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COMBINED EFFECTS IN NONLINEAR SINGULAR
SECOND-ORDER DIFFERENTIAL EQUATIONS ON THE

HALF-LINE

IMED BACHAR

Abstract. We consider the existence, uniqueness and the asymptotic behav-
ior of positive continuous solutions to the second-order boundary-value prob-

lem
1

A
(Au′)′ + a1(t)uσ1 + a2(t)uσ2 = 0, t ∈ (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)

ρ(t)
= 0,

where σ1, σ2 ∈ (−1, 1), A is a continuous function on [0,∞), positive and

differentiable on (0,∞) such that
R 1
0

1
A(t)

dt < ∞ and
R∞
0

1
A(t)

dt = ∞. Here

ρ(t) =
R t
0

1
A(s)

ds and for i ∈ {1, 2}, ai is a nonnegative continuous function in

(0,∞) such that there exists c > 0 satisfying for t > 0,

1

c

hi(m(t))

A2(t)(1 + ρ(t))µi
≤ ai(t) ≤ c

hi(m(t))

A2(t)(1 + ρ(t))µi
,

where m(t) =
ρ(t)

1+ρ(t)
and hi(t) = cit

−λi exp(
R η
t
zi(s)
s
ds), ci > 0, λi ≤ 2,

µi > 2 and zi is continuous on [0, η] for some η > 1 such that zi(0) = 0. The
comparable asymptotic rate of ai(t) determines the asymptotic behavior of the

solution.

1. Introduction

Boundary-value problems on the half-line, have been studied widely in the lit-
erature (see, for example, [1, 13, 14, 16, 21, 23] and the references therein). The
motivation for these studies stems from the fact that such problems arise naturally
in the study of radially symmetric solutions of nonlinear elliptic equations (see,
[4, 6, 13, 18, 19, 21, 22] and also many physical models, for example, the model
of gas pressure in a semi-infinite porous medium, the Thomas-Fermi model for de-
termining the electric potential in an isolated neutral atom (see, the Monographs,
[1, 10] and the references therein). Therefore it is very important to investigate the
boundary-value problems for differential equations on half-line.
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Zhao [23] considered the problem

u′′ + ϕ(., u) = 0, on (0,∞),

u > 0, on (0,∞),

lim
t→0+

u(t) = 0,
(1.1)

where ϕ is a measurable function on (0,∞)×(0,∞), dominated by a convex positive
function. Then he showed that there exists b > 0 such that for each µ ∈ (0, b], there
exists a positive continuous solution u of (1.1) satisfying limt→∞

u(t)
t = µ.

On the other hand, in [2], the author studied the singular problem
1
A

(Au′)′ + ϕ(·, u) = 0, t ∈ (0,∞),

u > 0, on (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t)

= 0,

(1.2)

where A is a continuous function on [0,∞), positive and differentiable on (0,∞)
such that

∫ 1

0
1

A(t)dt < ∞ and
∫∞
0

1
A(t)dt = ∞. Here ρ(t) =

∫ t
0

1
A(s)ds and the

function ϕ : (0,∞) × (0,∞) → [0,∞) is required to be continuous, non-increasing
with respect to the second variable such that for each c > 0, ϕ(., c) 6= 0 and∫∞
0
A(s) min(1, ρ(s))ϕ(s, c)ds < ∞. The author proved the existence of a unique

positive solution u in C([0,∞)) ∩ C2((0,∞)) to problem (1.2).
Recently, in [3], the authors considered problem (1.2) with ϕ(t, u) = a(t)uσ,

σ < 1, (which include the sublinear case) and a is a nonnegative continuous func-
tion on (0,∞) satisfying some appropriate assumptions related to Karamata regular
variation theory. They have proved the existence, uniqueness and the global as-
ymptotic behavior of positive solutions to problem (1.2).

