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ANISOTROPIC SINGULARITY OF SOLUTIONS TO ELLIPTIC
EQUATIONS IN A MEASURE FRAMEWORK

WANWAN WANG, HUYUAN CHEN, JIAN WANG

Abstract. In this article we study the weak solutions of elliptic equation

−∆u = 2
∂δ0

∂ν
in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded C2 domain of RN with N ≥ 2 containing the

origin, ν is a unit vector and ∂δ0
∂ν

is defined in the distribution sense, i.e.

〈
∂δ0

∂ν
, ζ〉 =

∂ζ(0)

∂ν
, ∀ζ ∈ C1

0 (Ω).

We prove that this problem admits a unique weak solution u in the sense thatZ
Ω
u(−∆)ξdx = 2

∂ξ(0)

∂ν
, ∀ξ ∈ C2

0 (Ω).

Moreover, u has an anisotropic singularity and can be approximated, as t →
0+, by the solutions of

−∆u =
δtν − δ−tν

t
in Ω,

u = 0 on ∂Ω.

1. Introduction

The simplest and the most important Laplacian equation

−∆u = δ0 in RN (1.1)

comes up in a wide variety of physical contexts. In a typical interpretation, δ0
denotes the electrostatic particle and u does the electrostatic potential. The unique
solution of (1.1) is called fundamental solution of

−∆u = 0 in RN \ {0}. (1.2)

It is well known that the fundamental solution is

Γ(x) =

{
c0|x|2−N for N ≥ 3,
−c0 log(|x|) for N = 2,

where c0 > 0, has isotropic singularity, i.e. Γ → +∞ from any direction near the
origin. This kind of particle is called isotropic source.
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In contrast with electrostatic particle, the magnetic particle (we do not focus
on the generation) has totally different phenomena: given a magnetic particle in
the origin, we have to put its polar direction ν, if we denote by u the magnetic
potential, then it could be observed that u would tend to +∞ at the origin from
the direction ν, but to −∞ at the origin from the direction −ν. We call this
phenomena as anisotropic singularity from the mathematical point and magnetic
particle as anisotropic source. Our aim of this paper is to study the anisotropy
singular phenomena in partial differential equations.

Let Ω be a bounded C2 domain in RN with N ≥ 2 containing the origin, δ0
be the Dirac mass concentrated at the origin. Our purpose in this article is to
investigate the weak solution to semilinear elliptic problem

−∆u = 2
∂δ0
∂ν

in Ω,

u = 0 on ∂Ω,
(1.3)

where ν is a unit vector in RN , ∆ denotes the Laplacian operator and ∂δ0
∂ν is defined

in the distribution sense that

〈∂δ0
∂ν

, ξ〉 =
∂ξ(0)
∂ν

, ∀ξ ∈ C1
0 (Ω).

It is worth mentioning that

2
∂δ0
∂ν

=
∂δ0
∂ν

+
[
− ∂δ0
∂(−ν)

]
,

which shows that the anisotropic source 2∂δ0∂ν consists by two directions sources, so
we may call it as dipole source.

Before starting our main results in this paper, we introduce the definition of the
weak solution to (1.3).

Definition 1.1. A measurable function u is a weak solution of (1.3) if u ∈ L1(Ω)
and ∫

Ω

u(−∆)ξdx = 2
∂ξ(0)
∂ν

, ∀ξ ∈ C2
0 (Ω). (1.4)

Now we are ready to state our main theorem on the existence, uniqueness and
asymptotic behavior of weak solutions for (1.3).

Theorem 1.2. Assume that Ω is a bounded C2 domain in RN with N ≥ 2 con-
taining the origin, δ0 denotes the Dirac mass concentrated at the origin, ν is a unit
vector in RN .

Then (1.3) admits a unique weak solution u, which has following asymptotic
behavior at the origin

lim
t→0+

u(te)
Pν(te)

= 1 for e ∈ ∂B1(0), e · ν 6= 0, (1.5)

where
Pν(x) = cN

x · ν
|x|N

, ∀x ∈ RN \ {0} (1.6)

with

cN =
2

|∂B1(0)|
> 0.
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We notice that the weak solution u of (1.3) with Ω = B1(0) has to change signs.
Indeed, letting ξ be the solution of

−∆u = 1 in B1(0),

u = 0 on ∂B1(0),

we observe that ∂ξ(0)
∂ν = 0, if u keeps nonnegative, a contradiction is obtained

from (1.4). Furthermore, thanks to (1.5), the solution u inherits the anisotropic
singularity of Pν and we prove that Pν is a weak solution of

−∆u = 2
∂δ0
∂ν

in RN .

