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SIMILARITY SOLUTIONS OF A REPLICATOR DYNAMICS
EQUATION ASSOCIATED WITH A CONTINUUM OF

PURE STRATEGIES

VASSILIS G. PAPANICOLAOU, KYRIAKI VASILAKOPOULOU

Abstract. We introduce a nonlinear degenerate parabolic equation contain-
ing a nonlocal term. The equation serves as a replicator dynamics model where

the set of strategies is a continuum. In our model the payoff operator (which is
the continuous analog of the payoff matrix) is nonsymmetric and, also, evolves

with time. We are interested in solutions u(t, x) of our equation which are

positive and their integral (with respect to x) over the whole space is 1, for
any t > 0. These solutions, being probability densities, can serve as time-

evolving mixed strategies of a player. We show that for our model there is an

one-parameter family of self-similar such solutions u(t, x), all approaching the
Dirac delta function δ(x) as t→ 0+.

1. Introduction

Replicator dynamics models are popular models in evolutionary game theory.
They have significant applications in economics, population biology, as well as in
other areas of science [3, 4, 9, 10].

Replicator dynamics has been studied extensively in the finite dimensional case:
Let A = (aij) be an m×m matrix. The typical replicator dynamics equation is [3]

ut = [Au− (u,Au)]u = (Au)u− (u,Au)u, (1.1)

where the subscript t in ut denotes derivative with respect to the time variable
t, (u,Au) denotes the usual inner product, i.e. the dot product, of the vectors u
and Au, and (Au)u is the vector whose i-th component is the product of the i-th
components of (Au) and u (i.e. the “pointwise product” of two vectors). The matrix
A is called the payoff matrix, while S = {1, . . . ,m} is the set of pure strategies (or
options) and the vector

u =
(
u1(t), . . . , um(t)

)>
,

is a probability (mass) function on S, meaning that

uj(t) ≥ 0, for j = 1, . . . ,m, and
m∑
j=1

uj(t) = 1. (1.2)
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It is easy to see that if the conditions (1.2) are satisfied for t = 0, then they are
satisfied for all t ≥ 0 (under the flow (1.1)). The vector u represents the mixed
strategy of one member of the population, i.e. one player, against the rest of the
population. The dependence of u in t allows the player to update her strategy, in
order to increase her payoff.

Infinite dimensional versions of this evolutionary strategy models have been pro-
posed, e.g., in [1] and [6] (see also [7] and the survey [3]) in connection to cer-
tain economic and biological applications. For instance, there are situations where
(pure) strategies correspond to geographical points and hence it is natural to model
the set of strategies by a continuum. However, the abstract form of the proposed
equations does not allow one to obtain much insight, for example on the form of
solutions.

To make some progress in this direction, the recent works [5, 8] initiated the
study of the case where S is the set Rd, d ≥ 1, and the payoff operator A is the
Laplacean operator ∆. Then the evolution law (1.1) becomes

ut = [∆u− (u,∆u)]u, (1.3)

where (· , ·) denotes the usual inner product of the Hilbert space L2(Rd) of the
square-integrable functions defined on Rd). References [5] and [8] deal only with
the special problem of constructing an one-parameter family of self-similar solutions
for (1.3), namely solutions u of the form

u(t, x) = t−κg(rt−λ), where r := |x| =
√
x2

1 + · · ·+ x2
d.

A peculiar feature of these solutions is that all of them are probability densities on
Rd, for all t > 0, and approach the Dirac delta function δ(x) as t→ 0+.

One criticism towards (1.3) is that the Laplacean operator ∆ is a symmetric
operator and, also, time-independent. A payoff operator A which is symmetric
with respect to the inner product (·, ·) corresponds to the case of a partnership
game, where interests of both players coincide (see, e.g., [3]). These are unrealistic
features for a payoff operator in a replicator dynamics model. For this reason, in
the present work we consider a nonsymmetric and time-dependent payoff operator,
namely

Au = A(t)u =
∂2u

∂x2
+ atγx

∂u

∂x
, (1.4)

where γ is a specific constant (we will see later that γ = −2/3), while

a > 0 (1.5)

is an arbitrary but fixed constant. Then, our replicator dynamics model is described
by the equation

ut = [Au− (u,Au)]u, t > 0, x ∈ R, (1.6)

with u = u(t, x), where the operator A is given by (1.4).
In order for (1.6) to be a replicator dynamics model, we need to make sure that

if we start with an initial condition which is a probability density function, namely

u(0, x) = f(x) ≥ 0, x ∈ R, satisfying
∫

R
f(x) dx = 1, (1.7)
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then the solution u(t, x) will remain a probability density function (as a function
of x) for all t > 0 (as long as it exists). This can be justified as follows: Set

