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BOUNDARY CONTROLLABILITY FOR A NONLINEAR
BEAM EQUATION

XIAO-MIN CAO

Abstract. This article concerns a nonlinear system modeling the bending

vibrations of a nonlinear beam of length L > 0. First, we derive the existence

of long time solutions near an equilibrium. Then we prove that the nonlinear
beam is locally exact controllable around the equilibrium in H4(0, L) and

with control functions in H2(0, T ). The approach we used are open mapping

theorem, local controllability established by linearization, and the induction.

1. Introduction and statement of main results

We consider a controllability problem for a system modeling the bending vibra-
tions of a nonlinear beam of length L > 0. Let φ denote the deflection of the beam,
the left end of the beam is fixed, and an appropriate shear force u exerted on the
right end of the beam, then the equations of motion describing beam bending are

φtt + (a(x, φ)φ′′)′′ = b(x, φ, φ′, φ′′), x ∈ (0, L), t ∈ (0, T ),

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

φ(0, t) = 0, φ′(0, t) = 0, t ∈ (0, T ),

φ(L, t) = 0, φ′(L, t) = u(t), t ∈ (0, T ),

(1.1)

where a(x, y), b(x, y1, y2, y3) are smooth functions on [0, L] × R and [0, L] × R3,
respectively, such that

a(x, y) > 0, ∀(x, y) ∈ [0, L]× R (1.2)

b(x, 0, 0, 0) = 0, ∀x ∈ [0, L] (1.3)

Let φ0, φ1, φ̂0, φ̂1 be given functions and T > 0 be given. If there is boundary
function u on (0, T ) such that the solution of (1.1) satisfies φ(T ) = φ̂0, φt(T ) = φ̂1

on [0, L], we say the system (1.1) is exactly controllable from (φ0, φ1) to (φ̂0, φ̂1) at
time T by controlled moment on the right end.

Boundary exact controllability on linear beam problems has been studied for
many years, see [8, 9, 11, 12, 15, 17, 18], and many others.

To the best of our knowledge, there is little about the boundary control of nonlin-
ear beam equation in the existing related papers. Recently, Yao and G. Weiss [27]
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consider a dynamical system with boundary input and output describing the bend-
ing vibrations of a quasi-linear beam, where the nonlinearity comes from Hooke’s
law. they show that the structure of the boundary input and output forces the
system to admit global solutions at least when the initial data and the boundary
input are small in a certain sense. And they prove that the norm of the state of the
system decays exponentially if the input becomes zero after a finite time. Cindea
and Tucsnak [3] study the exact controllability of a nonlinear plate equation by
the means of a control which acts on an internal region of the plate. For rectangu-
lar domains, they obtain that the Berger system is locally exactly controllable in
arbitrarily small time and for every open and nonempty control region.

Recently, using moment theory and Nash-Moser theorem, Beauchard [2] prove
that the linear beam equation with clamped ends is locally controllable in a H5+ε×
H3+ε((0, 1), R) neighborhood of a particular trajectory of the free system, with
ε > 0 and with control functions in H1

0 ((0, T ), R).
In the present work we will study boundary controllability for the nonlinear

beam equation (1.1) by using some ideas of [21] for the nonlinear system of wave
equations. First, we will derive the existence of long time solutions near an equilib-
rium. Then, the locally exact controllability of the system around the equilibrium
will be established.

Let us choose some Sobolev spaces to formulate the problems. To get a smooth
control, we assume initial data φ0 ∈ H4(0, L), φ1 ∈ H2(0, L) to study the control-
lability of the system around the equilibrium in H4(0, L) at time T via a boundary
control u ∈ H2(0, T ). Obviously, control function we obtained is more smooth than
the previous results [2, 9].

We say ω ∈ H4(0, L) is an equilibrium of the system (1.1) if

(a(x, ω)ω′′)′′ = b(x, ω, ω′, ω′′). (1.4)

Let φ0 ∈ H4(0, L), φ1 ∈ H2(0, L), u ∈ H2(0, T ). We say these functions satisfy
compatibility conditions if

φ0(0) = 0, φ′0(0) = 0, φ1(0) = 0, φ′1(0) = 0,

φ0(L) = 0, φ′0(L) = u(0), φ1(L) = 0, φ′1(L) = u̇(0).

Set

V (0, L) = {ϕ|ϕ ∈ H2(0, L), ϕ(0) = ϕ(L) = ϕ′(0) = 0.} (1.5)

The next result shows that near one equilibrium, the system has solutions of
long time.

Theorem 1.1. Let w ∈ H4(0, L) ∩ V (0, L) be an equilibrium of (1.1). Let T > 0
be arbitrary given. Then there is εT > 0, which depends on the time T , such that
if φ0 ∈ H4(0, L) ∩ V (0, L), φ1 ∈ V (0, L) satisfy

‖φ0 − ω‖4 < εT , ‖φ1‖2 < εT ,

and u ∈ H2(0, T ) satisfies the compatibility conditions with (φ0, φ1) and ‖u‖2 < εT ,
then system (1.1) has a solution

φ ∈ C([0, T ], H4(0, L)) ∩ C1([0, T ], H2(0, L)) ∩ C2([0, T ], L2(0, L)).

Near an equilibrium, we have the following locally exact controllability results.
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Theorem 1.2. Let ω ∈ H4(0, L) ∩ V (0, L) be an equilibrium of (1.1). Then, for
T > 0 given, there is εT > 0 such that for any (φi0, φ

i
1) ∈ (H4(0, L) ∩ V (0, L)) ×

V (0, L)(i = 1, 2) with
‖φi0 − ω‖4 < εT , ‖φi1‖2 < εT ,

we can find u ∈ H2(0, T ) which is compatible with (φ1
0, φ

1
1) such that the solution

of the system (1.1) with the initial data (φ1
0, φ

1
1) satisfies

φ(T ) = φ2
0, φt(T ) = φ2

1.

2. Existence of long time solutions near equilibria

The existence of short time solutions for the nonlinear beam equation can be
proved using standard arguments such as the nonlinear semigroups theory or the
Galerkin method and fixed point arguments [1, 4, 16, 20]. We only study some
energy estimates of the short time solutions to have long time solutions when initial
data are close to an equilibrium here.

