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EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR
SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH

INTEGRAL BOUNDARY CONDITIONS

JUAN GALVIS, EDIXON M. ROJAS, ALEXANDER V. SINITSYN

Abstract. In this article we prove the existence of at least one positive so-

lution for a three-point integral boundary-value problem for a second-order

nonlinear differential equation. The existence result is obtained by using
Schauder’s fixed point theorem. Therefore, we do not need local assumptions

such as superlinearity or sublinearity of the involved nonlinear functions.

1. Introduction and preliminary results

Boundary-value problems (BVP) for differential equations have been extensively
studied, mainly because they appear in applications in areas such as physics, biology
and engineering sciences. See, e.g., the classical monographs [1, 5] and references
therein.

BVP with integral boundary conditions constitute a very important class of
problems. These BVP include two, three, multipoint and nonlocal BVP as special
cases. The study of existence of solutions of multipoint boundary value problems
for linear second-order ordinary differential equations was initiated in 1987 by Il’in
and Moiseev [3]. The consideration of three-point boundary-value problems for
nonlinear ordinary differential equations began in 1992 with the work of Gupta [2].

In 2010, Tariboon and Sitthiwirattham [4], by applying the Krasnoselskii fixed
point theorem in cones, proved the existence of positive solutions of a nonlinear
three-point integral boundary-value problem whose boundary conditions are related
to the area under the curve of the solutions. More precisely, they consider the
existence of positive solutions of the BVP

u′′ + a(t)f(u) = 0

u(0) = 0, α

∫ η

0

u(s)ds = u(1), η ∈ (0, 1).

In their analysis they assume that the function f is either superlinear or sublinear.
That is, defining

f0 := lim
u→0+

f(u)
u

, f∞ := lim
u→∞

f(u)
u

,
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then, f0 = 0 and f∞ = ∞ correspond to the superlinear case, and f0 = ∞ and
f∞ = 0 correspond to the sublinear case.

In 2015 Yao [6], by means of the Leray-Schauder fixed point theorem, relaxed
such conditions by showing that the BVP above has at least a positive solution if
f0 = 0 (condition f∞ = ∞ being unnecessary), as well as, for f∞ = 0 (condition
f0 =∞ being also unnecessary).

In both works previously mentioned, the fixed point criteria applied to get the
corresponding result depends on the local behavior of the related operator. In the
analysis of the boundary value problem under study, this fact is reflected in the local
growth conditions that have to be imposed on the function f in order to verify the
assumptions needed to apply the fixed point argument.

In this article we extend the results in [4, 6] by proving the existence of positive
solutions on C[0, γ], for the BVP

u′′ + a(t)f(u) = 0

u(0) = 0, α

∫ η

0

u(s)ds = u(γ) with η ∈ (0, γ).

More precisely, we do not impose any extra condition on the function f . In this
way, for our analysis we use the Schauder’s fixed point theorem. Therefore, we only
need to prove a global condition (instead of using local arguments): a compactness
condition on the involved operators associated to the equation.

For completeness of the presentation we enunciate the classical results that will
be used in the sequel.

Theorem 1.1 (Schauder fixed point). Let K be a closed convex set in a Banach
space X and assume that T : K → K is a continuous mapping such that T (K) is
a relatively compact subset of K. Then T has a fixed point in K.

The classical tool to verify the conditions of the Schauder’s fixed point Theorem,
in the case when we are dealing with the space of continuous functions C[a, b] is
the Arzela-Ascoli’s Theorem.

Theorem 1.2 (Arzela-Ascoli). A necessary and sufficient condition for a family of
continuous functions defined on the compact interval [a, b] to be compact in C[a, b]
is that this family is uniformly bounded and equicontinuous.

2. Auxiliary results on a linear BVP

In this section we prove some auxiliary lemmas that are needed in the sequel. In
particular, the next result provide conditions for the existence of a unique solution
of an auxiliary linear boundary value problem.

Lemma 2.1. Let 2γ 6= αη2. Then for y ∈ C[0, γ], the problem

u′′ + y(t) = 0 (2.1)

u(0) = 0, α

∫ η

0

u(s)ds = u(γ), η ∈ (0, γ), α 6= 0, (2.2)
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has a unique solution given by

u(t) =
2t

2γ − αη2

∫ γ

0

(γ − s)y(s)ds− αt

2γ − αη2

∫ η

0

(η − s)2y(s)ds

−
∫ t

0

(t− s)y(s)ds.
(2.3)

Proof. From equation (2.1) we have u′′(t) = −y(t). Then, integrating form 0 to t
we obtain

u′(t) =u′(0)−
∫ t

0

y(s)ds, t ∈ [0, γ).