U(t) :=
∫ ∞
−∞

u(t, x) dx. (1.8)

Then, integrating both sides of (1.6) over R (with respect to x) gives

U ′(t) = (u,Au)[1− U(t)], (1.9)

where we have assumed that the interchange of integration with respect to x and
differentiation with respect to t is allowed. Now, in view of (1.9), the fact that
U(0) = 1 (which follows from (1.7)) suggests that U(t) ≡ 1; in view of (1.8), this
says that the integral of u(t, x), with respect to x, on R is 1 for every t.

Also, if u(t, x) is a solution of (1.6) which exists for all t > 0 and, as a function of
x, it is integrable on R and positive for small t, then, due to the nature of equation
(1.6) we have that u(t, x) remains positive for all t > 0. We can, thus, conclude
that the set of probability densities on R is invariant under the flow (1.6).

2. Special solutions

2.1. Self-Similar solutions. We consider the equation (1.6), where A is given by
(1.4). Let us assume that the solution u(t, x) satisfies

u(t, · ) ∈ H1(R) and lim
x→±∞

xu(t, x)2 = 0. (2.1)

By (1.4) we obtain

(Au, u) =
∫ ∞
−∞

(Au)u dx =
∫ ∞
−∞

uxxu dx+ atγ
∫ ∞
−∞

xuxu dx.

Hence, in view of (2.1), integration by parts yields

(Au, u) = −
∫ ∞
−∞

u2
x dx−

a

2
tγ
∫ ∞
−∞

u2 dx, (2.2)

thus, (1.6) is equivalent to

ut =
[
uxx + atγxux +

∫ ∞
−∞

u2
x dx+

a

2
tγ
∫ ∞
−∞

u2 dx
]
u. (2.3)

We will look for self-similar solutions of (1.6), namely solutions u(t, x) of the form

u(t, x) = t−κg(xt−λ). (2.4)

We set s = xt−λ (hence x = stλ) so that u(t, x) of (2.4) can be also written as
u(t, x) = t−κg(s). It follows that

ux(t, x) = t−(κ+λ)g′(s), (2.5)

uxx(t, x) = t−(κ+2λ)g′′(s). (2.6)

Also,
ut(t, x) = −κt−(κ+1)g(s)− λxt−λt−(κ+1)g′(s)

= −κt−(κ+1)g(s)− λst−(κ+1)g′(s).
(2.7)

Then, (2.2) gives

(Au, u) = −t−(2κ+λ)

∫ ∞
−∞

g′(s)2 ds− a

2
tγ+λ−2κ

∫ ∞
−∞

g(s)2 ds. (2.8)
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Setting

K[g] :=
∫ ∞
−∞

g′(s)2 ds, Λ[g] :=
∫ ∞
−∞

g(s)2 ds, (2.9)

equation (2.8) becomes

(Au, u) = −t−(2κ+λ)K[g]− a

2
tγ+λ−2κΛ[g]. (2.10)

Substituting (2.5), (2.6), (2.7), (2.10) in (2.3), we have

−κg(s)− λsg′(s) = t1−κ−2λg′′(s)g(s) + ast1+γ−κg′(s)g(s)

+ t1−2κ−λK[g]g(s) +
a

2
t1+γ+λ−2κΛ[g]g(s).

(2.11)

The only way that the above is a meaningful equation is that it does not contain t,
which means that

1− κ− 2λ = 0, 1 + γ − κ = 0, 1− 2κ− λ = 0, 1 + γ + λ− 2κ = 0. (2.12)

This gives

γ = −2
3
, κ =

1
3
, λ =

1
3
. (2.13)

Finally, we notice that, under (2.13), (2.4) gives∫ ∞
−∞

u(t, x) dx =
∫ ∞
−∞

t−κg(xt−λ) dx =
∫ ∞
−∞

t−1/3g(xt−1/3) dx =
∫ ∞
−∞

g(s) ds,

which is independent of t. Thus, if we set∫ ∞
−∞

g(s) ds = 1,

then ∫ ∞
−∞

u(t, x) dx = 1, for all t ≥ 0.

