which
contradicts the fact that supx∈Q−1/2

v(x) = 1.

Case 2: There exists (x0, t0) ∈ Q−3/4 such that v(x0, t0) > 0. Since v(., t0) is
not identically zero and v(0, t0/2) = 0, we get from the strong maximum principle
(see [7]) that v(x, t0/2) = 0 for all x ∈ B3/4. By the monotonicity of v with
respect to t and the fact that v is nonnegative, we have necessarily v(x, t) = 0
for all (x, t) ∈ B3/4 × (−3/4, t0/2), which is in contradiction with the fact that
v(x0, t0) > 0. �
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Proof of Theorem 2.1. Using Lemma 2.2, the proof follows exactly as the one of [8,
Theorem 2.2]. �
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