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MULTIPLE SOLUTIONS FOR PERTURBED p-LAPLACIAN
PROBLEMS ON RN

YING LI

Abstract. We establish the existence of at least three solutions for a per-

turbed p-Laplacian problem on RN . Our approach is based on variational
methods.

1. Introduction

In this work, we show the existence of at least three solutions for the nonlinear
perturbed problem

−∆pu+ |u|p−2u = λα(x)f(u) + µβ(x)h(u) x ∈ RN ,

u ∈W 1,p(RN ),
(1.1)

where (RN , | · |), N > 1, is the usual Euclidean space, ∆pu := div(|∇u|p−2∇u) with
p > N , stands for the p-Laplacian operator, f, h : R→ R are continuous functions,
α, β ∈ L1(RN ) ∩ L∞(RN ) are nonnegtive (not identically zero) radially symmetric
maps, λ is a positive real parameter and µ is a non-negative parameter.

The main objective of this article is to investigate the existence and multi-
plicity solutions to the above elliptic equation defined on the whole space RN ,
by using variational methods. Many technical difficulties appear studying prob-
lems on unbounded domains (see [1, 2, 11, 14]). For instance, unlike bounded
domains, no compact embedding is available for W 1,p(RN ); although the embed-
ding W 1,p(RN ) ↪→ L∞(RN ) is continuous due to Morrey’s theorem (p > N ), it is
far from being compact. However, the subspace of radially symmetric functions of
W 1,p(RN ), denoted further by W 1,p

r (RN ), can be embedded compactly into L∞(RN
) whenever 2 ≤ N < p < +∞ as proved in [12, Theorem 3.1] (see Lemma 2.4).

In this article, employing a three critical points theorem obtained in [3] which we
recall in the next section (Theorem 2.1), we ensure the existence of at least three
weak solutions for the problem (1.1). The aim of this work is to establish precise
values of λ and µ for which the problem (1.1) admits at least three weak solutions.
Our result is motivated by the recent work of Candito and Molica Bisci [9]. In that
paper, problem (1.1) has infinitely many radial solutions when µ = 0 and λ in a
suitable interval.
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Theorem 2.1 has been used for establishing the existence of at least three solu-
tions for eigenvalue problems in the papers [4, 5, 6]. Fora review on the subject,
we refer the reader to [10].

2. Preliminaries

Our main tool is the following three critical points theorem.

Theorem 2.1 ([3, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X →
R be a coercive continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗, and Ψ : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact, such that Φ(0) = Ψ(0) = 0. Assume that there exist
r > 0 and x ∈ X, with r < Φ(x) such that

(a1) 1
r supΦ(x)≤r Ψ(x) < Ψ(x)

Φ(x) ,

(a2) for each λ ∈ Λr :=] Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

The standard Sobolev space W 1,p(RN ) is equipped with the norm

‖u‖ :=
(∫

RN
|∇u(x)|pdx+

∫
RN
|u(x)|pdx

)1/p

.

Since by hypotheses p > N , W 1,p(RN ) is continuously embedded in L∞(RN )
and we obtain the following lemma.

Lemma 2.2 ([12, Remark 2.2]). Let u ∈W 1,p(RN ). Then

‖u‖∞ ≤
2p

p−N
‖u‖ (2.1)

for every u ∈W 1,p(RN ).

We also note that, in the low-dimensional case, every function u ∈ W 1,p(RN )
admits a continuous representation (see [7, p. 166]). In the sequel we will replace
u by this element. Let O(N) stands for the orthogonal group of RN and B(0, s)
denotes the open N -dimensional ball of center zero, radius s > 0, and standard
Lebesgue measure , meas(B(0, s)). Finally, we set

‖α‖B(0,s/2) :=
∫
B(0,s/2)

α(x)dx.

We say that a function u ∈W 1,p(RN ) is a weak solution of (1.1) if∫
RN
|∇u(x)|p−2∇u(x) · ∇v(x)dx+

∫
RN
|u(x)|p−2u(x)v(x)dx

− λ
∫

RN
α(x)f(u(x))v(x)dx− µ

∫
RN

β(x)h(u(x))v(x)dx = 0

for every v ∈W 1,p(RN ).
For completeness, we also recall here the principle of symmetric criticality that

plays a central role in many problems from differential geometry and physics, and
in partial differential equations.
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The action of a topological group G on the Banach space (X, ‖ · ‖X) is a contin-
uous map ς : G×X → X : (g, x)→ ς(g, u) =: gu, such that

1u = u, (gm)u = g(mu), u 7→ gu is linear.