For more on anisotropic singularities results, we refer to [6, 14]. The proof of
Theorem 1.2 is addressed in Section 2.

In Section 3, we approximate the weak solution u by weak solutions of

−∆u = µt in Ω,
u = 0 on ∂Ω,

(1.7)

where µt = δtν−δ−tν
t . The existence and uniqueness of weak solution of (1.7) could

see the references [1, 3, 13]. We remark that the source µt consists of isotropic
source. But the limit of {µt} as t→ 0+ is 2∂δ0∂ν , which is an anisotropic source.

In Section 4 we consider the weak solution of elliptic equations with multipole
source, which consists of a multipole sources by addressing in one point, i.e.

∂nδ0 =
n−1∑
i=0

2
∂δ0
∂νi

,

where n ∈ N and νi is unit vector in RN with i = 0, 1, . . . , n− 1. Here ∂nδ0 could
be called a multipole source. In particular case that N = 2, we are interested in
the period of the corresponding weak solution to elliptic equation with multipole
source. Precisely, we may obtain a 2π

n -period singularities of solution to (1.3), if n
is odd and the dipole source is replaced by a proper multipole source

νi =
(

cos(
2iπ
n

), sin(
2iπ
n

)
)
.

2. Proof of Theorem 1.2

To prove Theorem 1.2, we analyzing the function Pν , and for be convenience we
let ν = eN := (0, . . . , 0, 1) in this section. Also for convenience, we abbreviate PeN
by PN , and ∂δ0

∂eN
by ∂δ0

∂xN
.

Proposition 2.1. Let

PN (x) = cN
xN
|x|N

, ∀x ∈ RN \ {0},

where cN = 2
|∂B1(0)| . Then the function PN is the unique weak solution of

−∆u = 2
∂δ0
∂xN

in RN ,

u(x)→ 0 as |x| → ∞;
(2.1)
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that is, ∫
RN

PN (−∆)ξdx = 2
∂ξ(0)
∂xN

, ∀ξ ∈ C2
0 (RN ).

Proof. (Existence) By direct computation, we derive that PN is a classical solution
of

−∆u = 0 in RN \ {0}.
Thus, for ε > 0 and ξ ∈ C2

0 (RN ),

0 =
∫

RN\Bε(0)

(−∆)PNξdx

=
∫

RN\Bε(0)

∇PN · ∇ξdx−
∫
∂Bε(0)

∂PN
∂~n

ξdS(x)

=
∫

RN\Bε(0)

PN (−∆)ξdx+
∫
∂Bε(0)

∂ξ

∂~n
PNdS(x)−

∫
∂Bε(0)

∂PN
∂~n

ξdS(x),

(2.2)

where ~n is a unit normal vector pointing outward of RN \Bε(0). We claim that

lim
ε→0

∫
∂Bε(0)

∂PN
∂~n

ξdS(x) =
2(N − 1)

N

∂ξ(0)
∂xN

(2.3)

and

lim
ε→0

∫
∂Bε(0)

∂ξ

∂~n
PNdS(x) = − 2

N

∂ξ(0)
∂xN

. (2.4)

Indeed, since ξ ∈ C2
0 (RN ), then for |x| small,

ξ(x) = ξ(0) +∇ξ(0) · x+O(|x|2),

∇ξ(x) = ∇ξ(0) +O(|x|).

Moreover, for x ∈ ∂Bε(0), there holds that

~nx = − x

|x|
, ∇PN (x) · ~nx = cN (N − 1)

xN
|x|N+1

,

then we have∫
∂Bε(0)

∂PN
∂~n

ξdS(x)

= cN (1−N)ε−N−1

∫
∂Bε(0)

xN [ξ(0) +∇ξ(0) · x+O(|x|2)]dS(x)

= cN (N − 1)
∂ξ(0)
∂xN

ε−N−1
[ ∫

∂Bε(0)

x2
NdS(x) +O(1)

∫
∂Bε(0)

|x|3dS(x)
]

= cN (N − 1)
∂ξ(0)
∂xN

[ ∫
∂B1(0)

x2
NdS(x) +O(1)ε

]
= cN (N − 1)