In this article, we study the boundary-value problem
1
A

(Au′)′ + a1(t)uσ1 + a2(t)uσ2 = 0, t ∈ (0,∞),

u > 0, on (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t)

= 0,

(1.3)

where σ1, σ2 ∈ (−1, 1), A is a continuous function on [0,∞), positive and differen-
tiable on (0,∞) such that

∫ 1

0
1

A(t)dt < ∞,
∫∞
0

1
A(t)dt = ∞ and ρ(t) =

∫ t
0

1
A(s)ds,

t > 0.
Our goal is to study (1.3), especially, when the nonlinearity is the sum of a

singular term and a sublinear term. Under appropriate assumptions on a1 and
a2 related to the Karamata class K (see Definition 1.1), we prove the existence,
uniqueness and the global asymptotic behavior of positive continuous solution to
problem (1.3).

Throughout this paper and without loss of generality, we assume that
∫ 1

0
1

A(t)dt =
1. To state our result, we need some notation.

Definition 1.1. The class K is the set of all Karamata functions L defined on (0, η]
by

L(t) := c exp
(∫ η

t

z(s)
s
ds
)
,
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for some η > 1, where c > 0 and z ∈ C([0, η]) such that z(0) = 0.

The theory of such functions was initiated by Karamata in the fundamental
paper [15]. On the other hand, we emphasize that the first use of the Karamata
theory in the study of the growth rate of solutions near the boundary was done in
the paper of Cirstea and Rădulescu [8].

Remark 1.2. A function L is in K if and only if L is a positive function in
C1((0, η]), for some η > 1, such that limt→0+

tL′(t)
L(t) = 0.

As a typical example of function belonging to the class K (see [5, 17, 20]), we
quote

L(t) = 2 + sin(log2(
ω

t
)) and L(t) =

m∏
k=1

(logk(
ω

t
))ξk ,

where ξk are real numbers, logk x = log ◦ log ◦ . . . log x (k times) and ω is a suffi-
ciently large positive real number such that L is defined and positive on (0, η], for
some η > 1.

In the sequel, we denote by B+((0,∞)) the set of nonnegative Borel measurable
functions in (0,∞) and by C0([0,∞)) the set of continuous functions v on [0,∞)
such that limt→∞ v(t) = 0. It is easy to see that C0([0,∞)) is a Banach space with
the uniform norm ‖v‖∞ = supt>0 |v(t)|.

For two nonnegative functions f and g defined on a set S, the notation f(t) ≈
g(t), t ∈ S means that there exists c > 0 such that 1

cf(t) ≤ g(t) ≤ cf(t), for all
t ∈ S.

Furthermore, let G(t, s) = A(s) min(ρ(t), ρ(s))), be the Green’s function of the
operator u 7→ − 1

A (Au′)′ on (0,∞) with the Dirichlet conditions limt→0+ u(t) = 0
and limt→∞

u(t)
ρ(t) = 0.

For f ∈ B+((0,∞)), we put

V f(t) =
∫ ∞

0

G(t, s)f(s)dt, for t > 0.

We point out that if the map s → A(s) min(1, ρ(s))f(s) is continuous and inte-
grable on (0,∞), then V f is the solution of the boundary-value problem

− 1
A

(Au′)′ = f, in (0,∞),

lim
t→0+

u(t) = 0,

lim
t→∞

u(t)
ρ(t)

= 0.

(1.4)

For λ ≤ 2, σ ∈ (−1, 1) and L ∈ K defined on (0, η] (for some η > 1), we put for
t ∈ (0, η)

ΨL,λ,σ(t) =



(∫ t
0
L(s)
s ds

) 1
1−σ

, if λ = 2,(
L(t)

) 1
1−σ , if 1 + σ < λ < 2,( ∫ η

t
L(s)
s ds

) 1
1−σ

, if λ = 1 + σ,

1, if λ < 1 + σ.