We suppose that the equilibrium is the zero in this section. If an equilibrium
ω ∈ H4(0, L) ∩ V (0, L) is not zero, we can make a transform by φ = ω + ψ, and
consider the problem

ψtt + (a(x, ω + ψ)(ψ′′ + ω′′))′′ = b(x, ω + ψ, ω′ + ψ′, ω′′ + ψ′′),

x ∈ (0, L), t ∈ (0, T ),

ψ(x, 0) = φ0 − ω, ψt(x, 0) = φ1(x), x ∈ (0, L),

ψ(0, t) = 0, ψ′(0, t) = 0, t ∈ (0, T ),

ψ(L, t) = 0, ψ′(L, t) = u(t)− ω′(L), t ∈ (0, T ),

Let φ ∈ C([0, T ], H4(0, L))∩C1([0, T ], H2(0, L))∩C2([0, T ], L2(0, L)) be a solu-
tion of (1.1) for some T > 0. Suppose that u ∈ H2(0, T ). We introduce

E(t) = ‖φ‖24 + ‖φt‖22 + ‖φtt‖2,
EΓ(t) = u2(t) + u̇2(t) + ü2(t),

Q(t) = ‖φt‖2 + ‖φ′′‖2 + ‖φ′t‖2 + ‖φ′′′‖2 + ‖φtt‖2 + ‖φ′′t ‖2.

For solutions of (1.1) near the zero equilibrium, we have the following result.

Theorem 2.1. Let γ > 0 be given and φ be a solution of (1.1) on the interval
[0, T ] for some T > 0 such that the condition

sup
0≤t≤T

‖φ(t)‖4 ≤ γ. (2.1)

holds. Then there is cγ > 0, which depends on the γ but is independent of initial
data (φ0, φ1) and boundary functions u, such that

Q(t) ≤ cγQ(0) + cγ

∫ t

0

[
(1 + E1/2(τ) + E(τ) + E 3

2 (τ))E(τ) + EΓ(τ)
]
dτ. (2.2)

and
Q(t) ≤ E(t) ≤ cγQ(t) + cγEΓ(t), (2.3)

for t ∈ [0, T ].
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Here we list a few basic properties of Sobolev spaces to be invoked in the sequel.
(i) Let s1 > s2 ≥ 0. For any ε > 0 there is cε > 0 such that

‖ϕ‖2s2 ≤ ε‖ϕ‖
2
s1 + cε‖ϕ‖2, ∀ϕ ∈ Hs1(0, L).

(ii) If m > 1
2 , then for each k = 0, 1, · · · , we have Hm+k(0, L) ⊂ Ck([0, L]) with

continuous inclusion.
(iii) If r := min{s1, s2, s1 + s2 − 1} ≥ 0, then there is a constant c > 0 such that

‖fg‖r ≤ c‖f‖s1‖g‖s2 ,∀f ∈ Hs1(0, L), g ∈ Hs2(0, L). (2.4)

Lemma 2.2. (i) Let f(x, y) be a smooth function on [0, L]×R. Set F (x) = f(x, φ),
for 0 ≤ k ≤ 4, then there is c = c(supx∈[0,L] |φ|) > 0, such that

‖F‖k ≤ c
k∑
j=0

(1 + ‖φ‖4)j . (2.5)

(ii) Let f(x, y1, y2, y3) be a smooth function on [0, L]× R3. Set

G(x) = f(x, φ, φ′, φ′′),

then there is c = c
(

supx∈[0,L] |φ|, supx∈[0,L] |φ′|, supx∈[0,L] |φ′′|
)
> 0, such that

‖G‖ ≤ c. (2.6)

Proof. (i) Inequality (2.5) is clearly true for k = 0. By using (2.4) and the induction
of the order k, inequality (2.5) follows.

(ii) A standard method as to the linearly elliptic problem can give inequality
(2.6), for example see Taylor [22]. �

Observing the partial differential of the function a(x, φ) and b(x, φ, φ′, φ′′), using
the formula (2.4) and Lemma 2.2, we have the following lemma.

Lemma 2.3. Let γ > 0 be given and φ be a solution of (1.1) on the interval [0,T]
for some T > 0 such that the condition (2.1) holds true. Then there is cγ > 0,
which depends on the γ, such that

‖at‖2 ≤ cγE1/2(t), ‖a′t‖1 ≤ cγ
(
E1/2(t) + E(t)

)
,

‖a′′t ‖ ≤ cγ
(
E1/2(t) + E(t) + E 3

2 (t)
)
, ‖bt‖ ≤ cγE1/2(t).

Lemma 2.4. Let γ > 0 be given and φ be a solution of (1.1) on the interval [0,T]
for some T > 0 such that the condition (2.1) holds true. Set

Υ1(t) = ‖φt‖2 + ‖φ′′‖2, Υ2(t) = ‖φ′t‖2 + ‖φ′′′‖2, Υ3(t) = ‖φtt‖2 + ‖φ′′t ‖2.

Then there is cγ > 0, which depends on the γ, such that

Υ1(t) ≤ cγΥ1(0) + cγ

∫ t

0

[
(1 + E 1

2 (τ))E(τ) + EΓ(τ)
]
dτ, (2.7)

Υ2(t) + Υ3(t)

≤ cγ
(
Υ2(0) + Υ3(0)

)
+ cγ

∫ t

0

[(
1 + E1/2(τ) + E(τ) + E 3

2 (τ)
)
E(τ) + EΓ(τ)

]
dτ

(2.8)

for 0 ≤ t ≤ T .
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Proof. Let
P1(t) = ‖φt‖2 + (aφ′′, φ′′).

We obtain

Ṗ1(t) = 2(φt, φtt) + 2(aφ′′, φ′′t ) + (atφ′′, φ′′)

= 2(φt, b− (aφ′′)′′) + 2(aφ′′, φ′′t ) + (atφ′′, φ′′)

= 2(φt, b) + 2u̇(t)(aφ′′)(L, t) + (atφ′′, φ′′).

It follows that

Υ1(t) ≤ cγP1(t)

≤ cγP1(0) + cγ

∫ t

0

(‖φt‖‖b‖+ ‖at‖2‖φ′′‖2)dt+ cγ

∫ t

0

(u̇2(t) + φ′′
2(L, t))dt

≤ cγΥ1(0) + cγ

∫ t

0

[
(1 + E 1

2 (τ))E(τ) + EΓ(τ)
]
dτ.

