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POROSITY OF THE FREE BOUNDARY FOR SINGULAR
p-PARABOLIC OBSTACLE PROBLEMS

ABDESLEM LYAGHFOURI

ABSTRACT. In this article we establish the exact growth of the solution to the
singular quasilinear p-parabolic obstacle problem near the free boundary from
which follows its porosity.

1. INTRODUCTION
Let Q be an open bounded domain of R™, n > 2, T > 0. We consider the
problem: Find u € LP(0,T; W1P(Q)) such that:
(i) u>0in Qr =Q x (0,7),
(i) Lp(u) = ur — Apu = —f(x) in {u > 0},
(ili) w =g on 9,07 = (2 x {0}) U (092 x (0,T)),
where p > 1, A, is the p-Laplacian defined by Apu = div (|[Vul|P=2Vu), and f, g
are functions defined in Qp and satisfying for two positive constants A\g and Ag

M < f<Ay ae in Qp. (1.1)
Moreover we assume that
f is non-increasing in t. 1.2
g(z,0) =0 a.e. in Q. (1.3)
¢ is non-decreasing in . (1.4)

The variational formulation of the above problem is: Find
ue Ky={veV'"(Qr)/v=gondQr, v>0ae. inQr}

such that for all h >0 and ¢t <T — h:

/ Opup (v — u)dz + / (|Vu|p*2Vu)h.V(v —u)dx + / frn(v —u)dz >0, (1.5)

Q Q Q
a.e. in t € (0,T), and for all v € K,, where
VIP(Qr) = L(0,T; L'(Q)) N LP(0, T; WHP (),
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and vy, is the Steklov average of a function v defined by

1 t+h
vh(m,t)zﬁ/ v(z,s)ds, ifte(0,T—h] wvp(z,t)=0, ift>T—h.
t

Let us recall the following existence and uniqueness theorem of the solution of
the problem (1.5) [8].

Theorem 1.1. Assume that f and g satisfy (1.1)—(1.4). Then there exists a unique
solution u of the problem (1.5) which satisfies

0<u<M=|gloo,0r inQr, (1.6)
ug >0 in Qp.
IXqus0y S Apu—ug < f ace. in Qr. (1.7)

Remark 1.2. We deduce from (1.6)—(1.7) (see [4, Theorems 7 and 8]) that u €
CrY Q)N CH (Qr) for some a € (0,1).

loc x,loc

The main result of this article is as follows.

Theorem 1.3. Assume that 1 < p < 2 and that f and g satisfy f, and
let u be the solution of . Then for every compact set K C Qr, the intersection
(O{u > 0}) N K N{t =t} is porous in R™ with porosity constant depending only
on n, p, Ao, Ao, M, and dist(K, 0,Qr).

We recall that a set £ C R™ is called porous with porosity 4, if there is an rq > 0
such that for all z € E and all r € (0,r¢), there exists y € R™ such that

Bs,(y) € Br(x) \ E.

A porous set has Hausdorff dimension not exceeding n — ¢§™, where ¢ = ¢(n) > 0
is a constant depending only on n. In particular a porous set has Lebesgue measure
zZero.

Theorem extends the result established in [§] in the quasilinear degenerate
and linear cases p > 2. The proof is based on the exact growth of the solution of
the problem near the free boundary which is given by the next theorem.

Theorem 1.4. Assume that 1 < p < 2 and that f and g satisfy 7, and
let u be the solution of the problem . Then there exists two positive constants
co = co(n,p,Ao) and Cy = Co(n,p, No, Ao, M) such that for every compact set
K C Qrp, (xo,t0) € (0{u > 0}) N K, the following estimates hold

cor? < sup u(.,to) < Cord, (1.8)
Br(zo)

where ¢ = p/(p — 1) is the conjugate of p.

Since the proof of Theorem [I.3|relies on the one of Theorem[I.4] it will be enough
to prove the latter one. On the other hand we observe that the left hand side
inequality in was established in [§, Lemma 2.1] for any p > 1, while the right
hand side inequality in was established only for p > 2. In the next section, we
shall establish the second inequality for a class of functions in the singular case i.e.
for 1 < p < 2. Then the right hand side inequality will follow exactly as in [§] and
we refer the reader to that reference for the details. Hence the proof of Theorem
will follow.

For similar results in the quasilinear elliptic case, we refer to [5, [I} 2], respectively
for the p-obstacle problem, the A-obstacle problem, and the p(z)-obstacle problem.
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For the obstacle problem for a class of heterogeneous quasilinear elliptic operators
with variable growth, we refer to [3].