(1.5)

Throughout this article we assume the following condition:
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(H1) For i ∈ {1, 2}, ai is a nonnegative continuous function on (0,∞) such that

ai(t) ≈
1

(A(t))2
(ρ(t))−λi(1 + ρ(t))λi−µiLi(m(t)), t > 0, (1.6)

where λi ≤ 2, µi > 2, m(t) := ρ(t)
1+ρ(t) , for t > 0 and Li ∈ K defined on (0, η]

( for some η > 1) such that∫ η

0

s1−λiLi(s)ds <∞. (1.7)

As it will be seen, the numbers

β1 = min(1,
2− λ1

1− σ1
) and β2 = min(1,

2− λ2

1− σ2
) (1.8)

will play an important role in the study of asymptotic behavior of solution. Without
loss of generality, we may assume that

2− λ1

1− σ1
≤ 2− λ2

1− σ2

and we define the function θ on (0,∞) by

θ(t) =

{
(m(t))β1ΨL1,λ1,σ1(m(t)) if β1 < β2

(m(t))β1(ΨL1,λ1,σ1(m(t)) + ΨL2,λ2,σ2(m(t))) if β1 = β2,
(1.9)

where m(t) := ρ(t)
1+ρ(t) , for t > 0.

For an explicit form of the function θ see (3.1). Now, we are ready to state our
main results.

Theorem 1.3. Let σ1, σ2 ∈ (−1, 1) and assume that (H1) is fulfilled. Then for
t ∈ (0,∞),

V (a1θ
σ1 + a2θ

σ2)(t) ≈ θ(t). (1.10)

By applying the above theorem and using the Schauder fixed point theorem, we
prove the following result.

Theorem 1.4. Let σ1, σ2 ∈ (−1, 1) and assume that (H1) is fulfilled. Then (1.3)
has a unique positive continuous solution u satisfying for t ∈ (0,∞)

u(t) ≈ θ(t). (1.11)

The content of this paper is organized as follows. In Section 2, we present some
fundamental properties of the Karamata class K including sharp estimates on some
potential functions. In Section 3, exploiting the results of the previous section,
we first prove Theorem 1.3 which allow us to prove Theorem 1.4 by means of the
Schauder fixed point theorem.

2. Properties of Karamata regular variation theory

We collect in this section some properties of functions belonging to the Karamata
class K.

Proposition 2.1 ([17, 20]). The following hold:
(i) Let L1, L2 ∈ K and p ∈ R. Then L1 + L2 ∈ K, L1L2 ∈ K and Lp1 ∈ K.
(ii) Let L ∈ K and ε > 0. Then limt→0+ tεL(t) = 0.

Applying Karamata’s theorem (see [17, 20]), we obtain the following result.
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Lemma 2.2. Let ν ∈ R and L be a function in K defined on (0, η]. We have

(i) If ν < −1, then
∫ η
0
sνL(s)ds diverges and

∫ η
t
sνL(s)ds ∼

t→0+
− t

ν+1L(t)
ν+1 .

(ii) If ν > −1, then
∫ η
0
sνL(s)ds converges and

∫ t
0
sνL(s)ds ∼

t→0+

tν+1L(t)
ν+1 .

The proof of the next lemmas can be found in [7].

Lemma 2.3. Let L be a function in K defined on (0, η] (η > 1). Then

lim
t→0+

L(t)∫ η
t
L(s)
s ds

= 0.

In particular t→
∫ η
t
L(s)
s ds ∈ K.

If further
∫ η
0
L(s)
s ds converges, then

lim
t→0+

L(t)∫ t
0
L(s)
s ds

= 0.

In particular t→
∫ t
0
L(s)
s ds ∈ K.

Lemma 2.4. For i ∈ {1, 2}, let Li ∈ K be defined on (0, η] (η > 1) and put for
t ∈ (0, η),

M(t) =
(∫ η

t

L1(s)
s

ds
) 1

1−σ1 +
(∫ η

t

L2(s)
s

ds
) 1

1−σ2
.

Then for t ∈ (0, η) we have∫ η

t

(Mσ1L1 +Mσ2L2)(s)
s

ds ≈M(t).