To obtain inequality (2.8), first we differentiate equation (1.1) with respect to x,
then we have

φ′tt + (aφ′′)′′′ = b′. (2.9)

Let
P2(t) = ‖φ′t‖2 + (aφ′′′, φ′′′). (2.10)

We obtain

Ṗ2(t) = 2(φ′t, φ
′
tt) + 2(aφ′′′, φ′′′t ) + (atφ′′′, φ′′′)

= 2(φ′t, b
′ − (aφ′′)′′′) + 2(aφ′′′, φ′′′t ) + (atφ′′′, φ′′′)

= 2(φ′t, b
′)− 2u̇(t)b(L, t) + 2φ′′t (L, t)(aφ′′′)(L, t)− 2φ′′t (0, t)(aφ′′′)(0, t)

− 2(φ′′t , a
′φ′′′) + 2(φ′′t , 2a

′φ′′′ + a′′φ′′) + (atφ′′′, φ′′′).

So
Υ2(t) ≤ cγP2(t)

≤ cγP2(0) + cγ

∫ t

0

[
(1 + E1/2(τ))E(τ) + u̇2(τ)

]
dτ

+ ε

∫ t

0

(
φ′′t

2(0, t) + φ′′t
2(L, t)

)
dt+ cγ,ε

∫ t

0

(
φ′′′

2(0, t) + φ′′′
2(L, t)

)
dt.

(2.11)
Furthermore, we differentiate (1.1) with respect to t, then we have

φttt + (aφ′′t )′′ + (atφ′′)′′ = bt. (2.12)

Let
P3(t) = ‖φtt‖2 + (aφ′′t , φ

′′
t ). (2.13)

We deduce that

Ṗ3(t) = 2(φtt, φttt) + 2(aφ′′t , φ
′′
tt) + (atφ′′t , φ

′′
t )

= 2(φtt, bt − (atφ′′)′′ − (aφ′′t )′′) + 2(aφ′′t , φ
′′
tt) + (atφ′′t , φ

′′
t )

= 2(φtt, bt)− 2(φtt, atφ(4))− 4(φtt, a′tφ
′′′)− 2(φtt, a′′t φ

′′)

+ 2ü(t)(aφ′′t )(L, t) + (atφ′′t , φ
′′
t ).
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So

Υ3(t) ≤ cγP3(t)

≤ cγP3(0) + cγ

∫ t

0

[
(1 + E1/2(τ) + E(τ) + E 3

2 (τ))E(τ)
]
dτ

+ ε

∫ t

0

φ′′t
2(L, t)dt+ cγ,ε

∫ t

0

ü2(t)dt.

(2.14)

From (2.11) and (2.14), we conclude that

Υ2(t) + Υ3(t) ≤ cγ(P2(0) + P3(0)) + ε

∫ t

0

(
φ′′t

2(0, t) + φ′′t
2(L, t)

)
dt

+ cγ

∫ t

0

[
(1 + E1/2(τ) + E(τ) + E 3

2 (τ))E(τ) + u̇2(t)
]
dτ

+ cγ,ε

∫ t

0

(
φ′′′

2(0, t) + φ′′′
2(L, t) + ü2(t)

)
dt.

(2.15)

Next, we estimate the terms
∫ t

0
φ′′t

2(0, t)dt and
∫ t

0
φ′′t

2(L, t)dt.
Differentiating twice (1.1) with respect to x, multiplying the two sides of the

equation by (L− x)φ′′′ and integrating from 0 to L by parts, we obtain

φ′′tt + (aφ′′)(4) = b′′, (2.16)

∫ L

0

φ′′tt(L− x)φ′′′dx =
∂

∂t
(φ′′t , (L− x)φ′′′) +

1
2
Lφ′′t

2(0, t)− 1
2

∫ L

0

φ′′t
2
dx,∫ L

0

(b′′ − (aφ′′)(4))(L− x)φ′′′dx

= (b′′, (L− x)φ′′′)− b′(0, t)Lφ′′′(0, t) + ü1(t)Lφ′′′(0, t)− 1
2
L(aφ(4)2

)(0, t)

− 1
2

∫ L

0

(a′(L− x)− a)φ(4)2
dx+

∫ L

0

(3a′φ(4) + 3a′′φ′′′ + a′′′φ′′)(L− x)φ(4)dx

− b(L, t)φ′′′(L, t) + b(0, t)φ′′′(0, t) +
∫ L

0

(aφ′′)′′φ(4)dx.

Whence

1
2
Lφ′′t

2(0, t)

= − ∂

∂t
(φ′′t , (L− x)φ′′′) +

1
2

∫ L

0

φ′′t
2
dx+ (b′′, (L− x)φ′′′)

− b′(0, t)Lφ′′′(0, t)− 1
2
L(aφ(4)2

)(0, t)− 1
2

∫ L

0

(a′(L− x)− a)φ(4)2
dx

+
∫ L

0

(3a′φ(4) + 3a′′φ′′′ + a′′′φ′′)(L− x)φ(4)dx

− b(L, t)φ′′′(L, t) + b(0, t)φ′′′(0, t) +
∫ L

0

(aφ′′)′′φ(4)dx.

(2.17)
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It follows that∫ t

0

φ′′t
2(0, t)dt ≤ cγ

(
Υ2(0) + Υ3(0) + Υ2(t) + Υ3(t)

)
+ cγ

∫ t

0

[(
1 + E1/2(τ) + E(τ) + E 3

2 (τ)
)
E(τ)

]
dτ.

(2.18)

Similarly, with respect to the term
∫ t

0
φ′′t

2(L, t)dt, multiplying the two sides of
(2.16) by xφ′′′ and integrating from 0 to L by parts, we obtain∫ L

0

φ′′ttxφ
′′′dx =

∂

∂t
(φ′′t , xφ

′′′) +
1
2
Lφ′′t

2(L, t)− 1
2

∫ L

0

φ′′t
2
dx, (2.19)

and ∫ L

0

(b′′ − (aφ′′)(4))xφ′′′dx

= (b′′, xφ′′′)− b′(L, t)Lφ′′′(L, t) + ü(t)Lφ′′′(L, t) +
1
2
L(aφ(4)2

)(L, t)

− 1
2

∫ L

0

(a′x+ a)φ(4)2
dx+

∫ L

0

(3a′φ(4) + 3a′′φ′′′ + a′′′φ′′)xφ(4)dx

+ b(L, t)φ′′′(L, t)− b(0, t)φ′′′(0, t)−
∫ L

0

(aφ′′)′′φ(4)dx.

(2.20)

Using (2.19) and (2.20) we have
1
2
Lφ′′t

2(L, t)

= − ∂

∂t
(φ′′t , xφ

′′′) +
1
2

∫ L

0

φ′′t
2
dx+ (b′′, xφ′′′)− b′(L, t)Lφ′′′(L, t)

+ ü(t)Lφ′′′(L, t) +
1
2
L(aφ(4)2

)(L, t)− 1
2

∫ L

0

(a′x+ a)φ(4)2
dx

+
∫ L

0

(3a′φ(4) + 3a′′φ′′′ + a′′′φ′′)xφ(4)dx

+ b(L, t)φ′′′(L, t)− b(0, t)φ′′′(0, t)−
∫ L

0

(aφ′′)′′φ(4)dx.