For t ∈ [0, γ] we have, by integrating in t and using integration by parts,

u(t) = u′(0)t−
∫ t

0

(∫ x

0

y(s)ds
)
dx

= u′(0)t−
∫ t

0

(t− s)y(s)ds.
(2.4)

Thus, for t = γ we find

u(γ) = u′(0)γ −
∫ γ

0

(γ − s)y(s)ds. (2.5)

Integrating again from 0 to η the expression (2.4), where η ∈ (0, γ), we obtain∫ η

0

u(s)ds = u′(0)
η2

2
−
∫ η

0

(∫ x

0

(x− s)y(s)ds
)
dx

= u′(0)
η2

2
− 1

2

∫ η

0

(η − s)2y(s)ds.
(2.6)

From (2.2) and (2.5) we have∫ η

0

u(s)ds =
1
α
u(γ) = u′(0)

γ

η
− 1
α

∫ γ

0

(γ − s)y(s)ds.

Then, using (2.6) we see that

u′(0)
γ

α
− 1
α

∫ γ

0

(γ − s)y(s)ds = u′(0)
η2

2
− 1

2

∫ η

0

(η − s)2y(s)ds.

Thus, rearraying terms, we can write

u′(0)
(γ
α
− η2

2
)

=
1
α

∫ γ

0

(γ − s)y(s)ds− 1
2

∫ η

0

(η − s)2y(s)ds

or

u′(0) =
2α

(2γ − αη2)α

∫ γ

0

(γ − s)y(s)ds− 2α
(2γ − αη2)2

∫ η

0

(η − s)2y(s)ds.

Therefore, the boundary-value problem (2.1)–(2.2) has a unique solution

u(t) =
2t

2γ − αη2

∫ γ

0

(γ − s)y(s)ds− αt

2γ − αη2

∫ η

0

(η− s)2y(s)ds−
∫ t

0

(t− s)y(s)ds.

�

The existence of positive solutions of the BVP (2.1)–(2.2) is given in the next
result.
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Lemma 2.2. Let 0 < α < 2/η2. If y ∈ C(0, γ) and y(t) ≥ 0 on (0, γ), then the
unique solution of the problem (2.1)–(2.2) satisfies u(t) ≥ 0 for t ∈ [0, γ].

Proof. First, notice that u is concave. Observe also that if u(γ) ≥ 0, the concavity
of u and the fact that u(0) = 0 imply that u(t) ≥ 0 for t ∈ (0, γ). Therefore it is
enough to prove that u(γ) ≥ 0. In fact, arguing by contradiction, if we assume that
u(γ) < 0, then, from (2.2) we have∫ η

0

u(s)ds < 0.

The concavity of u and
∫ η
0
u(s)ds < 0 imply that u(η) < 0. Thus, using the fact

0 < α < 2/η2 and comparing integrals, we conclude

u(γ) = α

∫ η

0

u(s)ds ≥ αη

2
u(η) >

u(η)
η

which contradicts the concavity of u. The proof is complete. �

The condition on α is sharp in the sense of the following result.

Lemma 2.3. Let α > 2/η2. If y ∈ C(0, γ) and y(t) ≥ 0. Then the problem
(2.1)–(2.2) has a nonpositive solution.

Proof. Assume that the problem (2.1)–(2.2) has a positive solution u. If u(γ) > 0
then

∫ η
0
u(s)ds > 0. It implies in particular that u(η) > 0 and using α > 2/η2, we

obtain

u(γ) = α

∫ η

o

u(s)ds ≥ αη

2
u(η) >

u(η)
η

.

This contradicts the concavity of u.
If u(γ) = 0, then

∫ η
0
u(s)ds = 0 and therefore u(t) = 0 for all t ∈ [0, η] due to

the concavity of u. On the other hand, if there exits τ ∈ (η, γ) such that u(τ) > 0,
then u(0) = u(η) < u(τ) which again contradicts the concavity of u. Therefore, no
positive solutions exist. �

3. Existence of positive solutions for the nonlinear BVP

From Lemmas 2.1 and 2.2, in particular from expression (2.3), for 0 < α < 2/η2

with 2γ 6= αη2, the function u is a solution of

u′′ + a(t)f(u) = 0,

under the condition (2.2), for a : [0, γ]→ [0,∞) and f : [0,∞)→ [0,∞) continuous
functions, if u(t) is a fixed point of the operator

Au(t) :=
2t

2γ − αη2

∫ γ

0

(γ − s)a(s)f(u(s))ds− αt

2γ − αη2

∫ η

0

(η − s)2a(s)f(u(s))ds

−
∫ t

0

(t− s)a(s)f(u(s))ds

=
(2− α)t
2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))ds

−
∫ t

0

(t− s)a(s)f(u(s))ds.