Lemma 2.5. For i ∈ {1, 2}, let Li ∈ K be defined on (0, η] (η > 1) such that∫ η
0
Li(s)
s ds <∞. Put for t ∈ (0, η),

N(t) =
(∫ t

0

L1(s)
s

ds
) 1

1−σ1 +
(∫ t

0

L2(s)
s

ds
) 1

1−σ2
.

Then for t ∈ (0, η) we have∫ t

0

(Nσ1L1 +Nσ2L2)(s)
s

ds ≈ N(t).

Next, we have the following fundamental sharp estimates on the potential func-
tion V b, for

b(t) =
1

(A(t))2
(ρ(t))−β(1 + ρ(t))β−γL̃(m(t)),

where β ≤ 2, γ > 2, L̃ ∈ K and m(t) = ρ(t)
1+ρ(t) for t > 0.

Proposition 2.6 ([3]). Let β ≤ 2, γ > 2 and L̃ ∈ K be defined on (0, η] (η > 1)
such that

∫ η
0
s1−βL̃(s)ds <∞. Then for t > 0,

V b(t) ≈ φβ(m(t)),
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where for r ∈ (0, 1],

φβ(r) =



∫ r
0

eL(s)
s ds if β = 2,

r2−βL̃(r) if 1 < β < 2,

r
∫ η
r

eL(s)
s ds if β = 1,

r if β < 1.

3. Proof of main results

Let σ1, σ2 ∈ (−1, 1), assume (H1) and for i ∈ {1, 2}, let Li ∈ K defined on (0, η]
(for someη > 1) satisfying (1.6) and (1.7). Let b, L, M and N be the nonnegative
functions defined in (0, η) by

b(t) :=
(∫ η

t

L1(s)
s

ds
) 1

1−σ1
,

L(t) := (L1(t))
1

1−σ1 + (L2(t))
1

1−σ2 ,

M(t) :=
(∫ η

t

L1(s)
s

ds
) 1

1−σ1 +
(∫ η

t

L2(s)
s

ds
) 1

1−σ2
,

N(t) :=
(∫ t

0

L1(s)
s

ds
) 1

1−σ1 +
(∫ t

0

L2(s)
s

ds
) 1

1−σ2
, if

∫ η

0

Li(s)
s

ds <∞.

First, we give an explicit form of the function θ defined by (1.9). We recall
that for i ∈ {1, 2}, λi ≤ 2 and βi = min(1, 2−λi

1−σi ). Since β1 < β2 is equivalent to
2−λ1
1−σ1

< 2−λ2
1−σ2

and 1 + σ1 < λ1, we deduce that for t ∈ (0,∞),

θ(t) =



(∫m(t)

0
L1(s)
s ds

) 1
1−σ1

, if λ1 = 2 and λ2 < 2,

(m(t))
2−λ1
1−σ1 (L1(m(t)))

1
1−σ1 , if 2−λ1

1−σ1
< 2−λ2

1−σ2
and 1 + σ1 < λ1 < 2,

(m(t))
2−λ1
1−σ1 L(m(t)), if 2−λ1

1−σ1
= 2−λ2

1−σ2
and 1 + σ1 < λ1 < 2,

m(t)M(m(t)), if λ1 = 1 + σ1 and λ2 = 1 + σ2,

m(t)(1 + b(m(t))), if λ1 = 1 + σ1 and λ2 < 1 + σ2,

2m(t), if λ1 < 1 + σ1,

N(m(t)), if λ1 = λ2 = 2,

(3.1)

where m(t) = ρ(t)
1+ρ(t) .

Proof of Theorem 1.3.

Lemma 3.1. For r, s > 0, we have

2−max(1−σ1,1−σ2)(r + s) ≤ r1−σ1(r + s)σ1 + s1−σ2(r + s)σ2 ≤ 2(r + s). (3.2)

Proof. Let r, s > 0 and put t = r
r+s . Since 0 ≤ t ≤ 1, then we obtain

2−max(1−σ1,1−σ2) ≤ t1−σ1 + (1− t)1−σ2 ≤ 2.

