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BOUNDARY CONTROLLABILITY FOR A NONLINEAR
BEAM EQUATION

XIAO-MIN CAO

ABSTRACT. This article concerns a nonlinear system modeling the bending
vibrations of a nonlinear beam of length L > 0. First, we derive the existence
of long time solutions near an equilibrium. Then we prove that the nonlinear
beam is locally exact controllable around the equilibrium in H4(07 L) and
with control functions in H2(0,T). The approach we used are open mapping
theorem, local controllability established by linearization, and the induction.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We consider a controllability problem for a system modeling the bending vibra-
tions of a nonlinear beam of length L > 0. Let ¢ denote the deflection of the beam,
the left end of the beam is fixed, and an appropriate shear force u exerted on the
right end of the beam, then the equations of motion describing beam bending are

G + (alz, 9)¢")" = bz, 6,4, ¢"), € (0,L), t €(0,7T),
¢(,0) = ¢o(x), ¢u(2,0) =¢1(x), x€(0,L),
#(0,t) =0, ¢'(0,t)=0, te(0,7),
¢(L,t) =0, ¢'(L,t)=u(t), te(0,T),

where a(z,y), b(z,y1,y2,y3) are smooth functions on [0, L] x R and [0,L] x R?,
respectively, such that

(1.1)

a(z,y) >0, VY(z,y)€[0,L] xR (1.2)
b(x,0,0,0) =0, Vze[0,L] (1.3)

Let ¢g, ¢1, QASO, q?l be given functions and 7' > 0 be given. If there is boundary
function w on (0,7") such that the solution of satisfies ¢(T) = %o, o(T) = b1
on [0, L], we say the system is exactly controllable from (¢, ¢1) to (50, ngﬁl) at
time T by controlled moment on the right end.

Boundary exact controllability on linear beam problems has been studied for
many years, see [8, [9] [TT], 12, [15] 17, 18], and many others.

To the best of our knowledge, there is little about the boundary control of nonlin-
ear beam equation in the existing related papers. Recently, Yao and G. Weiss [27]
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consider a dynamical system with boundary input and output describing the bend-
ing vibrations of a quasi-linear beam, where the nonlinearity comes from Hooke’s
law. they show that the structure of the boundary input and output forces the
system to admit global solutions at least when the initial data and the boundary
input are small in a certain sense. And they prove that the norm of the state of the
system decays exponentially if the input becomes zero after a finite time. Cindea
and Tucsnak [3] study the exact controllability of a nonlinear plate equation by
the means of a control which acts on an internal region of the plate. For rectangu-
lar domains, they obtain that the Berger system is locally exactly controllable in
arbitrarily small time and for every open and nonempty control region.

Recently, using moment theory and Nash-Moser theorem, Beauchard [2] prove
that the linear beam equation with clamped ends is locally controllable in a H5*¢ x
H3%¢((0,1), R) neighborhood of a particular trajectory of the free system, with
e > 0 and with control functions in H}((0,T), R).

In the present work we will study boundary controllability for the nonlinear
beam equation by using some ideas of [2I] for the nonlinear system of wave
equations. First, we will derive the existence of long time solutions near an equilib-
rium. Then, the locally exact controllability of the system around the equilibrium
will be established.

Let us choose some Sobolev spaces to formulate the problems. To get a smooth
control, we assume initial data ¢g € H*(0, L), ¢ € H?(0,L) to study the control-
lability of the system around the equilibrium in H*(0, L) at time T via a boundary
control u € H%(0,T). Obviously, control function we obtained is more smooth than
the previous results [2] 9].

We say w € H*(0, L) is an equilibrium of the system if

(a(z,w)w")" = b(x,w,w w"). (1.4)

Let ¢g € H*(0,L), ¢; € H?(0,L), u € H?(0,T). We say these functions satisfy
compatibility conditions if

¢o(L) = 0,¢5(L) = u(0), 1(L) = 0, ¢y (L) = u(0).

Set
V(0,L) = {plp € H*(0, L), p(0) = p(L) = ¢'(0) = 0.} (1.5)

The next result shows that near one equilibrium, the system has solutions of
long time.