∂ξ(0)
∂xN

[ |∂B1(0)|
N

+O(1)ε
]

→ 2(N − 1)
N

∂ξ(0)
∂xN

as ε→ 0+

and ∫
∂Bε(0)

∂ξ

∂~n
PNdS(x) = cN ε

−N
∫
∂Bε(0)

xN [−∇ξ(0) · x
|x|

+O(|x|)]dS(x)
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= −cN
∂ξ(0)
∂xN

ε−N−1
[ ∫

∂Bε(0)

x2
NdS(x) +O(1)ε

]
→ − 2

N

∂ξ(0)
∂xN

as ε→ 0+,

which imply (2.3) and (2.4). Passing to the limit in (2.2) as ε→ 0+, we obtain that
PN is a weak solution of (2.1).

(Uniqueness) Let P be a weak solution of (2.1) and then w := P −PN is a weak
solution to

−∆u = 0 in RN ,
u(x)→ 0 as |x| → ∞

Let {ηn} ⊂ C∞0 (RN ) be a sequence of radially decreasing and symmetric mollifiers
such that supp(ηn) ⊂ Bεn(0) with εn ≤ 1

n and wn = w ∗ ηn. We observe that

wn → w a.e. in RN and in L1
loc(RN ) as n→∞. (2.5)

By the Fourier transformation, we have

ηn ∗ (−∆)ξ = (−∆)(ξ ∗ ηn);

then ∫
RN
w(−∆)(ξ ∗ ηn)dx =

∫
RN
w ∗ ηn(−∆)ξdx.

It follows that wn is a classical solution of

−∆u = 0 in RN ,
u(x)→ 0 as |x| → ∞.

(2.6)

By Maximum Principle, (2.6) has only zero as a classical solution. Therefore, we
have wn ≡ 0 in RN . Thanks to (2.5), we have w = 0 a.e. in RN . This completes
the proof �

Remark 2.2 ([8]). Let RN+ = RN−1×R+ and RN− = RN−1×R−. Then P+ := PN
in R̄N+ is a weak solution of

−∆u = 0 in RN+ ,

u = δ0 on RN−1 × {0}
(2.7)

and P− := PN in R̄N− is a weak solution of

−∆u = 0 in RN− ,

u = −δ0 on RN−1 × {0}.
(2.8)

Here the definitions of weak solution are give as∫
RN±

P±(−∆)ζdx =
∂ζ(0)
∂xN

, ∀ζ ∈ C2
0 (RN± ).

This indicates that the weak solution of (2.1) could be joint to the weak solutions
of (2.7) and (2.8).

We are ready to prove Theorem 1.2 by using the function PN .
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Proof of Theorem 1.2. (Existence) Without loss of generality, we prove only the
case ν = eN . Let η : RN → R be a C∞ nonnegative function such that

η =

{
1 in Bσ0(0),
0 in RN \B2σ0(0),

where σ0 > 0, in the throughout of this paper, is a positive number such that
B3σ0(0) ⊂ Ω. Denote

W = ηPN in RN .
We notice that −∆W = 0 in Bσ0(0) \ {0} and Ω \B2σ0(0); thus, denoting f = ∆W
in RN \ {0} and f(0) = 0, one has that f ∈ C1

0 (Ω). It is well-known that there
exists a unique solution w ∈ C2(Ω) ∩ C(Ω̄) to problem

−∆u = f in Ω,
u = 0 on ∂Ω.

Next we prove that u = w +W is a weak solution of (1.3). It is obvious that

−∆u = 0 in Ω \ {0},
which implies that for ξ ∈ C2

0 (Ω) and ε ∈ (0, σ0),

0 =
∫

Ω\Bε(0)

(−∆)u ξdx

=
∫

Ω\Bε(0)

u(−∆)ξdx+
∫
∂Bε(0)

∂ξ

∂~n
udS(x)−

∫
∂Bε(0)

∂u

∂~n
ξdS(x),

=
∫

Ω\Bε(0)

u(−∆)ξdx+
∫
∂Bε(0)

∂ξ

∂~n
PNdS(x)−

∫
∂Bε(0)

∂PN
∂~n

ξdS(x)

+
∫
∂Bε(0)

∂ξ

∂~n
wdS(x)−

∫
∂Bε(0)

∂w

∂~n
ξdS(x).