(2.21)

We deduce the inequality∫ t

0

φ′′t
2(L, t)dt ≤ cγ

(
Υ2(0) + Υ3(0) + Υ2(t) + Υ3(t)

)
+ cγ

∫ t

0

[(
1 + E1/2(τ) + E(τ) + E 3

2 (τ)
)
E(τ) + ü2(t)

]
dτ.

(2.22)

Finally, Substituting inequality (2.18) and (2.22) in (2.15), choosing ε > 0 small
enough such that the term εcγ [Υ2(t) + Υ3(t)] can be moved to the left hand side
of the inequality, then (2.8) is obtained. �

Proof of Theorem 2.1. Lemma 2.4 gives inequality (2.2). To prove inequality (2.3),
we notice that aφ(4) = b− φtt − 2a′φ′′′ − a′′φ′′, then there is cγ > 0, such that

‖φ(4)‖2 ≤ cγ(aφ(4), φ(4))

= cγ(b− φtt − 2a′φ′′′ − a′′φ′′, φ(4))
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≤ cγ,ε(‖b‖2 + ‖φtt‖2 + ‖φ′′′‖2 + ‖φ′′‖2) + ε‖φ(4)‖2.

Choosing ε sufficiently small, then there is cγ > 0, such that

‖φ(4)‖2 ≤ cγ(‖b‖2 + ‖φtt‖2 + ‖φ′′′‖2 + ‖φ′′‖2) ≤ cγQ(t).

From the definition of Q(t) and E(t) and using the Poincaré inequality, inequality
(2.3) holds. �

Using the standard method as for the global solution of partial differential equa-
tion, from Theorem 2.1 we have the following proof.

Proof of Theorem 1.1. Clearly, it will suffice to prove Theorem 1.1 for the zero
equilibrium ω = 0.

Let T1 > 0 be arbitrary given. We take γ = 1. Let

c1 = cγ ≥ 1 (2.23)

be fixed such that the corresponding inequalities (2.2) and (2.3) of Theorem 2.1
hold for t in the existence interval of the solution φ.

We shall prove that, if the initial data (φ0, φ1) and boundary value u are com-
patible and satisfy

E(0) + max
0≤t≤T1

EΓ(t) +
∫ T1

0

EΓ(t)dt ≤ 1
16c31

e−4c21T1 , (2.24)

then the solution of problem (1.1) exists at least on the interval [0, T1].
We set

η =
1

4c1
<

1
2
. (2.25)

Since E(0) ≤ η
4 , the solution of short time must satisfy

E(t) ≤ η ≤ 1
2

(2.26)

for some interval [0, δ]. Let δ0 be the largest number such that (2.26) is true for
t ∈ [0, δ0). We shall prove δ0 ≥ T1 by contradiction.

Suppose that δ0 < T1. In this interval t ∈ [0, δ0], the condition (2.1) is true. We
apply Theorem 2.1 and the inequalities (2.2) and (2.3), via (2.23)–(2.26). Then we
conclude that

E(t) ≤ 2c21[E(0) + max
0≤t≤T1

EΓ(t) +
∫ T1

0

EΓ(t)dt] + 4c21

∫ t

0

E(t)dt, (2.27)

for t ∈ [0, δ0]. By (2.24) and (2.27), the Gronwall inequality yields

E(δ0) ≤ η/2 < η.

This is a contradiction. �

3. Locally exact controllability

Let T > 0 given. The first step of the proof for the local exact controllability
depends on the following fact: Let X and Y be Banach spaces and Φ : U → Y ,
where U is an open subset of X, be Frechét differentiable. If Φ′(x0) : X → Y
is surjective, then there is an open neighborhood of y0 = Φ(x0) contained in the
image Φ(U).
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Given an equilibrium ω ∈ H4(0, L) ∩ V (0, L), We invoke Theorem 1.1 to define
the map for u ∈ H2(0, T ) by setting

F (u) = (ψ(·, T ), ψt(·, T )),

where ψ is the solution to

ψtt + (a(x, ψ)ψ′′)′′ = b(x, ψ, ψ′, ψ′′), x ∈ (0, L), t ∈ (0, T ),

ψ(x, 0) = ω(x), ψt(x, 0) = 0, x ∈ (0, L),

ψ(0, t) = 0, ψ′(0, t) = 0, t ∈ (0, T ),

ψ(L, t) = 0, ψ′(L, t) = u+ ω′(L), t ∈ (0, T ),

(3.1)

Let εT > 0 be given by Theorem 1.1. Then

F : B(0, εT )→ (H4(0, L) ∩ V (0, L))× V (0, L), (3.2)

where B(0, εT ) ⊂ H2(0, T ) is the ball with the radius εT centered at 0. We note
that F (0) = (ω(x), 0).

We need to evaluate F ′(0)(u) = DλF (λu)|λ=0. It is easy to check that F ′(0)(u) =
(ψ(·, T ), ψt(·, T )), where ψ(x, t) is the solution of the linear system

ψtt + (p(x)ψ′′)′′ = b1(x)ψ + b2(x)ψ′ + b3(x)ψ′′, x ∈ (0, L), t ∈ (0, T ),

ψ(x, 0) = 0, ψt(x, 0) = 0, x ∈ (0, L),

ψ(0, t) = 0, ψ′(0, t) = 0, t ∈ (0, T ),

ψ(L, t) = 0, ψ′(L, t) = u(t), t ∈ (0, T ),

(3.3)

and

p(x) = a(x, ω),

b1(x) = by1(x, ω, ω′, ω′′)− (ay(x, ω)ω′′)′′,

b2(x) = by2(x, ω, ω′, ω′′)− 2(ay(x, ω)ω′′)′,

b3(x) = by3(x, ω, ω′, ω′′)− ay(x, ω)ω′′.

We now verify that F ′(0) is surjective. In the language of control theory surjectivity
is just exact controllability, which for a reversible system such as (3.3) is equivalent
to null controllability.