Theorem 1.1. Let w € H*(0,L) NV (0,L) be an equilibrium of (L.1]). Let T > 0
be arbitrary given. Then there is ep > 0, which depends on the time T, such that
if ¢o € H*(0,L) NV (0,L),¢1 € V(0,L) satisfy

lpo —wlla < er,|d1]l2 < er,

and v € H?(0,T) satisfies the compatibility conditions with (¢o, $1) and ||ull2 < er,
then system (L.1]) has a solution

¢ € C([0,T],H*(0, L)) nC*([0,T], H*(0, L)) N C*([0,T], L*(0, L)).

Near an equilibrium, we have the following locally exact controllability results.
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Theorem 1.2. Let w € H*(0,L) NV (0, L) be an equilibrium of (L.1). Then, for
T > 0 given, there is e > 0 such that for any (¢, ¢1) € (H*(0,L) NV (0,L)) x
V(0,L)(i = 1,2) with

6 — wlla < er, 612 < e,
we can find uw € H*(0,T) which is compatible with (¢, d1) such that the solution
of the system (1.1)) with the initial data (¢, ¢1) satisfies

O(T) =3, &(T) = ¢3.

2. EXISTENCE OF LONG TIME SOLUTIONS NEAR EQUILIBRIA

The existence of short time solutions for the nonlinear beam equation can be
proved using standard arguments such as the nonlinear semigroups theory or the
Galerkin method and fixed point arguments [T}, [, 16 20]. We only study some
energy estimates of the short time solutions to have long time solutions when initial
data are close to an equilibrium here.

We suppose that the equilibrium is the zero in this section. If an equilibrium
w € H*0,L) NV(0,L) is not zero, we can make a transform by ¢ = w + v, and
consider the problem

Yu + (az,w + )" + ")) = b(z,w + ¥, + ¥, 0" +47),
z € (0,L),te (0,T),
Y(x,0) =do —w, i(z,0)=¢1(z), x€(0,L),
¥(0,t) =0,9'(0,¢) =0, ¢€(0,7),
P(L,t) =0, o' (L,t)=u(t)—w' (L), te(0,T),

Let ¢ € C([0,T), H*(0,L)) N C*([0,T], H?(0, L)) N C?([0,T], L*(0, L)) be a solu-

tion of (1.1)) for some T > 0. Suppose that u € H?(0,T). We introduce
E(t) = Igl13 + lleell3 + lpeell,
Er(t) = u(t) + @*(t) + @*(2),
Q(t) = llgell* + 16”17 + g2l + 16" 117 + lldeel® + Nl 117
For solutions of (|1.1)) near the zero equilibrium, we have the following result.

Theorem 2.1. Let v > 0 be given and ¢ be a solution of (1.1) on the interval
[0,T] for some T > 0 such that the condition

sup_|lo(t)[la < - (2.1)
0<t<T

holds. Then there is ¢, > 0, which depends on the v but is independent of initial
data (¢o, ¢1) and boundary functions u, such that

Q(t) < ¢,Q(0) + ¢, /t [(1+&72() + £(r) + EHrE() + &(m)] . (22)

0

and
Q(t) < (1) < ¢, Q(t) + ¢, &r(0), (2.3)
fort e [0,T].
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Here we list a few basic properties of Sobolev spaces to be invoked in the sequel.
(i) Let s1 > s > 0. For any € > 0 there is ¢. > 0 such that

lell2, <ellell?, +ccllell?, Ve € H(0,L).

(ii) If m > &, then for each k = 0,1,---, we have H™*(0,L) C C*([0, L]) with
continuous inclusion.
(iii) If r := min{sy, $2, 51 + s2 — 1} > 0, then there is a constant ¢ > 0 such that

Ifgllr < cllfllsillglls,, VF € H*(0,L),g € H**(0, L). (2.4)

Lemma 2.2. (i) Let f(z,y) be a smooth function on [0, L] xR. Set F(z) = f(x, ¢),
for 0 <k <4, then there is ¢ = c(sup,eo 1) |#]) > 0, such that

k
1E e < e (L 1olla). (2.5)

§=0
(ii) Let f(x,y1,92,y3) be a smooth function on [0,L] x R3. Set
G(z) = f(z,¢,¢',¢"),
then there is ¢ = C(SUPxe[o,L] |91, sup,ep0,2) 19|, SUPsefo, 1) |¢"]) > 0, such that
1G] < e (2.6)

Proof. (i) Inequality is clearly true for k = 0. By using (2.4) and the induction
of the order k, inequality follows.

(ii) A standard method as to the linearly elliptic problem can give inequality
([2:6)), for example see Taylor [22]. O

Observing the partial differential of the function a(z, ¢) and b(z, ¢, @', ¢"), using
the formula (2.4) and Lemma [2.2] we have the following lemma.