Which implies the result. �

Now we are ready to prove Theorem 1.3. We recall that for i ∈ {1, 2}, ai is a
nonnegative continuous function on (0,∞) such that

ai(t) ≈
1

(A(t))2
(ρ(t))−λi(1 + ρ(t))λi−µiLi(m(t)), t > 0,
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where λi ≤ 2 and µi > 2.
Note that throughout the proof, we use Proposition 2.1 and Lemma 2.3 to verify

that some functions are in K. We distinguish the following cases.

Case 1: λ1 = 2 and λ2 < 2. We have

θ(t) =
(∫ m(t)

0

L1(s)
s

ds
) 1

1−σ1
.

Therefore

a1(t)θσ1(t) + a2(t)θσ2(t)

≈ (ρ(t))−2(1 + ρ(t))2−µ

(A(t))2
L1(m(t))

(∫ m(t)

0

L1(s)
s

ds
) σ1

1−σ1

+
(ρ(t))−λ2(1 + ρ(t))λ2−µ

(A(t))2
L2(m(t))

(∫ m(t)

0

L1(s)
s

ds
) σ2

1−σ1
.

Since for i ∈ {1, 2}, the function t → L̃i(t) := Li(t)(
∫ t
0
L1(s)
s ds)

σi
1−σ1 ∈ K and

λ2 < 2, we deduce by Proposition 2.1 that

a1(t)θσ1(t) + a2(t)θσ2(t) ≈ (ρ(t))−2(1 + ρ(t))2−µ

(A(t))2
L̃1(m(t)).

Moreover, since λ1 = 2, we have∫ η

0

L̃1(s)
s

ds ≤ c
(∫ η

0

L1(r)
r

dr
) 1

1−σ1
<∞,

it follows by applying Proposition 2.6 with β = λ1 = 2, γ = µ, we obtain

V (a1θ
σ1 + a2θ

σ2)(t) ≈
∫ m(t)

0

L1(s)
s

(∫ s

0

L1(r)
r

dr
) σ1

1−σ1
ds ≈ θ(t).

Case 2: 2−λ1
1−σ1

< 2−λ2
1−σ2

and 1 + σ1 < λ1 < 2. Since

θ(t) = (m(t))
2−λ1
1−σ1 (L1(m(t)))

1
1−σ1 ,

we obtain

a1(t)θσ1(t) + a2(t)θσ2(t)

≈ (ρ(t))
(2−λ1)σ1

1−σ1
−λ1(1 + ρ(t))λ1− (2−λ1)σ1

1−σ1
−µ

(A(t))2
(L1L

σ1
1−σ1
1 )(m(t))

+
(ρ(t))

(2−λ1)σ2
1−σ1

−λ2(1 + ρ(t))λ2− (2−λ1)σ2
1−σ1

−µ

(A(t))2
(L2L

σ2
1−σ1
1 )(m(t)).

Since in this case (2−λ1)σ2
1−σ1

−λ2 >
(2−λ1)σ1

1−σ1
−λ1, we deduce by Proposition 2.1 that

a1(t)θσ1(t) + a2(t)θσ2(t)

≈ (ρ(t))
(2−λ1)σ1

1−σ1
−λ1(1 + ρ(t))λ1− (2−λ1)σ1

1−σ1
−µ

(A(t))2
(L1L

σ1
1−σ1
1 )(m(t)).
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Therefore applying Proposition 2.6 with β = λ1 − (2−λ1)σ1
1−σ1

∈ (1, 2), γ = µ and

L̃ = L1L
σ1

1−σ1
1 = L

1
1−σ1
1 ∈ K, we obtain

V (a1θ
σ1 + a2θ

σ2)(t) ≈ (m(t))2−β(L1(m(t)))
1

1−σ1 = θ(t).