Explicitly one has to show that, for T > 0 given, given ψ0 ∈ H4(0, L) ∩
V (0, L), ψ1 ∈ V (0, L), one can find u ∈ H2(0, T ) such that the solution to

ψtt + (p(x)ψ′′)′′ = b1(x)ψ + b2(x)ψ′ + b3(x)ψ′′, x ∈ (0, L), t ∈ (0, T ),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

ψ(0, t) = 0, ψ′(0, t) = 0, t ∈ (0, T ),

ψ(L, t) = 0, ψ′(L, t) = u(t), t ∈ (0, T ),

(3.4)

satisfies ψ(·, T ) = 0 and ψt(·, T ) = 0.

Theorem 3.1. Given an equilibrium ω ∈ H4(0, L) ∩ V (0, L). Let T > 0 given.
Then for any

(ψ0, ψ1) ∈ (H4(0, L) ∩ V (0, L))× V (0, L),
there is a control u ∈ H2(0, T ) such that the solution

ψ ∈ C([0, T ], H4(0, L)) ∩ C1([0, T ], H2(0, L)) ∩ C2([0, T ], L2(0, L))

of problem (3.4) satisfies ψ(·, T ) = 0 and ψt(·, T ) = 0.
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Unfortunately, our proof does not give any information on the time T needed
for the controlled motion.

3.1. Distributed control. As to the exact controllability of linear systems by dis-
tributed control, there is a long history and a lot of results where many approaches
are involved. Here the distributed control means that solutions (ψ(t), ψt(t)) of the
controlled system (3.4) are only in the space L2(0, L) × H−2(0, L) for t ∈ [0, T ].
One of the useful approaches is the multiplier method, which introduced by Ho
[6] where Lions [15] provided a key technique of multipliers for observability esti-
mates, to control the linear system by its duality system. In the case of constant
coefficients, Lagnese [9, 11], study the controllability of linear beam by using the
multiplier method. In this subsection, we will consider the controllability of linear
beam with variable coefficients.

As noted in [9], everything is therefore going to rely on a prior inequality

‖(φ0, φ1)‖2H2
0×L2 ≤ CT

∫ T

0

φ′′
2(L, t)dt, ∀(φ0, φ1) ∈ H2

0 (0, L)× L2(0, L) (3.5)

where φ is the solution of the system

φtt + (p(x)φ′′)′′ = b1(x)φ− (b2(x)φ)′ + (b3(x)φ)′′, x ∈ (0, L), t ∈ (0, T ),

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

φ(0, t) = 0, φ′(0, t) = 0, t ∈ (0, T ),

φ(L, t) = 0, φ′(L, t) = 0, t ∈ (0, T ),

(3.6)

Given φ0 ∈ H2
0 (0, L), φ1 ∈ L2(0, L). We define φ as the solution to (3.6) and we

define η as the solution of

ηtt + (p(x)η′′)′′ = b1(x)η + b2(x)η′ + b3(x)η′′ x ∈ (0, L), t ∈ (0, T ),

η(x, T ) = 0, ηt(x, T ) = 0, x ∈ (0, L),

η(0, t) = 0, η′(0, t) = 0, t ∈ (0, T ),

η(L, t) = 0, η′(L, t) = φ′′(L, t), t ∈ (0, T ),

(3.7)

We define the operator Λ : H2
0 (0, L)× L2(0, L)→ H−2(0, L)× L2(0, L) by

λ(φ0, φ1) = (ηt(0),−η(0)) (3.8)

The solution η of (3.7) is a weak solution defined by transposition, in such a way
that Green’s formula makes sense. Therefore

〈Λ(φ0, φ1), (φ0, φ1)〉 =
∫ T

0

p(L)φ′′2(L, t)dt. (3.9)

Lemma 3.2. Let φ be a solution of (3.6). Then there exist constants c, c0 > 0
such that for T ≥ t > 0:

e−ctE(0)−N(T ) ≤ E(t) ≤ [E(0) +N(T )]ect, (3.10)

where we introduced the energy

E(t) =
∫ L

0

(
φ2
t + p(x)φ′′2

)
dx

and set N(T ) = c0
∫ T

0
‖φ‖21dt.
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Proof. Multiplying equation (3.6) by φt and integrating over (s, t)× (0, L) by parts
in t on the left-hand side we obtain that for all s, t:

E(t) = E(s) + 2
∫ t

s

∫ L

0

φt

(
b1(x)φ− (b2(x)φ)′ + (b3(x)φ)′′

)
dx dt. (3.11)

By Schwartz inequality, we obtain for t ≥ s ≥ 0:

2
∫ t

s

∫ L

0

φt

(
b1(x)φ− (b2(x)φ)′ + (b3(x)φ)′′

)
dx dt ≤ N(T ) + c

∫ t

s

E(τ)dτ.

So

E(t) ≤ [E(s) +N(T )] + c

∫ t

s

E(τ)dτ, (3.12)

E(s) ≤ [E(t) +N(T )] + c

∫ t

s

E(τ)dτ. (3.13)

We apply the classical argument of the Gronwall’s inequality to (3.12) and (3.13),
where we note that the terms into the square brackets are independent of s in
(3.13), we thus obtain for t ≥ s ≥ 0:

E(t) ≤ [E(s) +N(T )]ec(t−s); E(s) ≤ [E(t) +N(T )]ec(t−s). (3.14)

Setting s = 0 and thus t > 0 in (3.14) yields (3.10). �

The observability inequality for the system (3.6) is covered in the following
lemma.

Lemma 3.3. Let an equilibrium ω ∈ H4(0, L) ∩ V (0, L) be given. Then for T >
0, Λ is an isomorphism from H2

0 (0, L) × L2(0, L) onto H−2(0, L) × L2(0, L). In
particular, there are constants C1 > 0 and C2 > 0 such that the inequality

C1‖(φ0, φ1)‖2H2
0×L2 ≤

∫ T

0

p(L)φ′′2(L, t)dt ≤ C2‖(φ0, φ1)‖2H2
0×L2 (3.15)

holds true for (φ0, φ1) ∈ H2
0 (0, L)× L2(0, L).

Proof. Assume that φ0 ∈ H2
0 (0, L), φ1 ∈ L2(0, L). Then (3.6) admits a unique

solution φ ∈ C([0, T ];H2
0 (0, L)) ∩ C1([0, T ];L2(0, L)) and the energy E(t) of the

system (3.6) satisfies

E(0) = E(φ0, φ1) =
∫ L

0

(φ2
1 + p(x)φ′′0

2)dx.

That is, we are going to prove that there exist two constants C1, C2 > 0 such that:

C1E(0) ≤
∫ T

0

p(L)φ′′2(L, t)dt ≤ C2E(0). (3.16)

We always have the right side of (3.16), so we just need to prove that∫ T

0

p(L)φ′′2(L, t)dt ≥ C1E(0).