Lemma 2.3. Let v > 0 be given and ¢ be a solution of (L.1)) on the interval [0,T]
for some T > 0 such that the condition (2.1) holds true. Then there is ¢, > 0,
which depends on the vy, such that

lacllz < e, €2(1),  latlly < e (E2() + £(1)),
laf || < ey (E2() + E@) +E2(1)),  Nlbell < e, E2(0).

Lemma 2.4. Let v > 0 be given and ¢ be a solution of (L.1)) on the interval [0,T]
for some T > 0 such that the condition (2.1]) holds true. Set

Ti(t) = ol + 16”117, Yot) = 9417 + 16™1%  Ts(t) = lguell® + [0} |-
Then there is c, > 0, which depends on the vy, such that
t
T1(t) < ey Y1(0) + Cv/ [(1+ 5%(7))5(7') + &p(7)]dr, (2.7)
0
To(t) + Ys(t)
t -
< o (12(0) + 1a(0)) + ¢, [ [(14€V2(r) + £(r) + £37)) () + Ex(n)]ar
" (2.8)
for0<t<T.
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Proof. Let
Py(t) = [|ge]l? + (ag”, ¢").
‘We obtain
Pi(t) = 2(¢, bue) + 2(ad”, ¢)) + (a9, ¢")
2(¢t,b _ (a¢//)//) _|_ 2(a¢//’¢g) _|_ (at¢//,¢//)
2

(61,b) + 20(t)(ag") (L, 1) + (a8, ¢").

It follows that
Ti(t) < ey Pr(t)

t

t
SCVP1(O)+C’)’/O (llelflolf + ||at||2H¢”||2)dt+cw/0 (i (1) + ¢ (L, 1)) dt

< e, T1(0) + ¢y /Ot [(1 +EF()E(T) + EF(T)] dr.

To obtain inequality ([2.8)), first we differentiate equation (|1.1)) with respect to z,
then we have

Py + (agd”)" =V, (2.9)
Let
Py(t) = [[9}]I* + (ag™, ¢""). (2.10)
We obtain
Py(t) = 2(¢1, 01) + 2(ad”™, ¢;") + (aeg”™ ¢")
= 2(¢}, b — (ag")") + 2(ad”, ") + (ard™, ¢")
= 2(¢}, ') — 2a(t)b(L, t) + 267 (L, 1)(ad™ ) (L, ) — 26 (0,)(ad™)(0, 1)
=26, a9") + 26,209 + a"8) + (@, o).
So
To(t) < ey Po(t)

< ¢, Py(0) + ¢, /Ot [(1 +EV2(r)E(T) + uz(T)] dr

t t
te / (672(0,1) + 6> (L, 1)) dt + ¢ - / (6"2(0,8) + ¢ (L, 1)) dt.
0

0

Furthermore, we differentiate with respect to t, then we have 210
Gere + (ady)” + (ar9")" = by. (2.12)
Let
Py(t) = || ¢uell” + (ad, ¢7).- (2.13)

We deduce that
Py(t) = 2(bue, o) + 2(ag), 1) + (ardy, 67)
= 2(de, b — (@:8”)"” — (agy)") + 2(ady, ¢3) + (a9, 47
= 2(Gut be) — 2(re 1:0™) = 4(ee, a;0") — 2(dur, 0 @)
+ 2a(t)(ady ) (L, t) + (acdy, @)
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So
Ts(t) < ¢y Ps(t)

<c,YP3(O)+c,y/ [(1+EY2(r) + E(7) + E3(n)E(7)] dr (2.14)
+g/ V(L tdt—i—cm/o @2 (t)dt.
From and , we conclude that
To(t) + Ts(t) SCW(P2(O)+P3(0))+5/O (6/2(0,8) + ¢/* (L, 1)) dt
+c7/0 [(1+EY2(r) + £(r) + E3()E(r) + @2()]dr  (215)
teye / t (¢"7(0,8) + ¢""* (L, t) + @2 (t)) dt.
0

Next, we estimate the terms f(f 72(0,)dt and fot "2 (L, t)dt.
Differentiating twice (1.1)) with respect to z, multiplying the two sides of the
equation by (L — z)¢"" and integrating from 0 to L by parts, we obtain

i+ (ad") W = b, (2.16)