(2.9)

Since w ∈ C2
0 (Ω), it follows that

lim
ε→0+

[ ∫
∂Bε(0)

∂ξ

∂~n
wdS(x)−

∫
∂Bε(0)

∂w

∂~n
ξdS(x)

]
= 0

and by (2.3) and (2.4), one has that

lim
ε→0+

[ ∫
∂Bε(0)

∂ξ

∂~n
PNdS(x)−

∫
∂Bε(0)

∂PN
∂~n

ξdS(x)
]

= −2
∂ξ(0)
∂xN

.

Thus, passing to the limit in (2.9) as ε→ 0, we obtain∫
Ω

u(−∆)ξdx = 2
∂ξ(0)
∂xN

, ∀ξ ∈ C2
0 (Ω).

(Uniqueness) Let v be a weak solution of (2.1). Then ϕ := u − v is a weak
solution of

−∆ϕ = 0 in Ω,
ϕ = 0 on ∂Ω.

By Kato’s inequality [13, Theorem 2.4] (see also [7]), we have that ϕ = 0 a.e. in Ω.
Now we prove (1.5). Since w is C2

0 (Ω) and

lim
t→0+

W (te) sign(e · ν) = +∞ for e ∈ ∂B1(0), e · ν 6= 0,
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this implies (1.5) by the fact u = w +W . The proof is complete �

3. Approximations

In this section, we prove that the anisotropic source could be approximated by
isotropy sources. Denote

µt =
δteN − δ−teN

t
, (3.1)

where t ∈ (0, σ0/2) and eN = (0, . . . , 0, 1). From [13, Theorem 3.7] there exists a
unique solution ut to problem

−∆u = µt in Ω,
u = 0 on ∂Ω.

(3.2)

In fact, ut could be expressed by Green’s function GΩ as follows

ut(x) =
∫

Ω

GΩ(x, y)dµt(y) =
GΩ(x, teN )−GΩ(x,−teN )

t
. (3.3)

Proposition 3.1. Assume that Ω is a bounded C2 domain in RN containing the
origin, µt given in (3.1) with t ∈ (0, σ0/2), ut is the unique weak solution of (3.2)
and u is the unique weak solution of (1.3), where σ0 > 0 such that B3σ0(0) ⊂ Ω.
Then

ut → u a.e. in Ω and in Lp(Ω) as t→ 0+,

where p ∈ [1, N
N−1 ). Moreover,

u(x) = 2
∂GΩ(x, 0)
∂xN

, ∀x ∈ Ω \ {0}.

In the proof of this proposition, we use (3.3) to get the converge ut → u almost
every where in Ω and the Marcinkiewicz estimates for the converge in Lp(Ω) with
p ∈ [1, N

N−1 ). To this end, we introduce following lemmas.

Lemma 3.2. Let Ω be a bounded C2 domain in RN containing the origin and µt
given in (3.1) with t ∈ (0, σ0/2), then

µt ⇀ 2
∂δ0
∂xN

as t→ 0+

in the sense that

lim
t→0+

〈µt, ξ〉 = 2
∂ξ(0)
∂xN

, ∀ξ ∈ C1
0 (Ω).

Proof. For ξ ∈ C2
0 (Ω), we have

〈µt, ξ〉 =
〈δteN , ξ〉 − 〈δ−teN , ξ〉

t
=
ξ(teN )− ξ(−teN )

t

and

lim
t→0+

ξ(teN )− ξ(−teN )
t

= lim
t→0+

ξ(teN )− ξ(0)
t

+ lim
t→0+

ξ(0)− ξ(−teN )
t

= 2
∂ξ(0)
∂xN

,

which completes the proof. �
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Lemma 3.3. Let Ω be a bounded C2 domain in RN containing the origin, µt be
given by (3.1) with t ∈ (0, σ0/2), and ut be the unique weak solution of (3.2). Then

lim
t→0+

ut(x) = 2
∂GΩ(x, 0)
∂xN

, ∀x ∈ Ω \ {0}.

Proof. For x ∈ Ω \ {0}, GΩ(x, ·) is C2 in {teN , t ∈ (0, |x|/2)}, and

lim
t→0+

GΩ(x, teN )−GΩ(x,−teN )
t

= 2
∂GΩ(x, 0)
∂yN

= 2
∂GΩ(x, 0)
∂xN

.

Along with (3.3), we obtain

lim
t→0+

ut(x) = 2
∂GΩ(x, 0)
∂xN

, ∀x ∈ Ω \ {0}.