We use multiplier h(x)φ′, where h(x) is a function on the interval [0, L], and we
obtain ∫ L

0

∫ T

0

φtth(x)φ′ dx dt = (h(x)φ′, φt)|T0 +
1
2

∫ T

0

∫ L

0

h′(x)φ2
t dx dt.
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0

∫ L

0

(p(x)φ′′)′′h(x)φ′ dx dt

= −1
2

∫ T

0

p(x)h(x)φ′′2|L0 dt+
3
2

∫ T

0

∫ L

0

p(x)h′(x)φ′′2 dx dt

− 1
2

∫ T

0

∫ L

0

p′(x)h(x)φ′′2 dx dt− 1
2

∫ T

0

∫ L

0

(p(x)h′′(x))′φ′2 dx dt.∫ T

0

∫ L

0

(b1(x)φ− (b2(x)φ)′ + (b3(x)φ)′′)hφ′ dx dt

=
∫ T

0

∫ L

0

(
m1(x)φ2 +m2(x)φ′2

)
dx dt.

These equalities give

(h(x)φ′, φt)|T0 +
1
2

∫ T

0

∫ L

0

h′(x)φ2
t dx dt+

3
2

∫ T

0

∫ L

0

p(x)h′(x)φ′′2 dx dt

− 1
2

∫ T

0

∫ L

0

p′(x)h(x)φ′′2 dx dt− 1
2

∫ T

0

∫ L

0

(p(x)h′′(x))′φ′2 dx dt

− 1
2

∫ T

0

p(x)h(x)φ′′2|L0 dt

=
∫ T

0

∫ L

0

(
m1(x)φ2 +m2(x)φ′2

)
dx dt.

Next we use another multiplier h′(x)φ. Integrating by part on [0, T ]× [0, L], we
obtain

∫ L

0

∫ T

0

φtth
′(x)φdx dt = (h′(x)φ, φt)|T0 −

∫ T

0

∫ L

0

h′(x)φ2
t dx dt.∫ L

0

∫ T

0

(p(x)φ′′)′′h′(x)φdx dt

=
∫ T

0

∫ L

0

p(x)h′(x)(φ′′)2 dx dt+
1
2

∫ T

0

∫ L

0

(p(x)h′′′(x))′′φ2 dx dt

−
∫ T

0

∫ L

0

(
p(x)h′′′(x) + (p(x)h′′(x))′

)
φ′

2
dx dt ,∫ T

0

∫ L

0

(
b1(x)φ− (b2(x)φ)′ + (b3(x)φ)′′

)
h′(x)φdx dt

=
∫ T

0

∫ L

0

(
m3(x)φ2 +m4(x)φ′2

)
dx dt,

where functions mi(x)(i = 1, 2, 3, 4) are the function of b1(x), b2(x), b3(x), h(x)
and their derivatives. Considering the fact that functions mi(x)(i = 1, 2, 3, 4) are
all lower order term, we omit specific functions form here.
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By using the above equalities, we have

1
2

∫ T

0

p(x)h(x)φ′′2|L0 dt

=
(
h(x)φ′ − 1

2
h′(x)φ, φt

)∣∣∣T
0

+
∫ T

0

∫ L

0

h′(x)φ2
t dx dt

+
1
2

∫ T

0

∫ L

0

p(x)h′(x)φ′′2 dx dt

+
1
2

∫ T

0

∫ L

0

(p(x)h′(x)− p′(x)h(x))φ′′2 dx dt

−
∫ T

0

∫ L

0

[d1(x)φ2 + d2(x)φ′2] dx dt,

(3.17)

Where functions d1(x), d2(x) are the function of b1(x), b2(x), b3(x), h(x) and their
derivatives.

Let h(x) be the solution of the problem

hx =
b

p
h+ 1,

h(0) = 0.
(3.18)

where b(x) = max(px, 0), e.g.,

h(x) = e
R x
0

b
pdx

∫ x

0

e−
R s
0

b
pdτds, 0 < x < L.

Therefore, if we introduce

Y =
(
h(x)φ′ − 1

2
h′(x)φ, φt

)∣∣∣T
0
.

From (3.17), we obtain

1
2

∫ T

0

p(L)h(L)φ′′2(L, t)dt ≥
∫ T

0

E(t)dt− |Y | − C
∫ T

0

∫ L

0

(φ2 + φ′
2) dx dt. (3.19)

For |Y |, we have

|Y | ≤ ε
∫ L

0

φt
2dx|T0 + Cε

∫ L

0

(φ2 + φ′
2)dx|T0

≤ ε
(
E(T ) + E(0)

)
+ Cε

(
‖φ(T )‖2H1 + ‖φ(0)‖2H1

)
.

Using the inequality in Lemma 3.2, we compute∫ T

0

E(t)dt ≥
(∫ T

0

e−ctdt
)
E(0)− TN(T ) ≥ kT [E(0) + E(T )]− N(T )

2
, (3.20)

where kT = (
∫ T

0
e−ctdt) e

−cT

2 and E(T ) ≥ e−cTE(0)−N(T ).
Using inequalities (3.19)-(3.20) and (3.15), we obtain

1
2

∫ T

0

p(L)h(L)φ′′2(L, t)dt

≥ kT [E(0) + E(T )]− N(T )
2
− C

∫ T

0

∫ L

0

(φ2 + φ′
2) dx dt
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− ε
{(
E(T ) + E(0)

)
+ Cε

(
‖φ(T )‖2H1 + ‖φ(0)‖2H1

)}
≥ (kT − ε)[E(0) + E(T )]− CT ‖φ‖2L∞([0,T ];H1(0,L))

≥ (kT − ε)[E(0) + e−cTE(0)−N(T )]− CT ‖φ‖2L∞([0,T ];H1(0,L)).

Choosing ε > 0 small enough, such that kT − ε > 0, we obtain

αE(0) ≤
∫ T

0

p(L)h(L)φ′′2(L)dt+ CT ‖φ‖2L∞([0,T ];H1(0,L)), (3.21)

where α = 2(kT − ε)(1 + e−CT ).
By using a compactness and uniqueness argument similar to Lagnese [11], we

can easily prove that there exist constant C > 0,such that

‖φ‖2L∞(0,T ;H1(0,L)) ≤ C
∫ T

0

φ′′
2(L, t)dt.

So the proof is complete. �

Therefore, Λ defines an isomorphism from H2
0 (0, L)×L2(0, L) onto H−2(0, L)×

L2(0, L). For ψ0 ∈ L2(0, L), ψ1 ∈ H−2(0, L) given , we solve

Λ(φ0, φ1) = (ψ1,−ψ0).