L
Ui /11 a /! /11 /! U
/0 qﬁtt(fo)qS dx:a(tv(L )¢ )JF L¢2 / ¢2 xz,

L
PR ARG

= (", (L — x)¢") — b'(0,t)Le" (0, 1) + iiy (t) L™ (0,1) — %L(a¢(4)2)(0, t)

L L
_ %/ (a’(L _ 93) . a)¢(4)2dx Jr/ (3a/¢(4) + 3a//¢/// + a///¢//)(L - x)¢(4)d:z:
0 0

L
_ b(L7 t)(bm(L, t) 4 b(o7 t)q’)/”(O, t) =+ / (a¢//)//¢(4)d$.
0
Whence

7L¢“2( t)

g " ///
at( it (

1 [F 2
—b'(0,6)L¢™(0,1) — §L<a¢<4> )(0,8) = 5 /0 (@'(L—2)—a)p™dx  (2.17)

/ ¢//2d +( b// (L _z)¢///)

L
+ / (30/@5(4) + 3a//¢/// + a”’d)”)(L _ $)¢(4)dl‘
0

L
— b(L, t)qﬁ'”(L, t) + b(O, t)(b’”(O, t) + / (a¢”)/’¢(4)dx.
0
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It follows that

/ #72(0,t)dt < ¢, (rg( )+ T5(0) + Ta(t) + Tg(t))
(2.18)

te, /Ot [(1 +EV2(r) + E(r) + £3 (T))S(T)} dr.

Similarly, with respect to the term fo v 2 (L, t)dt, multiplying the two sides of
(2:16) by 2¢" and integrating from 0 to L by parts, we obtain

/ g = (gl w") + LoD / o dz,  (219)

and
L
/ (b// _ (a¢")(4))x¢”'dx
0

= (b",2¢"") — b (L, t)Le" (L, t) + ii(t)Le" (L, t) + %L(a¢(4)2)(L, t)

) (2.20)

L L
_ 5/ (a/x + a)¢(4)2d.’£ +/ (3a/¢(4) + 3a//¢/// + a”’¢")x¢(4)dw
0 0

L
4 B(L, 0" (L, 1) — b(0, 80" (0, ) — /0 (a")" 6D dz

Using (2.19) and ( we have
7L¢”2< )

a( 1 /I/ / ¢//2d + b/l xd)//,) _ (L, t)Ld)/l/(L’ t)

L
HOLO (L0 + 5LV - 5 [ @erad®a 2
0
L
+ / (3a/¢(4) + 3a//¢/// + a”’¢”)x¢(4)d:c
0

L
UL (L) = H0.00"(04) = [ (@) 6 s
We deduce the inequality
/ oV (L, t)dt < cV(Tz( )+ Y3(0) + To(t) + Tg(t))
\ (2.22)
c 12(r T 3(r 7) + @2 T.
o [ [(1+ 820+ 80 + et ) +i0)]a

Finally, Substituting inequality (2.18]) and (2.22)) in , choosing € > 0 small
enough such that the term ec,[Y2(t) + Y3(t)] can be moved to the left hand side

of the inequality, then (2.8]) is obtained. O

Proof of Theorem[2.1] Lemma 2.4 gives inequality (2.2). To prove inequality (2.3),
we notice that ap®) = b — ¢y — 2a/¢™ — a”’¢”, then there is ¢, > 0, such that

[$11 < ey (ag™®, 6)
— C,Y<b — by — Qa/¢/// —q" //’ ¢(4))
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< ey (1817 + lleell® + 167117 + 116" 117) + ell (1.
Choosing ¢ sufficiently small, then there is ¢, > 0, such that

6 11% < ey (D12 + e + 16117 + 19"11) < e, Q(1).
From the definition of Q(¢) and £(t) and using the Poincaré inequality, inequality

(2-3) holds. 0

Using the standard method as for the global solution of partial differential equa-
tion, from Theorem we have the following proof.

Proof of Theorem[1.1. Clearly, it will suffice to prove Theorem for the zero
equilibrium w = 0.
Let T > 0 be arbitrary given. We take v = 1. Let

ca=cy>1 (2.23)

be fixed such that the corresponding inequalities and of Theorem
hold for ¢ in the existence interval of the solution ¢.

We shall prove that, if the initial data (¢g,¢1) and boundary value u are com-
patible and satisfy

I 1 2
t t)dt < ——=e tah 2.24
£0)+ max En(0)+ [ &)t < o T (2.24)
then the solution of problem (1.1)) exists at least on the interval [0, 77].