Case 3: 2−λ1
1−σ1

= 2−λ2
1−σ2

and 1 + σ1 < λ1 < 2. We have

θ(t) = (m(t))
2−λ1
1−σ1 L(m(t)).

So

a1(t)θσ1(t) ≈ (ρ(t))
(2−λ1)σ1

1−σ1
−λ1(1 + ρ(t))λ1− (2−λ1)σ1

1−σ1
−µ

(A(t))2
(L1L

σ1)(m(t))

Hence using again Proposition 2.6 with β = λ1 − (2−λ1)σ1
1−σ1

∈ (1, 2), γ = µ and
L̃ = L1L

σ1 ∈ K, we obtain

V (a1θ
σ1)(t) ≈ (m(t))

2−λ1
1−σ1 (L1L

σ1)(m(t)).

On the other hand, since 1 + σ2 < λ2 < 2, we similarly obtain

V (a2θ
σ2)(t) ≈ (m(t))

2−λ1
1−σ1 (L2L

σ2)(m(t)).

Using Lemma 3.1, we deduce that

V (a1θ
σ1 + a2θ

σ2)(t) ≈ (m(t))
2−λ1
1−σ1 L(m(t)) = θ(t).

Case 4: λ1 = 1 + σ1 and λ2 = 1 + σ2. In this case we have θ(t) = m(t)M(m(t))
By calculations, we obtain

a1(t)θσ1(t) + a2(t)θσ2(t) ≈ (ρ(t))−1(1 + ρ(t))1−µ

(A(t))2
(Mσ1L1 +Mσ2L2)(m(t))

Using Proposition 2.6 with β = 1, γ = µ and L̃ = Mσ1L1 +Mσ2L2, we deduce that

V (a1θ
σ1 + a2θ

σ2)(t) ≈ m(t)
∫ η

m(t)

L̃(s)
s

ds.

Hence the results follows from Lemma 2.4.
Case 5: λ1 = 1 + σ1 and λ2 < 1 + σ2. Since limt→0+ b(t) ∈ (0,∞], it follows that
θ(t) ≈ m(t)b(m(t)). So, we obtain that

a1(t)θσ1(t) + a2(t)θσ2(t) ≈ (ρ(t))−1(1 + ρ(t))1−µ

(A(t))2
(L1b

σ1)(m(t))

+
(ρ(t))−λ2+σ2(1 + ρ(t))λ2−σ2−µ

(A(t))2
(L2b

σ2)(m(t)).

Using the fact that for i ∈ {1, 2}, the function t → L̃i(t) := Li(t)bσi(t) ∈ K and
that λ2 − σ2 < 1, we deduce by Proposition 2.1 that

a1(t)θσ1(t) + a2(t)θσ2(t) ≈ (ρ(t))−1(1 + ρ(t))1−µ

(A(t))2
(L1b

σ1)(m(t)).
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Hence applying Proposition 2.6 with β = 1, γ = µ, we obtain that

V (a1θ
σ1 + a2θ

σ2)(t) ≈ m(t)
∫ η

m(t)

L̃1(s)
s

ds ≈ θ(t).

Case 6: λ1 < 1 + σ1. Since θ(t) = 2m(t), we obtain

a1(t)θσ1(t) ≈ (ρ(t))−λ1+σ1(1 + ρ(t))λ1−σ1−µ

(A(t))2
L1(m(t)).

Applying Proposition 2.6 with β = λ1 − σ1 < 1, γ = µ and L̃ = L1, we obtain

V (a1θ
σ1)(t) ≈ m(t).

On the other hand, since also λ2 < 1 + σ2, we similarly obtain

V (a2θ
σ2)(t) ≈ m(t).

Hence
V (a1θ

σ1 + a2θ
σ2)(t) ≈ m(t) ≈ θ(t).