Then we define φ as the corresponding solution of (3.6) and we take

u(t) = φ′′(L, t) ∈ L2(0, T ),

which is the control driving the system to rest at time t = T .
Let us now introduce a new norm

‖(φ0, φ1)‖2new =
∫ T

0

p(L)φ′′2(L, t)dt.

It follows from (3.15) that for T > 0, ‖(φ0, φ1)‖new is a norm which is equivalent
to the H2

0 (0, L)× L2(0, L) norm.
However, the above control strategy only gives distributed control functions be-

cause solutions (η, ηt) of the controlled system (3.7) are only in L2×H−2 no matter
(φ0, φ1) are smooth or not.

3.2. Smooth control. Smooth control has been considered by Lasiecka and Trig-
giani [13, 14], Tataru [23]. Here we shall modify the above control strategy to obtain
smooth control to meet the need of Theorem 3.1 by induction on the order of the
space.

Firstly, we define operator B by

Bu = −(p(x)u′′)′′ + b1(x)u− (b2(x)u)′ + (b3(x)u)′′, ∀u ∈ H4(0, L). (3.22)

Let T > 0 be given. We assume that z ∈ C∞(−∞,∞) is such that 0 ≤ z(t) ≤ 1
with

z(t) =

{
0, t ≥ T
1, t ≤ 0

(3.23)
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For (φ0, φ1) ∈ (H4(0, L) ∩ H2
0 (0, L)) × H2

0 (0, L) given, we solve (3.6) and then,
instead of (3.7), we solve the problem

ηtt + (p(x)η′′)′′ = b1η + b2η
′ + b3η

′′, x ∈ (0, L), t ∈ (0, T ),

η(x, T ) = 0, ηt(x, T ) = 0, x ∈ (0, L),

η(0, t) = 0, η′(0, t) = 0, t ∈ (0, T ),

η(L, t) = 0, η′(L, t) = z(t)φ′′(L, t), t ∈ (0, T ),

(3.24)

Let Λ be given by (3.8) where η is the solution of (3.24) this time. It is easy to
check that, for any (φ0, φ1), (ϕ0, ϕ1) ∈ H2

0 (0, L)× L2(0, L),

〈Λ(φ0, φ1), (ϕ0, ϕ1)〉L2×L2 =
∫ T

0

z(t)p(L)φ′′(L, t)ϕ′′(L, t)dt, (3.25)

where φ and ϕ are solutions of (3.6) with initial data (φ0, φ1) and (ϕ0, ϕ1), respec-
tively.

We shall show that problem (3.24) provides smooth controls to Theorem 3.1 by
the following lemma.

Lemma 3.4. Let Λ be given by (3.8) where η is the solution of (3.24). Then there
are constants c1 > 0 and c2 > 0 such that

c1‖(φ0, φ1)‖H4(0,L)×H2(0,L) ≤ ‖Λ(φ0, φ1)‖L2(0,L)×H2(0,L)

≤ c2‖(φ0, φ1)‖H4(0,L)×H2(0,L),
(3.26)

for all (φ0, φ1) ∈ (H4(0, L) ∩H2
0 (0, L))×H2

0 (0, L),

Proof. From the previous argument,

c1‖(φ0, φ1)‖H2(0,L)×L2(0,L) ≤ ‖Λ(φ0, φ1)‖H−2(0,L)×L2(0,L)

≤ c2‖(φ0, φ1)‖H2(0,L)×L2(0,L)

(3.27)

holds. Let (φ0, φ1) ∈ (H4(0, L) ∩H2
0 (0, L))×H2

0 (0, L) be given, Suppose that φ is
the solution of problem (3.6) corresponding to the initial data (φ0, φ1).

For (ϕ0, ϕ1) ∈ (H6(0, L)∩H2
0 (0, L))× (H4(0, L)∩H2

0 (0, L)), let ϕ is the solution
of (3.6) corresponding to the initial data (ϕ0, ϕ1). Then ϕt and ϕtt are the solutions
of (3.6) corresponding to the initial data (ϕ1, Bϕ0) and (Bϕ0, Bϕ1), respectively.

Using the initial data (φ0, φ1) and (Bϕ0, Bϕ1) in the formula (3.25), we obtain

(η(0), Bϕ1)− (ηt(0), Bϕ0) = −
∫ T

0

z(t)p(L)φ′′(L, t)ϕ′′tt(L, t)dt. (3.28)

On the one hand, integrating by parts with respect to the variable t on [0, T ], we
obtain

−
∫ T

0

z(t)p(L)φ′′(L, t)ϕ′′tt(L, t)dt

= p(L)φ′′0(L)ϕ′′1(L) + p(L)
∫ T

0

zt(t)φ′′(L, t)ϕ′′t (L, t)dt

+ p(L)
∫ T

0

z(t)φ′′t (L, t)ϕ′′t (L, t)dt

On the other hand, using (3.22),

(η(0), Bϕ1)
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= −
∫ L

0

η(0)(p(x)ϕ′′1)′′dx+
∫ L

0

η(0)
(
b1(x)ϕ1 − (b2(x)ϕ1)′ + (b3(x)ϕ1)′′

)
dx

= p(L)φ′′0(L)ϕ′′1(L)−
∫ L

0

(p(x)η′′(0))′′ϕ1dx

+
∫ L

0

(
b1(x)η(0) + b2(x)η′(0) + b3(x)η′′(0)

)
ϕ1dx

then

(η(0), Bϕ1)− (ηt(0), Bϕ0)

= p(L)φ′′0(L)ϕ′′1(L)−
∫ L

0

(p(x)η′′(0))′′ϕ1dx

+
∫ L

0

(
b1(x)η(0) + b2(x)η′(0) + b3(x)η′′(0)

)
ϕ1dx− (ηt(0), Bϕ0).

So we have the identity

I(φ, ϕ) = (B∗η(0), ϕ1)− (ηt(0), Bϕ0), (3.29)

where

I(φ, ϕ) = p(L)
∫ T

0

zt(t)φ′′(L, t)ϕ′′t (L, t)dt+ p(L)
∫ T

0

z(t)φ′′t (L, t)ϕ′′t (L, t)dt,

B∗η(0) = −(p(x)η′′(0))′′ + b1(x)η(0) + b2(x)η′(0) + b3(x)η′′(0).