The action is said to be isometric if ‖gu‖X = ‖u‖X , for every g ∈ G. Moreover,
the space of G-invariant points is defined by

Fix(G) := u ∈ X : gu = u,∀g ∈ G,
and a map m : X → R is said to be G-invariant if m ◦ g = m for every g ∈ G.

Theorem 2.3 (Palais (1979)). Assume that the action of the topological group G
on the Banach space X is isometric. If J ∈ C1(X; R) is G-invariant and if u is a
critical point of J restricted to Fix(G), then u is a critical point of J .

The action of the group O(N) on W 1,p(RN ) can be defined by (gu)(x) :=
u(g−1x), for every g ∈ W 1,p(RN ) and x ∈ RN . It is clear that this group acts
linearly and isometrically, which means ‖u‖ = ‖gu‖, for every g ∈ O(N) and
u ∈W 1,p(RN ). Defining the subspace of radially symmetric functions of W 1,p(RN )
by

X := W 1,p
r (RN ) := {u ∈W 1,p(RN ) : gu = u,∀g ∈ O(N)},

we can state the following crucial embedding result due to Kristály and principally
based on a Strauss-type estimation (see [16]).

Lemma 2.4. The embedding W 1,p
r (RN ) ↪→ L∞(RN ), is compact whenever 2 ≤

N < p < +∞.

See [12, Theorem 3.1] for details. We also cite a recent monograph by Kristály,
Rădulescu and Varga [13] and the classical book of Willem [17] as a reference for
these topics.

For the sake of convenience, we define

F (t) =
∫ t

0

f(ξ)dξ for all t ∈ R, H(t) =
∫ t

0

h(ξ)dξ for all t ∈ R.

3. Main results

Fix τ > 0 such that

κ :=
‖α‖B(0,τ/2)

ωτ
(

2p
p−N

)p{σ(N,p)
τp + l(p,N)

}
‖α‖1

> 0 (3.1)

where σ(N, p) := 2p−N (2N − 1), as well as

l(p,N) :=
1 + 2N+pNB(1/2,1)(N, p+ 1)

2N

in which B(1/2,1)(N, p+1) denotes the generalized incomplete beta function defined
as follows:

B(1/2,1)(N, p+ 1) :=
∫ 1

1/2

tN−1(1− t)pdt.

We also note that ωτ := meas(B(0, τ)) = τN τN/2

Γ(1+N
2 )

, where Γ is the Gamma
function defined by

Γ(t) :=
∫ +∞

0

zt−1e−zdz (∀t > 0).
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To introduce our result, we fix three constants c > 0 and ζ such that
1

κF (ζ)
>

cp

sup|t|≤c F (t)
.

Taking

λ ∈ Λ :=
] ζpωτ
‖α‖B(0,τ/2)F (ζ)

{σ(N, p)
pτp

+
g(p,N)

p

}
,

cp

p( 2p
p−N )p‖α‖1 max|t|≤c F (t)

[
,

we set

δλ,h := min
{cp − λ sup|t|≤c F (t)

Hc
,

1− λF (ζ)
pHζ

}
(3.2)

and
δλ,h := min

{
δλ,g,

1

max{0, ‖β‖1} lim sup|t|→∞
H(t)
tp }

}
, (3.3)

where we define r/0 = +∞, so that, for instance, δλ,h = +∞ when

lim sup
|t|→∞

‖β‖1H(t)
tp

≤ 0,

and Hc = Hζ = 0.
Now, we formulate our main result.

Theorem 3.1. Assume that there exist constants c > 0 and ζ > 0 with

cp <
( 2p
p−N

)p
ζpωτ

[σ(N, p)
τp

+ g(p,N)
]

such that
(A2)

sup|t|≤c F (t)

cp < κF (ζ);
(A3) lim sup|t|→+∞

‖α‖1F (t)
tp ≤ 0.

Then, for each

λ ∈ Λ :=
] ζpωτ
‖α‖B(0,τ/2)F (ζ)

{σ(N, p)
pτp

+
g(p,N)

p

}
,

cp

p
(

2p
p−N

)p‖α‖1 max|t|≤c F (t)

[
and for every function h : R→ R satisfying the condition

lim sup
|t|→∞

‖β‖1H(t)
tp

< +∞,

there exists δλ,h > 0 given by (3.3) such that, for each µ ∈ [0, δλ,h[, problem (1.1)
admits at least three distinct weak solutions in X.