The following lemma summarizes what we have done so far.

Lemma 2.1. If
u(t, x) = t−κg(xt−λ) (2.14)

is a probability density in x and satisfies (2.3), then we must have

γ = −2
3
, κ =

1
3
, λ =

1
3
, (2.15)

g(s) ≥ 0, s ∈ R,
∫ ∞
−∞

g(s) ds = 1, (2.16)

g′′(s)g(s) + asg′(s)g(s) +K[g]g(s) +
a

2
Λ[g]g(s) +

1
3
g(s) +

1
3
sg′(s) = 0, (2.17)

where

K[g] =
∫ ∞
−∞

g′(s)2 ds, (2.18)

Λ[g] =
∫ ∞
−∞

g(s)2 ds. (2.19)

Conversely, if (2.15)–(2.19) hold, then u(t, x) given by (2.14) is a probability density
in x and satisfies (2.3).
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In view of (1.4), the fact that γ = −2/3 tells us that in the long run and as
long as x stays bounded, the payoff operator A(t) of our model approaches the
symmetric operator ∂2/∂x2. Next, we need to show that there exist function(s)
g(s) satisfying (2.16) and (2.17).

2.2. Auxiliary problem. Consider the problem

q′′(s)q(s) + asq′(s)q(s) + µq(s) +
1
3
sq′(s) = 0, (2.20)

q(0) = A > 0, q′(0) = 0, (2.21)

where µ is a real parameter satisfying

µ >
1
3
. (2.22)

Equation (2.20) can be written in the form

q′′(s) +
[ 1
3q(s)

+ a
]
sq′(s) + µ = 0, (2.23)

as long as q(s) 6= 0. Since q(0) = A > 0, the standard existence and uniqueness
theorems for ordinary differential equation imply that there is a δ > 0 such that
(2.20)-(2.21) has a unique solution q(s) for s ∈ (−δ, δ). In fact, due to the invariance
of (2.20) under the transformation s 7→ −s and the fact that q′(0) = 0, we must
have

q(−s) = q(s), s ∈ (−δ, δ).

Lemma 2.2. The solution q(s) of (2.20)-(2.21) exists for all s ∈ R and it is a
strictly positive (even) function which is decreasing on (0,∞). Also,

lim
s→∞

q(s) = lim
s→∞

q′(s) = 0, (2.24)∫ ∞
−∞

q′(s)2 ds <∞, (2.25)∫ ∞
−∞

q(s)2 ds <∞. (2.26)

Furthermore, (
µ− 1

3
) ∫ ∞
−∞

q(s) ds =
∫ ∞
−∞

q′(s)2 ds+
a

2

∫ ∞
−∞

q(s)2 ds. (2.27)

Proof. Since q is an even function, it is enough to show that q(s) exists for all
s ∈ [0,∞). If this is not true, then either (i) (due the denominator q(s) appearing
in (2.23)) there must be an s1 ∈ (0,∞) such that q(s1) = 0, while q(s) > 0 for all
s ∈ [0, s1), or (ii) by a well-known theorem in the theory of ordinary differential
equations [2] there must exist some b > 0 such that

lim
s→b−

[|q′(s)|+ |q(s)|] =∞.

Let us first exclude the case (i). Suppose that there is an s1 > 0 such that
q(s1) = 0, while q(s) > 0 for all s ∈ [0, s1). Then, q′(s) is negative in (0, s1). If
this were not true, then there should exist a s2 ∈ (0, s1) such that q′(s2) = 0, while
q′(s) < 0 for all s ∈ (0, s2). This would imply that q′′(s2) ≥ 0. However, by (2.23)

q′′(s2) = −µ < 0,

a contradiction.
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Now, if we integrate (2.23) from 0 to s ∈ (0, s1) and use the fact that q′(0) = 0,
we obtain

q′(s) +
1
3

∫ s

0

ξ[ln q(ξ)]′ dξ + asq(s)− a
∫ s

0

q(ξ) dξ + µs = 0

or

q′(s) = a

∫ s

0

q(ξ) dξ − asq(s)− µs+
1
3

∫ s

0

ln q(ξ) dξ − 1
3
s ln q(s). (2.28)

Since q(s) > 0, while q′(s) < 0 for s ∈ (0, s1), q(s) is decreasing in [0, s1) and,
consequently, ln q(s) is decreasing in [0, s1). Hence, the function

f(s) := −1
3

ln q(s) (2.29)

is increasing in (0, s1) and

lim
s→s−1

f(s) = −1
3

lim
s→s−1

[ln q(s)] =∞.