We set

1 1
=— < . 2.25
401 < 2 ( )

Since £(0) < 7, the solution of short time must satisfy

Ui

Et)y<n< % (2.26)

for some interval [0,6]. Let dg be the largest number such that is true for
t €10,00). We shall prove 6y > T} by contradiction.

Suppose that 6y < T7. In this interval ¢ € [0, do], the condition (2.1)) is true. We
apply Theorem and the inequalities and , via 7. Then we
conclude that

T

E(t) <243[E(0) + omax Er(t) + ; Er(t)dt] + 4c? /Otg(t)dt, (2.27)

for t € [0,d0]. By (2.24) and (2.27)), the Gronwall inequality yields
E(6p) <n/2 <.

This is a contradiction. O

3. LOCALLY EXACT CONTROLLABILITY

Let T > 0 given. The first step of the proof for the local exact controllability
depends on the following fact: Let X and Y be Banach spaces and ® : U — Y,
where U is an open subset of X, be Frechét differentiable. If ®'(zp) : X — YV
is surjective, then there is an open neighborhood of yg = ®(z() contained in the
image ®(U).
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Given an equilibrium w € H*(0, L) NV (0, L), We invoke Theorem [I.1] to define
the map for u € H%(0,T) by setting
F(u) = (0, T),4:(, T)),
where v is the solution to
Yu + (a(z, ¥)y")" = bz, ¥, 9", ¥"), 2€(0,L),te(0,T),
P(2,0) = w(x), ¢u(2,0) =0, x€(0,L),
¥(0,t) =0, ¥'(0,t)=0, te(0,T),
(L,t) =0, Y'(L,t)=u+w' (L), te(0,T),
Let er > 0 be given by Theorem [1.1] Then
F:B(0,er) — (H4(0, L)ynV(0,L)) x V(0, L), (3.2)
where B(0,er) C H?(0,T) is the ball with the radius ez centered at 0. We note
that F(0) = (w(z),0).
We need to evaluate F’(0)(u) = DAF(Au)|x=o- It is easy to check that F'(0)(u) =
(W(,T),1:(-,T)), where ¥(x,t) is the solution of the linear system
Y+ (p(2)P")" = bi(x )w +bo(2)y + bs(2)y", @ e (0,1),t€(0,T),
P(x,0) =0, ¢ (x,0)=0, ze€(0,L),
$(0,6) =0, ¢'(0,t)=0, te(0,T),

w(Lat) =0, Qz/}l(L t) (t)a te (OvT),

and
p(x) = a(z,w),
bi(z) = by, (z,w,w’ ") = (ay(z,w)w")",
bo(z) = by, (7, w, 0, w") = 2(ay(z,w)w")’,

bs(z) = by, (2, w,w',W") — ay(z,w)w".

We now verify that F’(0) is surjective. In the language of control theory surjectivity
is just exact controllability, which for a reversible system such as is equivalent
to null controllability.

Explicitly one has to show that, for T > 0 given, given ¢y € H?*(0,L) N
V(0,L),v1 € V(0, L), one can find u € H%(0,T) such that the solution to

Vi + (p(2)y")" = bi()Y + ba(2)¢" + bs(2)¢", @€ (0,L),t € (0,T),
P(x,0) = tho(x), Yu(x 0):%( )7 z € (0,L),
$(0,1) =0, ¢'(0,t) = €(0,7),
U(L,t) =0, (L,t)= ( ), te(0,7),
satisfies ¥ (-, T) = 0 and ¢(-,T) = 0.

Theorem 3.1. Given an equilibrium w € H*(0,L) NV (0,L). Let T > 0 given.
Then for any

(3.4)

(¥%,4!) € (H*(0,L)nV(0,L)) x V(0,L),
there is a control u € H%(0,T) such that the solution
v € C([0,7], H*(0, L)) 0 C* ([0, 7], H*(0, L)) N C*([0, T, L*(0, L))
of problem satisfies (-, T) = 0 and (-, T) = 0.
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Unfortunately, our proof does not give any information on the time 7" needed
for the controlled motion.