Case 7: λ1 = λ2 = 2. We have θ(t) = N(m(t)). By calculus, we conclude that

a1(t)θσ1(t) + a2(t)θσ2(t) ≈ (ρ(t))−2(1 + ρ(t))2−µ

(A(t))2
(Nσ1L1 +Nσ2L2)(m(t))

On the other hand, since s→ (Nσ1L1 +Nσ2L2)(s) ∈ K and from Lemma 2.5,∫ 1

0

(Nσ1L1 +Nσ2L2)(s)
s

ds ≈ N(1) <∞,

then by Proposition 2.6 with β = 2, γ = µ and L̃ = Nσ1L1 + Nσ2L2, we deduce
that

V (a1θ
σ1 + a2θ

σ2)(t) ≈
∫ m(t)

0

(Nσ1L1 +Nσ2L2)(s)
s

ds.

Hence the results follows from Lemma 2.5.

Proof of Theorem 1.4. The next Lemma will be useful to prove the uniqueness.

Lemma 3.2 ([2]). Let a ≥ 0 and u ∈ C1((a,∞)) be a function satisfying

− 1
A

(Au′)′ ≥ 0, in (a,∞),

lim
t→a+

u(t) = 0, lim
t→∞

u(t)
ρ(t)

= 0.
(3.3)

Then u is nondecreasing and nonnegative function on (a,∞).

Now we are ready to prove Theorem 1.4. Let σ1, σ2 ∈ (−1, 1), assume (H1) and
put ω̃ := a1θ

σ1 + a2θ
σ2 and v := V (ω̃). From Theorem 1.3, there exists M > 1

such that for each t > 0,
1
M
θ(t) ≤ v(t) ≤Mθ(t). (3.4)

On the other hand, using hypothesis (H1), (3.1), Lemma2.2 and Lemma 2.5, we
verify that ∫ ∞

0

A(s) min(1, ρ(s))ω̃(s)ds <∞. (3.5)
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Put σ = max(|σ1|, |σ2|), c = M
1+σ
1−σ , where the constant M is given in (3.4) and let

Λ = {ω ∈ C0([0,∞)) :
θ(t)

c(1 + ρ(t))
≤ ω(t) ≤ cθ(t)

1 + ρ(t)
, t > 0}.

Using (3.1), Proposition 2.1 and Lemma 2.3, we verify that the function t 7→
θ(t)

1+ρ(t) ∈ C0([0,∞)) and so Λ is not empty.
We define the operator T on Λ by

Tω(t) =
1

1 + ρ(t)

∫ ∞
0

G(t, s)
[
a1(s)(1 + ρ(s))σ1ωσ1(s)

+ a2(s)(1 + ρ(s))σ2ωσ2(s)
]
ds.

(3.6)

We shall prove that T has a fixed point in Λ.
First observe that for this choice of c, by using (3.4), we have for all ω ∈ Λ and

t > 0

Tω(t) ≤ 1
1 + ρ(t)

V (a1c
σMσθσ1 + a2c

σMσθσ2)(t) =
cσMσ

1 + ρ(t)
v(t) ≤ cθ(t)

1 + ρ(t)
and

Tω(t) ≥ V (a1c
−σM−σθσ1 + a2c

−σM−σθσ2)(t) =
c−σM−σ

1 + ρ(t)
v(t) ≥ θ(t)

c(1 + ρ(t))
.

On the other hand, for all ω ∈ Λ we have

|a1(t)(1 + ρ(t))σ1ωσ1(t) + a2(t)(1 + ρ(t))σ2ωσ2(t)| ≤ cσMσω̃(t), (3.7)

and for all t, s > 0, we have
G(t, s)
1 + ρ(t)

≤ A(s) min(1, ρ(s)). (3.8)

Since for each s > 0, the function t → G(t,s)
1+ρ(t) is in C0([0,∞)), we deduce by using

(3.7), (3.8) and (3.5) that the family {t → Tω(t), ω ∈ Λ} is relatively compact in
C0([0,∞)). Therefore, T (Λ) ⊂ Λ.