Then, it is not hard to show (see, e.g., [5, Proposition A.1]) that

lim
s→s−1

(
sf(s)−

∫ s

0

f(ξ) dξ
)

=∞,

i.e. (recall (2.29))

lim
s→s−1

(
− 1

3
s ln q(s) +

1
3

∫ s

0

ln q(ξ) dξ
)

=∞.

Hence, (2.28) gives

lim
s→s−1

q′(s) = lim
s→s−1

[
a

∫ s

0

q(ξ) dξ − asq(s)− µs+
1
3

∫ s

0

ln q(ξ) dξ − 1
3
s ln q(s)

]
=∞,

which is impossible, since, as we have seen, q′ stays negative in (0, s1). Hence
such an s1 cannot exist, i.e. q never vanishes and consequently, q′ also never
vanishes. In particular, q(s) > 0, q′(s) < 0 (hence, q is decreasing), and, therefore,
0 < q(s) < q(0) = A, for all s > 0 for which q(s) and q′(s) exist.

Now suppose that there is a b > 0 such that

lim
s→b−

[|q′(s)|+ |q(s)|] =∞. (2.30)

By the previous discussion, the only way for (2.30) to happen is

lim
s→b−

q′(s) = −∞.

Then
lim inf
s→b−

q′′(s) = −∞,

which contradicts (2.23). Thus q′ remains finite and strictly negative on (0,∞)
while q is strictly positive and strictly decreasing on (0,∞). Due to the evenness
of q, we must have also q(s) > 0 for all s < 0. Hence, q(s) > 0 for all s ∈ R.

From the previous discussion it follows that lims→∞ q(s) = L, namely

q(s) = L+ o(1) as s→∞, (2.31)
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where L ∈ [0, A). To continue, let us suppose L > 0. Then, the above formula
implies that, as s→∞,

ln q(s) = ln(L+ o(1)) = lnL(1 + o(1)) = lnL+ o(1). (2.32)

Using (2.31) and (2.32) in (2.28), we obtain

q′(s) = a

∫ s

0

[lnL+ o(1)] dξ − as[lnL+ o(1)]

− µs+
1
3

∫ s

0

[lnL+ o(1)] dξ − 1
3
s[lnL+ o(1)],

which implies

q′(s) = as lnL+ o(s)− as lnL+ o(s)− µs+
1
3
s lnL+ o(s)− 1

3
s lnL+ o(s),

i.e.
q′(s) = −µs+ o(s) as s→∞,

which contradicts (2.31). Therefore L = 0, i.e.,

lim
s→∞

q(s) = 0. (2.33)

We continue by noticing that∫ ∞
0

q′(s) ds = lim
s→∞

q(s)− q(0) = −A, (2.34)

hence q′ ∈ L1(R) (since q′ is odd and negative). Suppose

lim inf
s→∞

q′(s) < 0. (2.35)

Then, in view of (2.34) there is a sequence sn → ∞ such that q′ attains a local
minimum at sn for all n and

lim
n→∞

q′(sn) = −δ, for some δ > 0. (2.36)

But, since q′(sn) is a local minimum we must have q′′(sn) = 0, hence (2.23) gives[ 1
3q(sn)

+ a
]
snq
′(sn) = −µ or q′(sn) = − 3µq(sn)

[1 + 3aq(sn)]sn
,

thus
lim
n→∞

q′(sn) = 0,

contradicting (2.36) and hence (2.35). We have, thus, established that

lim
s→∞

q′(s) = 0. (2.37)

This, together with the fact that q′ is odd and integrable, implies q′ ∈ L2(R), i.e.∫ ∞
−∞

q′(s)2 ds <∞. (2.38)

Finally, (2.23) implies∫ s

0

q(ξ)q′′(ξ) dξ +
1
3

∫ s

0

ξq′(ξ) dξ + a

∫ s

0

ξq(ξ)q′(ξ) dξ + µ

∫ s

0

q(ξ) dξ = 0.
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Integrating by parts the first two terms above and using the fact that q′(0) = 0 we
have

q(s)q′(s)−
∫ s

0

q′(ξ)2 dξ +
1
3
sq(s) +

a

2
sq(s)2

− a

2

∫ s

0

q(ξ)2 dξ +
(
µ− 1

3
) ∫ s

0

q(ξ) dξ = 0.