Proof. To apply Theorem 2.1 to our problem, we introduce the functionals Φ,Ψ :
X → R for each u ∈ X, as follows

Φ(u) =
1
p
‖u‖pr ,

Ψ(u) =
∫

RN

[
α(x)F (u(x)) +

µ

λ
β(x)H(u(x))

]
dx.

Now we show that the functionals Φ and Ψ satisfy the required conditions. It is well
known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫

RN
[α(x)f(u(x)) +

µ

λ
β(x)h(u(x))]v(x)dx,
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for every v ∈ X, as well as, is sequentially weakly upper semicontinuous. Fur-
thermore, Ψ′ : X → X∗ is a compact operator. Moreover, Φ is continuously
differentiable and whose differential at the point u ∈ X is

Φ′(u)v =
∫

RN
|∇u(x)|p−2∇u(x) · ∇v(x)dx+

∫
RN
|u(x)|p−2u(x)v(x)dx,

for every v ∈ X, while by standard arguments, one has that Φ is Gâteaux differ-
entiable and sequentially weakly lower semicontinuous, and its Gâteaux derivative
Φ′ admits a continuous inverse on X∗. Clearly, the weak solutions of the problem
(1.1) are exactly the solutions of the equation Φ′(u)−λΨ′(u) = 0. Put r = cp

( 2p
p−N )pp

and

w(x) =


0, x ∈ RN \B(0, τ),
2ζ
τ (τ − |x|) , x ∈ B(0, τ) \B(0, τ/2),
ζ, x ∈ B(0, τ/2).

(3.4)

It is easy to see that w ∈ X and

‖w‖pr = ζpωτ
[σ(N, p)

τp
+ g(p,N)

]
.

Indeed∫
RN
|∇w(x)|pdx =

∫
B(0,τ)\B(0,τ/2)

2pζp

τp
dx

=
2pζp

τp
(meas(B(0, τ)))−meas(B(0, τ/2)) =

2p−Nζpωτ
τp

(2N − 1),

and ∫
RN
|w(x)|pdx =

∫
B(0,τ/2)

ζpdx+
∫
B(0,τ/2)

2pζp

τp
(τ − |x|)pdx

ζp
(∫

B(0,τ/2)

dx+
2p

τp

∫
B(0,τ)\B(0,τ/2)

(τ − |x|)pdx
)

= ωτζ
pg(p,N).

Note that the last equality holds owing to

Ip :=
∫
B(0,τ)\B(0,τ/2)

(τ − |x|)pdx = Nωττ
pB(1/2,1)(N, p+ 1). (3.5)

The easiest way to compute this integral is to go through a general polarcoordinates
transformation. Let

x1 = ρ cos θ1,

xj = ρ cos θ1 cos θ2 · · · cos θj1 sin θj , (j = 2, · · · , N − 1)

xN = ρ cos θ1 cos θ2 · · · cos θN1 , for ρ ∈ [µ̄τ, τ ], θj ∈ (−π/2, π/2],

j = 1, · · · , N − 2 and θN−1 ∈ (−π, π].

The Jacobian of this transformation is

dx1 · · · dxN = ρN−1
{N−1∏
j=1

| cos θj |N−j−1
}
dρdθ1 · · · dθN−1.

Hence, one has

Ip =
(∫ τ

τ/2

(τ − ρ)pρN−1dρ
)(∫ π

−π
dθN−1

)N−2∏
j=1

∫ π/2

−π/2
| cos θj |N−j−1dθj .
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On the other hand, since

N−2∏
j=1

∫ π/2

−π/2
| cos θj |N−j−1dθj =

N−2∏
j=1

Γ
(N − j

2
)
Γ(

1
2

)/Γ
(N − j + 1

2
)
,

taking into account that

N−2∏
j=1

Γ
(N − j

2
)
Γ(

1
2

)/Γ
(N − j + 1

2
)

=
NπN/2−1

2Γ(N2 + 1)
,

an elementary computation gives (3.5). Moreover, from the condition

cp < ζpωτ

[σ(N, p)
τp

+ g(p,N)
]( 2p
N − p

)p
one has 0 < r < Φ(w). Exploiting the embedding X ↪→ L∞(RN ) (by relation
(1.1)), one has maxt∈RN |v(t)| ≤ c for all v ∈ X such that ‖v‖pr < pr and it follows
that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

∫
RN

[
α(x)F (u(x)) +

µ

λ
β(x)H(u(x))

]
dx

≤
∫

RN
α(x) sup

|t|≤c
F (t)dx+

µ

λ
Hc.