This completes the proof. �

Before starting the Marcinkiewicz estimate, we recall some definitions and prop-
erties of Marcinkiewicz spaces.

Definition 3.4. Let Θ ⊂ RN be a domain and µ be a positive Borel measure in
Θ. For κ > 1, κ′ = κ/(κ− 1) and u ∈ L1

loc(Θ, dµ), we set

‖u‖Mκ(Θ,dµ) = inf
{
c ∈ [0,∞] :

∫
E

|u|dµ ≤ c
(∫

E

dµ
)1/κ′

, ∀E ⊂ Θ, E Borel
}
(3.4)

Mκ(Θ, dµ) = {u ∈ L1
loc(Θ, dµ) : ‖u‖Mκ(Θ,dµ) <∞}. (3.5)

Here Mκ(Θ, dµ) is called the Marcinkiewicz space of exponent κ, or weak Lκ-
space and ‖ · ‖Mκ(Θ,dµ) is a quasi-norm.

Proposition 3.5 ([2, 5]). Assume that 1 ≤ q < κ <∞ and u ∈ L1
loc(Θ, dµ). Then

there exists c3 > 0 dependent of q, κ such that∫
E

|u|qdµ ≤ c3‖u‖Mκ(Θ,dµ)

(∫
E

dµ
)1−q/κ

,

for any Borel subset E of Θ.

The next estimate plays an important role in ut → u in Lp(Ω) with p ∈ [1, N
N−1 ).

Lemma 3.6. Assume that Ω ⊂ RN (N ≥ 2) is a bounded C2 domain containing
the origin and

GΩ[µt](x) =
∫

Ω

GΩ(x, y)dµt(y).

(i) For N ≥ 3 there exists c1 > 0 such that

‖GΩ[µt]‖
M

N
N−1 (Ω,dx)

≤ c1;

(ii) for N = 2, for any σ ∈ (0, 1
2 ), there exists cσ > 0 such that

‖GΩ[µt]‖
M

2
1+σ (Ω,dx)

≤ cσ.

Proof. We observe that for x, y ∈ Ω with x 6= y,

GΩ(x, y) =

{
c0|x− y|2−N + ΓΩ(x, y) if N ≥ 3,
−c0 log |x− y|+ ΓΩ(x, y) if N = 2,

where ΓΩ is a C2 and harmonic function.
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For any t ∈ (0, σ0/2), we divide the domain Ω into

Ot := {x ∈ Ω : |x| < t/2} and Qt := {x ∈ Ω : |x| ≥ t/2},
then for N ≥ 3 and x ∈ Ot \ {0},

|GΩ[µt](x)| = |GΩ(x, teN )−GΩ(x,−teN )
t

|

≤ c2
[
| |x− teN |

2−N − |x+ teN |2−N

t
|+ 1

]
≤ c3

[
|∂|x|

2−N

∂xN
|+ 1

]
≤ 2c3(N − 2)|x|1−N

and for x ∈ Qt,

|GΩ[µt](x)| = |GΩ(x, teN )−GΩ(x,−teN )
t

|

≤ c4
|x− teN |2−N + |x+ teN |2−N

t

≤ 2c4
|x− teN |2−N + |x+ teN |2−N

|x|
,

where c2, c3, c4 > 0. Therefore, for some c5 > 0,

|GΩ[µt](x)| ≤ c5
[
|x|1−N +

|x− teN |2−N + |x+ teN |2−N

|x|

]
, ∀x ∈ Ω \ {0}. (3.6)

For N = 2, we obtain that for some c6 > 0,

|GΩ[µt](x)| ≤ c6
[
|x|1−N+

| log(|x− teN |)|+ | log(x+ teN )|
|x|

]
, ∀x ∈ Ω\{0}. (3.7)

Let E be a Borel subset of Ω, then there exists rE > 0 such that |E| = |BrE (0)|.
Therefore, for N ≥ 3, we deduce that∫
E

|GΩ[µt](x)| dx ≤ c5
∫
E

(
|x|1−N +

|x− teN |2−N + |x+ teN |2−N

|x|

)
dx

≤ c5
∫
BrE (0)

|x|1−Ndx+ c5r
−1
E

∫
BrE (teN )

|x− teN |2−N dx

+ c5r
−1
E

∫
BrE (−teN )

|x+ teN |2−N dx+ 2c5r2−N
E

∫
BrE (0)

|x|−1 dx

≤ c7rE = c8|BrE (0)| 1
N

= c8|E|
1
N ,

where c7, c8 > 0. This implies that

‖GΩ[µt]‖
M

N
N−1 (Ω,dx)

≤ c8.