Since a > 0, s ≥ 0, and q(s) > 0, the above equation implies(
µ− 1

3
) ∫ s

0

q(ξ) dξ ≤
∫ s

0

q′(ξ)2 dξ +
a

2

∫ s

0

q(ξ)2 dξ − q(s)q′(s). (2.39)

(1) If we suppose that ∫ ∞
0

q(ξ) dξ =∞, (2.40)

then (2.39), by (2.38), implies ∫ ∞
0

q(ξ)2 dξ =∞.

For typographical convenience we set

M :=
∫ ∞

0

q′(ξ)2 dξ <∞.

Then, formula (2.39) can be written as(
µ− 1

3
) ∫ s

0

q(ξ) dξ ≤M +
a

2

∫ s

0

q(ξ)2 dξ − q(s)q′(s).

Furthermore, q(ξ) > 0, for all ξ ∈ (0,∞), and hence from the above inequality we
have

µ− 1
3
≤
M + a

2

∫ s
0
q(ξ)2 dξ − q(s)q′(s)∫ s
0
q(ξ) dξ

. (2.41)

Now, under (2.40), L’Hopital’s Rule together with the fact that q(s)q′(s) is bounded
yield

lim
s→∞

M + a
2

∫ s
0
q(ξ)2 dξ − q(s)q′(s)∫ s
0
q(ξ) dξ

= lim
s→∞

a
2 q(s)

2

q(s)
=
a

2
lim
s→∞

q(s) = 0.

But, then, from (2.41) we have µ ≤ 1/3, which contradicts the fact that µ > 1/3.
Consequently, ∫ ∞

0

q(ξ) dξ <∞. (2.42)

(2) The function q is strictly positive and strictly decreasing on (0,∞) with
0 < q(s) < A, for all s > 0. Since

lim
s→∞

q(s) = 0,

there is a s0 > 0 such that 0 < q(s)2 < q(s) for all s ≥ s0. Hence

lim
s→∞

q(s)2 = 0 and 0 <
∫ ∞
s0

q(s)2 ds <
∫ ∞
s0

q(s) ds.

Thus, from (2.42) it follows that∫ ∞
0

q(s)2 ds <∞. (2.43)
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From (2.38), (2.42), and (2.43) we have

lim
s→∞

[
1
3
sq(s) +

a

2
sq(s)2]

=
∫ ∞

0

q′(ξ)2 dξ +
a

2

∫ ∞
0

q(ξ)2 dξ −
(
µ− 1

3
) ∫ ∞

0

q(ξ) dξ <∞.

Thus,

lim
s→∞

[1
3
sq(s) +

a

2
sq2(s)

]
= L̃ ∈ R.

If L̃ 6= 0, then the above limit tells us that T (s) := (1/3)q(s) + (a/2)q(s)2 is
asymptotic to L̃/s, contradicting the fact that T (s) is integrable. Therefore, L̃ = 0.
Therefore, (

µ− 1
3
) ∫ ∞

0

q(s) ds =
∫ ∞

0

q′(s)2 ds+
a

2

∫ ∞
0

q(s)2 ds,

from which (2.27) follows immediately. The proof of this key lemma is now com-
plete. �

2.3. Construction of the self-similar solutions.

Lemma 2.3. Let q(s) be the solution of the problem (2.20)-(2.21). Then

‖q′‖∞ ≤ µ
√

3A
1 + 3aA

, (2.44)

where ‖ · ‖∞ denotes the sup-norm, as usual. Also∫ ∞
0

q(s) ds ≥ A3/2
√

1 + 3aA
2
√

3µ
, (2.45)∫ ∞

0

q(s)2 ds ≥ A5/2
√

1 + 3aA
3
√

3µ
. (2.46)

Proof. The function q′ is odd, hence

‖q′‖∞ = sup{|q′(s)| : s ≥ 0}.

Since q′(s) < 0 in (0,∞) with

q′(0) = 0 = lim
s→∞

q′(s),

it follows that q′ attains its absolute minimum at some sm ∈ (0,∞), and hence

‖q′‖∞ = sup{−q′(s) : s ≥ 0} = −q′(sm) = |q′(sm)|.

Also, q′′(sm) = 0, thus (2.23) implies

q′(sm) = − µ

[ 1
3q(sm) + a]sm

,

therefore
‖q′‖∞ = −q′(sm) =

µ

[ 1
3q(sm) + a]sm

.