Since (H6(0, L) ∩ H2
0 (0, L)) × (H4(0, L) ∩ H2

0 (0, L)) is dense in (H4(0, L) ∩
H2

0 (0, L)) × H2
0 (0, L), the identity (3.29) is true for all (ϕ0, ϕ1) ∈ (H4(0, L) ∩

H2
0 (0, L))×H2

0 (0, L). Letting ϕ0 = 0 in (3.29), we obtain

I(φ, ϕ) = (B∗η(0), ϕ1), (3.30)

for ϕ1 ∈ H2
0 (0, L) where ϕ is the solution of (3.6) for the initial data (0, ϕ1).

Moreover, by inequality (3.15), we have the estimate

I(φ, ϕ)|

= p(L)
∫ T

0

zt(t)φ′′(L, t)ϕ′′t (L, t)dt+ p(L)
∫ T

0

z(t)φ′′t (L, t)ϕ′′t (L, t)dt

≤ c
[ ∫ T

0

p(L)(φ′′(L, t))2dt+
∫ T

0

p(L)(φ′′t (L, t))2dt
]1/2

×
(∫ T

0

p(L)(ϕ′′t (L, t))2dt
)1/2

≤ c
(
E(φ0, φ1) + E(φ1, Bφ0)

)1/2(∫ T

0

p(L)(ϕ′′t (L, t))2dt
)1/2

≤ c
(
‖φ0‖24 + ‖φ1‖22

)1/2

‖ϕ1‖2.

(3.31)

In terms of (3.30)-(3.31), we obtain

‖B∗η(0)‖−2 ≤ sup
‖ϕ1‖2=1

(
B∗η(0), ϕ1

)
≤ c(‖φ0‖24 + ‖φ1‖22)1/2. (3.32)
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Now using the ellipticity of the operator B∗ and from (3.32), we have

‖η(0)‖2 ≤ c
(
‖η(0)‖0 + ‖B∗η(0)‖−2

)
≤ c
(
‖η(0)‖0 + (‖φ0‖24 + ‖φ1‖22)1/2

)
≤ c(‖φ0‖24 + ‖φ1‖22)1/2.

where ‖η(0)‖0 ≤ c(‖φ0‖22 + ‖φ1‖20)1/2 is used. A similar argument yields

‖ηt(0)‖0 ≤ c(‖φ0‖24 + ‖φ1‖22)1/2, (3.33)

after we let ϕ0 ∈ (H4(0, L) ∩H2
0 (0, L)), ϕ1 = 0 in (3.29).

Next, let us prove the left hand side of inequality (3.26). We set φ0 = ϕ0 and
φ1 = ϕ1 in (3.29),

I(φ, φ) ≥
∫ T1

0

p(L)(φ′′t (L, t))2dt− cε
∫ T

0

p(L)(φ′′(L, t))2dt

− ε
∫ T

0

p(L)(φ′′t (L, t))2]dt

≥
∫ T1

0

p(L)(φ′′t (L, t))2dt− cεE(φ0, φ1)− εE(φ1, Bφ0)

≥ C1E(φ1, Bφ0)− cε(‖φ0‖22 + ‖φ1‖20).

(3.34)

Since

(B∗η(0), φ1)

= −
∫ L

0

p(x)η′′(0)φ′′1dx+
∫ L

0

(
b1(x)η(0) + b2(x)η′(0) + b3(x)η′′(0)

)
φ1dx,

we have
(B∗η(0), φ1)− (ηt(0), Bφ0)

≤ c(‖η(0)‖2‖φ1‖2 + ‖ηt(0)‖0‖Bφ0‖0)

≤ c
(
‖η(0)‖22 + ‖ηt(0)‖20

)1/2(
‖φ1‖22 + ‖Bφ0‖20

)1/2

.

(3.35)

Using (3.34)-(3.35) and the induction assumption

c(‖φ0‖22 + ‖φ1‖20) ≤ ‖η(0)‖20 + ‖ηt(0)‖2−2,

it follows that

‖φ0‖24 + ‖φ1‖22 ≤ cE(φ1, Bφ0) + c
(
‖φ0‖22 + ‖φ1‖20

)
≤ c
(
‖η(0)‖22 + ‖ηt(0)‖20

)
+ c
(
‖φ0‖22 + ‖φ1‖20

)
≤ c
(
‖η(0)‖22 + ‖ηt(0)‖20

)
.

The proof is complete. �

A similar argument can used for establishing the inequality

c1‖(φ0, φ1)‖H6(0,L)×H4(0,L) ≤ ‖Λ(φ0, φ1)‖H2(0,L)×H4(0,L)

≤ c2‖(φ0, φ1)‖H6(0,L)×H4(0,L).
(3.36)

for all (φ0, φ1) ∈ (H6(0, L) ∩H2
0 (0, L))× (H4(0, L) ∩H2

0 (0, L)).
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Proof of Theorem 3.1. It follows that the operator

Λ : (H6(0, L)∩H2
0 (0, L))× (H4(0, L)∩H2

0 (0, L))→ V (0, L)× (H4(0, L) ∩ V (0, L))

is surjective. Let (ψ0, ψ1) ∈ (H4(0, L) ∩ V (0, L)) × V (0, L) be given, then there is
(φ0, φ1) ∈ (H6(0, L) ∩H2

0 (0, L))× (H4(0, L) ∩H2
0 (0, L)) such that the control

u(t) = z(t)φ′′(L, t)

which drives system (3.4) to rest at the time T , where φ is the solution of (3.6)
with the initial data (φ0, φ1).

Since φt, φtt is the solution of (3.6) with the initial data (φ1, Bφ0) and (Bφ0, Bφ1)
respectively, we conclude that φ′′t (L, t),φ′′tt(L, t) ∈ L2(0, T ) from Lemma 3.3. Then
u ∈ H2(0, T ). �

If we change the boundary control condition into φ(0, t) = 0, φ′′(0, t) = 0,
φ(L, t) = 0, φ′′(L, t) = u(t) or others, the methods in this article still be applicable.
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Holmgren’s theorem. Communication in Partial Differential Equations, 20(1995),855-884.

[26] P. F. Yao; Boundary controllability for the quasilinear wave equation, Applied Mathematics
& Optimization, 61 (2010), 191-233.

[27] P. F. Yao, G. Weiss; Global smooth solutions for a nonlinear beam with boundary input and

output, SIAM Journal on Control and Optimization, 45(6) (2007), 1931-1964.

Xiao-Min Cao
School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

E-mail address: caoxm@sxu.edu.cn


	1. Introduction and statement of main results
	2. Existence of long time solutions near equilibria
	3. Locally exact controllability
	3.1. Distributed control
	3.2. Smooth control
	Acknowledgements

	References