Now, we shall prove the continuity of the operator T in Λ in the supremum norm.
Let (ωk)k∈N be a sequence in Λ which converges uniformly to a function ω in Λ.
Then, for each t > 0, we have

|Tωk(t)−Tω(t)| ≤ 1
1 + ρ(t)

V [a1(1+ρ(.))σ1 |ωσ1
k −ω

σ1 |+a2(1+ρ(.))σ2 |ωσ2
k −ω

σ2 |](t).

On the other hand, by similar arguments as above, we have

a1(1 + ρ(.))σ1 |ωσ1
k − ω

σ1 |+ a2(1 + ρ(.))σ2 |ωσ2
k − ω

σ2 | ≤ c̃ω̃(s).

We conclude by (3.5) and the dominated convergence theorem that for all t > 0,

Tωk(t)→ Tω(t) as k → +∞.
Consequently, as T (Λ) is relatively compact in C0([0,∞)), we deduce that the
pointwise convergence implies the uniform convergence, namely,

‖Tωk − Tω‖∞ → 0 as k → +∞.
Therefore, T is a continuous mapping from Λ into itself. So the Schauder fixed
point theorem implies the existence of ω ∈ Λ such that

ω(t) =
1

1 + ρ(t)
V (a1(1 + ρ(.))σ1ωσ1 + a2(1 + ρ(.))σ2ωσ2)(t).
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Put u(t) = 1 + ρ(t)ω(t). Then u is continuous and satisfies

u(t) = V (a1u
σ1 + a2u

σ2)(t).

Since the function s → A(s) min(1, ρ(s))[a1(s)uσ1(s) + a2(s)uσ2(s)] is continuous
and integrable on (0,∞), then it follows that u is a solution of problem (1.3).

Finally, it remains to prove that u is the unique positive continuous solution sat-
isfying (1.11). To this end, assume that problem (1.3) has two positive continuous
solutions u, v satisfying (1.11). Then there exists a constant m > 1 such that

1
m
≤ u

v
≤ m.

This implies that the set

J = {m ≥ 1 :
1
m
≤ u

v
≤ m}

is not empty. Let σ := max(|σ1|, |σ2|) and put c0 := inf J . Then c0 ≥ 1 and we
have 1

c0
v ≤ u ≤ c0v. It follows that for i ∈ {1, 2}, uσi ≤ cσ0vσi and that the function

w := cσ0v − u satisfies

− 1
A

(Aw′)′ = a1(cσ0v
σ1 − uσ1) + a2(cσ0v

σ2 − uσ2) ≥ 0,

lim
t→0+

w(t) = 0,

lim
t→∞

w(t)
ρ(t)

= 0.

By Lemma 3.2, this implies that the function w = cσ0v − u is nonnegative. By
symmetry, we also have v ≤ cσ0u. Hence cσ0 ∈ J and c0 ≤ cσ0 . Since 0 ≤ σ < 1, then
c0 = 1 and therefore u = v. �

Example 3.3. Let σ1 ∈ (−1, 0), σ2 ∈ (0, 1) and λ1, λ2 < 2, such that 2−λ1
1−σ1

≤ 2−λ2
1−σ2

.
Let µ1, µ2 > 2 and a1, a2 be a positive continuous function on (0,∞) such that

ai(t) ≈
1

(A(t))2
(ρ(t))−λi(1 + ρ(t))λi−µi , for i ∈ {1, 2}.

Then by Theorem 1.4, problem (1.3) has a unique positive continuous solution u
satisfying for t > 0,

u(t) ≈


( ρ(t)
1+ρ(t) )

2−λ1
1−σ1 , if 1 + σ1 < λ1 < 2,

ρ(t)
1+ρ(t) (log( 2+2ρ(t)

ρ(t) ))
1

1−σ2 , if λ1 = 1 + σ1 and λ2 = 1 + σ2,
ρ(t)

1+ρ(t) (log( 2+2ρ(t)
ρ(t) ))

1
1−σ1 , if λ1 = 1 + σ1 and λ2 < 1 + σ2,

ρ(t)
1+ρ(t) , if λ1 < 1 + σ1.
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