But q(s) is decreasing in [0,∞), while q(0) = A and sm ∈ (0,∞), hence
µ

[ 1
3q(sm) + a]sm

≤ µ

[ 1
3A + a]sm

<
µ

asm
,
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and then
‖q′‖∞ ≤

3µA
(1 + 3aA)sm

<
µ

asµ
. (2.47)

Also, by (2.23)

q′′(s) + µ = −[
1

3q(s)
+ a]sq′(s) ≥ 0 for all s ≥ 0,

while q′(0) = 0. Thus, we must have

q′(s) ≥ −µs for all s ≥ 0,

in particular
‖q′‖∞ = −q′(sm) ≤ µsm. (2.48)

By combining (2.47) and (2.48) we obtain

‖q′‖∞ ≤ min{ 3µA
(1 + 3aA)sm

, µsm}.

But, no matter what sm is, the quantity min{3µA(1 + 3aA)−1s−1
m , µsm} (since the

first term is decreasing in sm while the second is increasing) is always at most N ,
where

N := µs∗ =
3µA

(1 + 3aA)s∗
.

Then

s∗ =

√
3A

1 + 3aA
and N = µ

√
3A

1 + 3aA
.

Thus, ‖q′‖∞ ≤ N , which is (2.44). Furthermore,

‖q′‖∞ ≥ −q′(s) for all s ≥ 0,

hence
q(s) ≥ q(0)− s‖q′‖∞ = A− s‖q′‖∞ for all s ≥ 0.

Then, by (2.44) we have

q(s) ≥ A− sµ
√

3A
1 + 3aA

for all s ≥ 0, (2.49)

in particular for

0 ≤ s ≤
√

(1 + 3aA)A
µ
√

3
,

since q(s) > 0 for all s ≥ 0. Then (see (2.49)),∫ ∞
0

q(s) ds ≥
∫ √(1+3aA)A

µ
√

3

0

q(s) ds

≥
∫ √(1+3aA)A

µ
√

3

0

(
A− sµ

√
3A

1 + 3aA

)
ds

=
A3/2

√
1 + 3aA

2
√

3µ
,

which is (2.45). Finally, from (2.49) we have∫ ∞
0

q(s)2 ds ≥
∫ √(1+3aA)A

µ
√

3

0

q(s)2 ds
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≥
∫ √(1+3aA)A

µ
√

3

0

(
A− sµ

√
3A

1 + 3aA

)2

ds

=
A5/2

√
1 + 3aA

3
√

3µ
,

which is (2.46). �

Corollary 2.4. If q(s) satisfies (2.20)-(2.21), then

lim
A→∞

∫ ∞
−∞

q(s) ds =∞, (2.50)

lim
A→∞

∫ ∞
−∞

q(s)2 ds =∞, (2.51)

lim
A→0+

∫ ∞
−∞

q′(s)2 ds = 0. (2.52)

Proof. By (2.45) and the evenness of q(s) we have∫ ∞
−∞

q(s) ds = 2
∫ ∞

0

q(s) ds ≥ 2A3/2
√

1 + 3aA
3
√

3µ
, (2.53)

and since

lim
A→∞

2A3/2
√

1 + 3aA
3
√

3µ
=∞,

we obtain that (2.53) implies

lim
A→∞

∫ ∞
−∞

q(s) ds =∞.

The function q is even, and hence q2 is even too. Furthermore, (2.46) implies∫ ∞
−∞

q(s)2 ds = 2
∫ ∞

0

q(s)2 ds ≥ 2A5/2
√

1 + 3aA
3
√

3µ
, (2.54)

hence, from (2.54) we have

lim
A→∞

∫ ∞
−∞

q(s)2 ds =∞.

Recall that −q′(s) > 0 (and −q′(s) ≤ ‖q′‖∞) for all s ∈ (0,∞). Thus, by (2.24) we
obtain

0 ≤
∫ ∞

0

q′(s)2 ds ≤ −‖q′‖∞
∫ ∞

0

q′(s) ds = A‖q′‖∞,

and, consequently, by using (2.44) we have

0 ≤
∫ ∞

0

q′(s)2 ds ≤ Aµ
√

3A
1 + 3aA

=

√
3A3µ2

1 + 3aA
. (2.55)

Finally, since q′(s) is odd and hence q′(s)2 is even, by using (2.55) we obtain

0 ≤
∫ ∞
−∞

q′(s)2 ds = 2
∫ ∞

0

q′(s)2 ds ≤ 2

√
3A3µ2

1 + 3aA
, (2.56)

which implies (2.52). �
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Lemma 2.5. If q(s) is the solution of (2.20)-(2.21), then

q(1)e3aq(1)

s3µ exp[3µ+ 3µ
s

√
3A

1+3aA ]
< q(s)e3aq(s) ≤ Ae3A(1+a)

s3µ exp[3µ− 3µ
s

√
3A

1+3aA ]
(2.57)

for all s ≥ 1.