On the other hand, from the definition of Ψ, we infer

Ψ(w) =
∫

RN
α(x)F (w(x))dx+

µ

λ

∫
RN

β(x)H(w(x))dx

=
∫

RN
α(x)F (w(x))dx+

µ

λ

∫
RN

β(x)H(w(x))dx

≥
∫

RN
α(x)F (w(x))dx+ ‖β‖1

µ

λ
inf
[0,η]

H

=
∫

RN
α(x)F (w(x))dx+ ‖β‖1

µ

λ
Hη.

Therefore, owing to Assumption (A2), we have

supu∈Φ−1(]−∞,r]) Ψ(u)
r

=
supu∈Φ−1(]−∞,r])

∫
RN [α(x)F (u(x)) + µ

λβ(x)H(u(x))]dx
r

≤
∫

RN sup|t|≤c α(x)F (t)dx+ µ
λ‖β‖1H

c

cp

( 2p
N−p )pp

(3.6)

and
Ψ(w)
Φ(w)

=

∫
RN α(x)F (w(x))dx+ µ

λ

∫
RN β(x)H(w(x))dx

ζpωτ [
σ(N,p)
τp +g(p,N)]

p

≥
∫

RN α(x)F (w(x))dx+ ‖β‖1 µλHη

ζpωτ [
σ(N,p)
τp +g(p,N)]

p

.

(3.7)



EJDE-2015/23 MULTIPLE SOLUTIONS 7

Since µ < δλ,g, one has

µ <

cp

( 2p
N−p )pp

− λ
∫

RN sup|t|≤c α(x)F (t)dx

Hc
,

which means ∫
RN sup|t|≤c α(x)F (t)dx+ µ

λH
c

cp

( 2p
N−p )pp

<
1
λ
.

Furthermore,

µ <
ζpωτ [σ(N,p)

τp + g(p,N)]− pλ
∫

RN α(x)F (w(x))dx
p‖β‖1Hη

,

and this means ∫
RN α(x)F (w(x))dx+ ‖β‖1 µλHη

ζpωτ [σ(N,p)
τp +g(p,N)]
p

>
1
λ
.

Then∫
RN sup|t|≤c α(x)F (t)dx+ µ

λH
c

cp

( 2p
N−p )pp

<
1
λ
<

∫
RN α(x)F (w(x))dx+ ‖β‖1 µλHη

ζpωτ [
σ(N,p)
τp +g(p,N)]

p

. (3.8)

Hence from (3.6)-(3.8), the condition (a1) of Theorem 2.1 is verified.
Finally, since µ < δλ,g, we can fix l > 0 such that

lim sup
|t|→∞

‖β‖1H(t)
tp

< l

and µl < 1
p( 2p
N−p )p‖α‖1

. Therefore, there exists a function q ∈ L1(RN ) such that

‖β‖1H(t) ≤ ltp + q(x) for all x ∈ RN and for all t ∈ R.
Now, fix

0 < ε <
1− pµl

(
2p
N−p

)p‖α‖1
pλ
(

2p
N−p

)p‖α‖1 .

From (A3) there is a function qε ∈ L1(RN ) such that

‖α‖1F (t) ≤ εtp + qε(x) for all x ∈ RNand for all t ∈ R.
It follows that, for each u ∈ X,

Φ(u)− λΨ(u)

=
1
p
‖u‖p − λ

∫
RN

[α(x)F (u(x)) +
µ

λ
β(x)H(u(x))]dx

≥
(1
p
− λε

( 2p
N − p

)p‖α‖1 − νl( 2p
N − p

)p‖α‖1)‖u‖p − λ‖qε‖1 − µ‖q‖1,
and thus There was a strange

symbol between 1
p

and λ; so am not
sure that − is the
correct symbol

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞,

which means the functional Φ− λΨ is coercive, and the condition (a2) of Theorem
2.1 is satisfied. Since, from (3.6) and (3.8),

λ ∈
]Φ(w)

Ψ(w)
,

r

supΦ(x)≤r Ψ(x)

[
,
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Theorem 2.1, with x = w, assures the existence of three critical points for the
functional Φ− λΨ, and the proof is complete. �

Remark 3.2. The methods used here can be applied studying discrete boundary
value problems as in [8], and also non-smooth variational problems as in [15].
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eralized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler
problems, Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 2656–2665. MR 2813211

(2012m:53073)
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