Here χ(0,η) is the characteristic function of the interval (0, η).
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Let us consider the operators,

Fu(t) :=
(2− α)t
2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))ds

Gu(t) :=
∫ t

0

(t− s)a(s)f(u(s))ds.

Then, we can write
Au(t) = Fu(t)−Gu(t).

To use the Schauder’s fixed point theorem, first we need to check that the operator
A is compact. This fact is establish in the following theorem.

Theorem 3.1. The operator A : C[0, γ]→ C[0, γ] is compact.

Proof. Since A = F −G, then we should to prove that the operators F and G are
compact. First, we prove that the operator F is compact. Let u ∈ C[0, γ]. It is
clear that (Fu)(t) is a continuous function, then F (C[0, γ]) ⊂ C[0, γ]. On the other
hand,

|(Fu)(t)− (Fu)(w)|

=
∣∣∣ (2− α)t
2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))ds

− (2− α)w
2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))ds
∣∣∣

= |t− w|
∣∣∣ (2− α)
2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))d
∣∣∣→ 0

(3.1)

uniformly as |t − w| → 0, thus F is continuous. To prove the compactness of F
is suffices to check that F satisfies the conditions of the Arzela-Ascoli’s Theorem.
Let K = {un : n ∈ N} be a uniformly bounded set of C[0, γ]; that is, there exists a
positive constant M > 0 such that |un(t)| ≤M for all un ∈ K. Then,

‖Fun‖∞ =
∥∥ (2− α)t

2γ − αη2

∫ γ

0

[(γ − s)− (η − s)2χ(0,η)(s)]a(s)f(un(s))ds
∥∥
∞

≤
∣∣ (2− α)
2γ − αη2

∣∣∥∥t∫ γ

0

(γ − s)a(s)f(un(s))ds
∥∥
∞

≤
∣∣ (2− α)
2γ − αη2

∣∣γ3

2
‖a‖∞‖f(un)‖∞.

Since f : [0,M ]→ [0,∞) is continuous, last inequality is uniformly bounded for all
un ∈ K. Hence F (K) s uniformly bounded. Replacing u by un in (3.1) we show
that F (K) is equicontinuous. thus F : C[0, γ]→ C[0, γ] is completely continuous.

On the other hand, the operator G is the classic Volterra operator which is
compact. For completeness we present a proof. Let B∞(1) be the unit closed ball
of C[0, γ] and u ∈ B∞(1). Then

|Gu(t)−Gu(w)| =
∣∣∣ ∫ t

0

(t− s)a(s)f(u(s))ds−
∫ w

0

(w − s)a(s)f(u(s))ds
∣∣∣.

The above expression approaches zero when |t − w| → 0 uniformly in B∞(1).
Therefore, from the Arzela-Ascoli Theorem, G(B∞(1)) is relatively compact and
then G is compact. This complete the proof of the theorem. �
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The existence of positive solutions of the nonlinear second-order boundary-value
problem with three-point integral boundary conditions under consideration, is given
in the following theorem.

Theorem 3.2. The boundary-value problem

u′′ + a(t)f(u) = 0

u(0) = 0, α

∫ η

0

u(s)ds = u(γ), 0 < α <
2
η2
, 2γ 6= αη2

has at least one positive solution on C[0, γ].

Proof. From Theorem 3.1, we have that the operator A : C[0, γ] → C[0, γ] is
compact. Let R > 0 be a positive number and consider the closed convex ball on
C[0, γ], denoted by B∞(R). For u ∈ B∞(R) by using the triangle inequality the
following estimate holds

‖Au‖∞

=
∥∥ (2− α)t

2γ − αη2

∫ γ

0

[(α− s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))ds

−
∫ t

0

(t− s)a(s)f(u(s))ds
∥∥
∞

≤
∣∣ (2− α)γ
2γ − αη2

∣∣ ∫ γ

0

‖[(α− s)− (η − s)2χ(0,η)(s)]a(s)f(u(s))‖∞ds

+
∥∥∫ t

0

(t− s)a(s)f(u(s))ds
∥∥
∞

≤
∣∣ (2− α)γ
2γ − αη2

∣∣ ∫ γ

0

|η − 1
2
|‖a‖∞‖f(u)‖∞ds+ ‖a‖∞‖f(u)‖∞ sup

t∈[0,γ]

∫ t

0

|γ − s|ds

≤
∣∣ (2− α)γ2

2γ − αη2

∣∣|η − 1
2
|‖a‖∞‖f(u)‖∞ +

γ2

2
‖a‖∞‖f(u)‖∞.