Proof. We consider the function

F (s) := −1
3

∫ s

0

ln q(ξ) dξ, s ∈ R.

Since q(s) is decreasing in (0,∞), for 0 ≤ ξ ≤ 1 we have

q(1) ≤ q(ξ) ≤ q(0) = A, (2.58)

ln q(1) ≤ −3F (1) ≤ lnA. (2.59)

Furthermore, (2.58) implies

aq(1) ≤ a
∫ 1

0

q(ξ) dξ ≤ aA. (2.60)

By (2.28), we have

q′(s) = a

∫ s

0

q(ξ) dξ − asq(s)− µs− F (s) + sF ′(s), (2.61)

i.e.

sF ′(s)− F (s) = q′(s) + µs+ asq(s)− a
∫ s

0

q(ξ) dξ.

Thus, for s 6= 0 we have(F (s)
s

)′
=
q′(s)
s2

+
µ

s
+ a
(1
s

∫ s

0

q(ξ) dξ
)′
. (2.62)

We pick an s ≥ 1 and integrate both sides of the equation (2.62) from 1 to s. This
leads to

F (s)
s
− F (1) =

∫ s

1

q′(ξ)
ξ2

dξ + µ ln s+ a
1
s

∫ s

0

q(ξ) dξ − a
∫ 1

0

q(ξ) dξ,

or ∫ s

1

q′(ξ)
ξ2

dξ =
F (s)
s
− F (1)− µ ln s− a

s

∫ s

0

q(ξ) dξ + a

∫ 1

0

q(ξ) dξ. (2.63)

Since q′(s) < 0, for all s ∈ (0,∞),

0 ≥
∫ s

1

q′(ξ)
ξ2

dξ ≥
∫ s

1

q′(ξ) dξ ≥
∫ ∞

0

q′(ξ) dξ = lim
s→∞

q(s)− q(0) = −A,

hence, (2.63) gives

0 ≥ F (s)
s
− F (1)− µ ln s− a

s

∫ s

0

q(ξ) dξ + a

∫ 1

0

q(ξ) dξ ≥ −A,
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or

F (1) + µ ln s+
a

s

∫ s

0

q(ξ) dξ − a
∫ 1

0

q(ξ) dξ

≥ F (s)
s

≥ F (1) + µ ln s+
a

s

∫ s

0

q(ξ) dξ − a
∫ 1

0

q(ξ) dξ −A.

(2.64)

By (2.61) we have

F (s)
s

=
a

s

∫ s

0

q(ξ) dξ − aq(s)− µ+ F ′(s)− q′(s)
s

. (2.65)

Then, (2.64) combined with (2.65) implies

F (1) + µ ln s− a
∫ 1

0

q(ξ) dξ ≥ F ′(s)− aq(s)− µ− q′(s)
s

≥ F (1) + µ ln s− a
∫ 1

0

q(ξ) dξ −A,

or
q′(s)
s

+ F (1) + µ ln s− a
∫ 1

0

q(ξ) dξ

≥ F ′(s)− aq(s)− µ

≥ q′(s)
s

+ F (1) + µ ln s− a
∫ 1

0

q(ξ) dξ −A.

(2.66)

By (2.44) and the fact that ‖q′‖∞ ≥ −q′(s) for all s ∈ (0,∞), we have

−q′(s) ≤ ‖q′‖∞ ≤ µ
√

3A
1 + 3aA

, for all s > 0,

which implies

− µ

s

√
3A

1 + 3aA
≤ q′(s)

s
< 0 < −q

′(s)
s
≤ µ

s

√
3A

1 + 3aA
. (2.67)

Hence, by using (2.67) in (2.66) we obtain

µ

s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− a

∫ 1

0

q(ξ) dξ

> F ′(s)− aq(s)− µ

≥ −µ
s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− a

∫ 1

0

q(ξ) dξ −A

for all s > 0. Now, by invoking (2.60) the inequalities above give

µ

s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− aq(1)

> F ′(s)− aq(s)− µ

≥ −µ
s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− aA−A.
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Using the definition of F (s) the above inequalities can be written in the form

µ

s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− aq(1)

> −1
3

ln q(s)− aq(s)− µ

≥ −µ
s

√
3A

1 + 3aA
+ F (1) + ln(sµ)− aA−A.