2. A CLASS OF FUNCTIONS ON THE UNIT CYLINDER

In this section, we assume that 1 < p < 2 and consider the family F =
F(p,n, M, Ay) of functions u defined on the unit cylinder @; = By x (—1,1
u € F if it satisfies

~—
lon
<

ueWHP(Q1), 0<—u+Apu<Ay inQ, (2.1)
0<u<M inQq, (2.2)

1(0,0) = 0, (2.3)

u >0 in Q. (2.4)

The following theorem gives the growth of the elements of the family F. This
completes a result proved in [8] for the degenerate case p > 2.

Theorem 2.1. There exists a positive constant C = C(p,n, M, Ag) such that for
every u € F, we have

U(J},t) < Cd(l‘,t) V(Z‘,t) € Q1/2
where d(z,t) = sup{r : Q,(x,t) C {u > 0}} for (z,t) € {u > 0}, and d(z,t) =0
otherwise, and where Q,(x,t) = B.(x) X (s — r?, s+ r?).

To prove Theorem [2.1, we need to introduce some notation inspired from [g].
For a nonnegative bounded function u, we define the quantities

Qy =B, x (=r1,0), S(ru)= swp u(a.).
(z,t)€Qr

Also for u € F define the set

M(u) = {j e NU{0} : AS(2777 1 u) > S(277,u)} (2.5)
where A = 29max (1,1/Cy) and Cj is the constant in (L.8). As in [], we first show
a weaker version of the inequality.
Lemma 2.2. There exists a constant C; = Cy(p,n, M, Ay) such that

S22 ) <Ci127Y Yue F, Vi€ Mu).
Proof. We argue by contradiction and assume that: for all £ € N there exist uy € F
and jj € M(uy) such that
S(279e 7 ) > k27, (2.6)

Let oy = 27PIk(S(279% =1 44;,))27P and let
u (279 x, ayt)
S(27k =1 uy)
for (z,t) € Q1. First we observe that since u(0,0) = 0 and « is continuous, we have
ar — 0 as k — oco. Moreover, we have

vg(z,t) =

Vg (z,t) =
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and
Apvp(z,t)
= div (| V[P 7*Vuy)

Q*jk p—1 . —jr p—2 —jr
= (m) div (|VUk(2 k.T,Oék;t)‘ v’lLk(Q kI‘,O{kt))

; (2.8)
. 2= Ik p—1 .
— 27 Jk —Jk
2 (S(Q—jk—l, uk)) Apuk (2772, ait)
2—4Jk p—1 i
= (W,Uk)> Ap'LLk(2 ]kx, akt)
We deduce from (2.7)—(2.8) that
2=k p—1 »
Okt — Apup(,t) = (m) (ure — Apug) (279, agt). (2.9)
Combining (2.1))—(2.6)) and (2.9]), we obtain
A .
0 < —vps + Apvy, < kT—Ol in Q, (2.10)
S(Q_jk,uk) . —
Oﬁvkﬁmﬁfl in Q7, (2-11)
vk >0 in QF, (2.12)
supvy = 1, (2.13)
Q12
v(0,8) =0Vt € (—1,0). (2.14)

Taking into account 7, and using [6] Theorem 1.1] and [4, Theorem
1], we deduce that vy is locally uniformly bounded in L*°(Q;) independently
of k. Therefore we obtain from [4, Theorems 7 and 8|, that v is uniformly
bounded in C%*(Q3,4) and in C3*(Q3,4) independently of k, for a constant a =
a(n,p, A, Ag) € (0,1). Tt follows then from Ascoli-Arzella’s theorem that there ex-
ists a subsequence, still denoted by vy, and a function v € C%® (@) N C‘%’a(@)

such that v, — v and Vo — Vo uniformly in Q3,4. Moreover, using (2.10)—(2.14),
we see that v satisfies

ve—Apu =0 in Qg/4, v, >0 in Q;/‘l’
sup v(z,t) =1, ©(0,t)=0 Vte (-3/4,0).
z€Qy
We discuss two cases:
Case 1: for all (z,t) € Q34 v(x,t) = 0. In particular we have v =0 in Q7o which
contradicts the fact that SUDeqr, v(z) = 1.

Case 2: There exists (zg,tp) € Q;/4 such that v(xg,t9) > 0. Since v(.,tp) is
not identically zero and v(0,ty/2) = 0, we get from the strong maximum principle
(see [7]) that v(x,to/2) = O for all + € Bs/y. By the monotonicity of v with
respect to ¢t and the fact that v is nonnegative, we have necessarily v(z,t) = 0
for all (x,t) € Bsjy x (=3/4,10/2), which is in contradiction with the fact that
’U(mo, to) > 0. O
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Proof of Theorem[2.. Using Lemma[2.2] the proof follows exactly as the one of [8]

Theorem 2.2]. O
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