In the inequality above we used that |η − 1/2| = maxs∈[0,η] |(γ − s) − (η − s)2|.
Since u ∈ B∞(R) and the function f : [0, R]→ R is bounded and continuous, then
‖f(u)‖∞ is finite. Hence, A(B∞(R)) ⊂ B∞(R) whenever

R ≥
(∣∣ (2− α)

2γ − αη2

∣∣|η − 1
2
|+ 1

2

)
γ2‖a‖∞‖f(u)‖∞.

From Theorem 1.1, the operator A has at least a fixed point on B∞(R). With this
we obtain our result. �

To illustrate our result, let us consider the following boundary-value problem
defined on C[0, π]

u′′(t) +
10 sin(t)
e10 sin(t)+t

eu(t) = 0

u(0) = 0,
π

2

∫ η

0

u(s)ds = π, η = 0.6.

Since π/2 < 2/η2 = 4.1, from Theorem 3.2 there exists a positive solution of the
boundary value problem. In fact, the function u(t) = 10 sin(t) + t is a solution of
the problem and it is positive in [0, π].
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On the other hand, notice that the nonlinear term eu is neither superlinear nor
sublinear, thus this problem cannot be analyze by the results given on [4]. Moreover,
the limits

lim
u→0+

f(u)
u

= lim
u→∞

f(u)
u

=∞,

therefore the results on [6] also cannot be applied to show the existence of a positive
solution in this example.
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References

[1] R. P. Arwal; Boundary Value Problems for Higher Order Differential Equations, World Sci-
entific, Singapore, 1986.

[2] C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order

ordinary differential equations, J. Math. Anal. Appl., 168, (1992), 540–551.
[3] V. A. Il’in, E. I. Moiseev; Nonlocal boundary-value problem of the first kind for Sturm-Liouville

operator in its differential and finite difference aspects, Differential Equations, Vol 23, (1987),

803–810.
[4] J. Tariboon, T. Sittiwirattham; Positive solutions of a nonlinear three-point integral boundary

value problem, Boundary Value Problems, Vol 2010, 11 pp, DOI:10.1155/2010/519210.
[5] S. Timoshenko; Theory of Elastic Stability, McGraw-Hill, NY, 1961

[6] Z. Yao; New results of positive solutions for second-order nonlinear three-point integral bound-

ary value, J. Nonlinear Sci. Appl., 8, (2015), 93–98.

Addendum posted on November 4, 2015

After this article was published, a reader indicated that the condition ‖f‖∞ <
∞ is necessary in Theorem 3.2. Under this condition, the example can not be
considered, and the results in this article become a particular case of the results on
reference [7] below.

Also we want to correct the following misprints.
• A γ was missing in the conditions on the parameter α in our results. That

should be, 0 < α < 2γ/η2 in Lemma 2.2 and Theorem 3.2. For the Lemma
2.3 the condition should be α > 2γ/η2. Note that these changes do not
affect any proofs in our results. The only action to be taken is to replace
the condition in α by the correct one where it appears.
• In Lemma 2.3. The correct conclusion is: the problem (2.1)-(2.2) has no

(strictly) positive solution.
• Theorem 3.2 needs a correction. The correct conclusion is: The boundary-

value problem has at least one non-negative solution on C[0, γ], assuming
that ‖f‖∞ <∞.
• The bound of the radius R in the proof is incorrect: In page 6, line 13

appears [(α− s)− (η− s)2χ(0,η)(s)]. Should be [(γ− s)− (η− s)2χ(0,η)(s)].
This fact affects the lower bound for R, because we claim

|η − 1/2| = max
s∈[0,η]

|[(α− s)− (η − s)2|.

The correct statement is

max
s∈[0,γ]

|[(γ − s)− (η − s)2χ(0,η)(s)]| ≤ γ + η2.
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Thus, in the proof where appears |η−1/2| should be replace by γ+η2 (note
that the inequality still holds).
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