Recalling (2.59), the above inequalities imply

3aq(1) + ln q(1)− 3µ
s

√
3A

1 + 3aA
+ ln(s−3µ)− 3µ

< ln q(s) + 3aq(s)

≤ 3aA+ 3A+
3µ
s

√
3A

1 + 3aA
+ lnA+ ln(s−3µ)− 3µ,

which by exponentiation yields (2.57). �

Corollary 2.6. Let q(s) satisfy (2.20)-(2.21) (in particular q(0) = A). Then, as a
function of A, the quantity

I(A) :=
∫ ∞
−∞

q(s) ds (2.68)

is continuous in (0,∞).

Proof. Let q(s;A) := q(s) be the unique solution of the problem (2.20)-(2.21). By
the standard theorem of ordinary differential equations on continuous dependence
on the parameters we have that q(s;A) is continuous in A for all A > 0. For fixed
A1, A2 with 0 < A1 < A2 < ∞, the second inequality in (2.57), the monotonicity
of q and the condition µ > 1/3 imply that the family {q(·;A) : A ∈ [A1, A2]} is
dominated by the integrable function H(s) = h(|s|), s ∈ R, where

h(s) :=


A2e

3aA2 , 0 ≤ s ≤ 1;
A2e

3A2(1+a)

s3µ exp[3µ−3µ
q

3A2
1+3aA1

]
, s ≥ 1.

Hence, the continuity of I(A) follows by invoking the dominated convergence The-
orem. �

We are now ready to state our main result.

Theorem 2.7. Let γ = −2/3. Then, for each number β ∈ (0,∞) there is a
self-similar solution of (2.3) (which is equivalent to (1.6)), namely a solution u of
the form u(t, x) = t−1/3g(xt−1/3), where g(s) satisfies (2.16), (2.17), (2.18), and
(2.19), such that

β = K[g] +
a

2
Λ[g],

where K[g] and Λ[g] are given by (2.18) and (2.19), respectively.

Proof. As in the proof of Corollary 2.6 let q(s) = q(s;A) be the unique solution of
the problem (2.20)-(2.21) with µ = β + (1/3); that is,

q′′(s)q(s) + asq′(s)q(s) + βq(s) +
1
3
q(s) +

1
3
sq′(s) = 0, s ∈ R,
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q(0) = A > 0, q′(0) = 0,

and set

Q(A) :=
∫ ∞
−∞

q′(s;A)2 ds+
a

2

∫ ∞
−∞

q(s;A)2 ds. (2.69)

Then by (2.27),

Q(A) = β

∫ ∞
−∞

q(s;A) ds = βI(A)

(recall (2.68)), hence Corollary 2.6 tells us that Q(A) is continuous on (0,∞).
Furthermore, by (2.50) of Corollary 2.4 we have

lim
A→0+

Q(A) = 0, lim
A→∞

Q(A) =∞. (2.70)

Thus, Q(A) takes every value between 0 and ∞. In particular, for each number
β ∈ (0,∞) there is an A = Aβ such that

Q(Aβ) = β.

Set g(s) := q(s;Aβ). Then

K[g] +
a

2
Λ[g] =

∫ ∞
−∞

q′(s;A)2 ds+
a

2

∫ ∞
−∞

q(s;A)2 ds = Q(Aβ) = β,

hence g(s) satisfies (2.17)-(2.18). Furthermore, by (2.27),∫ ∞
−∞

g(s) ds =
∫ ∞
−∞

q(s;Aβ) ds

=
1
β

[
∫ ∞
−∞

q′(s;Aβ)2 ds+
a

2

∫ ∞
−∞

q(s;Aβ)2 ds]

=
1
β
Q(Aβ) = 1,

and, therefore, g(s) also satisfies (2.16). �

Clearly, all these self-similar solutions u(t, x) are probability density functions
on R. A peculiar feature of these solutions is that they all approach the Dirac delta
function δ(x) as t→ 0+.
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