For N = 2, we assume that rE ∈ (0, 1/2),∫
E

|GΩ[µt](x)| dx

≤ c6
∫
E

(
|x|−1 +

| log(|x− teN |)|+ | log(|x+ teN |)|
|x|

)
dx
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≤ c6
∫
BrE (0)

|x|−1dx+ c6r
−1
E

∫
BrE (teN )

| log(|x− teN |)| dx

+ c6r
−1
E

∫
BrE (−teN )

| log(|x− teN |)| dx+ 2c6| log rE |
∫
BrE (0)

|x|−1 dx

≤ c9rE [− log(rE)]

≤ c10|BrE (0)| 12 [− log(|BrE (0)|)]

where c9, c10 > 0. Then for any σ ∈ (0, 1
2 ), there exists cσ > 0 such that∫

E

|ut(x)|dx ≤ cσ|BrE (0)|
1−σ

2 = cσ|E|
1−σ

2 ,

which implies
‖GΩ[µt]‖

M
2

1+σ (Ω,dx)
≤ cσ.

This ends the proof. �

Proof of Proposition 3.1. We observe that ut is the unique weak solution of (3.2);
that is, ∫

Ω

ut(−∆)ξdx =
ξ(teN )− ξ(−teN )

t
, ∀ξ ∈ C2

0 (Ω). (3.8)

On the one hand, by Lemma 3.2, we have

lim
t→0+

ξ(teN )− ξ(−teN )
t

= 2
∂ξ(0)
∂xN

.

On the other hand, by Lemma 3.3, we have

ut → 2
∂GΩ(·, 0)
∂xN

a.e. in Ω

and combining Proposition 3.5 and Lemma 3.6, {ut} is relatively compact in Lp(Ω)
for any p ∈ [1, N

N−1 ). Therefore, up to some subsequence, passing to the limit of

t→ 0+ in the identity (3.8), it implies that ∂GΩ(·,0)
∂xN

is a weak solution of (1.3) and
then Proposition 3.1 follows by uniqueness of weak solution to (1.3). �

4. Multipole singularities

In this section we discuss the weak solution of elliptic equation with multiple-
polar source. We construct multiple-polar source by

∂nδ0 =
n−1∑
i=0

2
∂δ0
∂νi

, (4.1)

where n ∈ N and νi is unit vector in RN with i = 0, . . . , n− 1.

Proposition 4.1. Assume that N = 2, ∂nδ0 is defined in (4.1) with n odd number
and

νi =
(

cos(
2iπ
n

), sin(
2iπ
n

)
)
.

Then the problem
−∆u = 2∂nδ0 in Ω,

u = 0 on ∂Ω
(4.2)

admits a unique weak solution vn such that the function limr→0 vn(r, θ)rN−1 has
2π/n-period.
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Proof. Since the Laplacian operator is linear, vn =
∑n−1
i=0 ui, where ui is the unique

solution of (1.3) replaced ν by νi. The uniqueness of vn follows the proof of Theorem
1.2.

Next we prove that vn has 2π
n -period singularity. It follows by Proposition 2.1

that
−∆u = 2∂nδ0 in RN ,
u(x)→ 0 as |x| → ∞,

(4.3)

has a unique weak solution wn satisfying

wn(x) =
n−1∑
i=0

Pνi(x) = cN |x|−1
n−1∑
i=0

x

|x|
· νi

= cNr
−1

n−1∑
i=0

[
cos θ cos(

2iπ
n

) + sin θ sin(
2iπ
n

)
]

= cNr
−1

n−1∑
i=0

cos(θ − 2iπ
n

)

where (r, θ) is the polar coordinates of x. We observe that if n is even, letting
n = 2j, then cos(θ − 2iπ

n ) = − cos(θ − 2(i+j)π
n ), which implies that wn = 0 in

RN \ {0}.
When n is odd, the function θ 7→

∑n−1
i=0 cos(θ − 2iπ

n ) is nontrivial and has 2π
n -

period. Similar to the proof of Theorem 1.2, we can prove that

lim
r→0+

vn(te)
wn(te)

= 1 for e ∈ ∂B1(0), e · νi 6= 0, i = 0, . . . , n− 1.

This completes the proof. �
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