3.1. Distributed control. As to the exact controllability of linear systems by dis-
tributed control, there is a long history and a lot of results where many approaches
are involved. Here the distributed control means that solutions (¥(t),¢:(t)) of the
controlled system are only in the space L?(0,L) x H=2(0,L) for t € [0,T].
One of the useful approaches is the multiplier method, which introduced by Ho
[6] where Lions [I5] provided a key technique of multipliers for observability esti-
mates, to control the linear system by its duality system. In the case of constant
coefficients, Lagnese [9, [11], study the controllability of linear beam by using the
multiplier method. In this subsection, we will consider the controllability of linear
beam with variable coefficients.
As noted in [9], everything is therefore going to rely on a prior inequality

T
(G0, 61) 132,12 < Cr /0 " (L,t)dt, (o, ¢1) € H3(0,L) x L*(0,L)  (3.5)
where ¢ is the solution of the system
$u + (p(2)0")" = b1(2)d — (b2(2)d)" + (bs(2)¢)", x € (0,L),t € (0,T),
d(x,0) = ¢po(x), ¢Pe(z,0) =¢1(x), € (0,L),
#(0,t) =0,¢'(0,t) =0, te(0,7),
o(L,t) =0,¢'(L,t) =0, te(0,7),
Given ¢g € H3(0, L), ¢1 € L?(0,L). We define ¢ as the solution to (3.6) and we
define n as the solution of
e + (p()n”)" = bi(x)n + ba(2)n’ + bs(x)n” =z € (0,L),t € (0,7),
n(x, T)=0, m(z,T)=0, z€(0,L),
n(0,t) =0, 7n'(0,t)=0, te€(0,7T),
n(L,t) =0, 7' (Lt)=¢"(Lt), te(0,T),
We define the operator A : HZ(0, L) x L?(0,L) — H=2(0, L) x L*(0,L) by
Mo, ¢1) = (n:(0), —n(0)) (3.8)

The solution 1 of (3.7) is a weak solution defined by transposition, in such a way
that Green’s formula makes sense. Therefore

T 2
(Ao, 61), (0, 61)) = / p(L) 8" (L, t)dt. (3.9)

Lemma 3.2. Let ¢ be a solution of (3.6). Then there exist constants c,co > 0
such that for T >t > 0:

e “"E(0) — N(T) < E(t) < [E(0) + N(T)]e*, (3.10)

(3.6)

(3.7)

where we introduced the energy

and set N(T) = cq [ ||¢||2dt.
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Proof. Multiplying equation ([3.6)) by ¢, and integrating over (s,t) x (0, L) by parts
in t on the left-hand side we obtain that for all s, t:

t L
B = E(s)+2 [ /0 00 (b1(2)6 — (ba(2)0) + (by(2)0)") dwdt.  (3.11)

By Schwartz inequality, we obtain for ¢ > s > 0:

2/: /OL b <b1(9c)¢ — (ba(z)9) + (bg(x)qb)”) dzdt < N(T) + C/st .

E(t) < [B(s) + N(T)] + / " B(r)dr, (3.12)

E(s) < [E(t) + N(T)] + ¢ / "By (3.13)

We apply the classical argument of the Gronwall’s inequality to and -,
where we note that the terms into the square brackets are 1ndependent of s in
(3.13]), we thus obtain for ¢ > s > 0:

E(t) < [E(s) + N(T)]e®*=%);  E(s) < [E(t) + N(T)]ec*=*). (3.14)
Setting s = 0 and thus ¢ > 0 in (3.14) yields (3.10)). O

The observability inequality for the system (3.6) is covered in the following
lemma.

Lemma 3.3. Let an equilibrium w € H*(0, L) NV (0, L) be given. Then for T >
0, A is an isomorphism from HZ(0,L) x L?(0,L) onto H=2(0,L) x L*(0,L). In
particular, there are constants C1 > 0 and Cy > 0 such that the inequality

T
Call (90, 61) g 12 < / p(L)$"(L, 1)t < Call (60, 61) 22,1 (3.15)
holds true for (¢o, ¢1) € H3(0,L) x L?(0,L).

Proof. Assume that ¢ € HZ(0,L),¢1 € L?(0,L). Then (3.6) admits a unique
solution ¢ € C([0,T); H2(0,L)) N C*([0,7]; L?(0, L)) and the energy E(t) of the
system ((3.6) satisfies

B0) = E(éo, 61) = / (62 + p(2) 0o

That is, we are going to prove that there exist two constants Cy,C5 > 0 such that:

CLE(0) < /0 L D)LVt < CoE0), (3.16)

We always have the right side of (3.16]), so we just need to prove that

/ " L) (L)t > CLE(0),
0

We use multiplier h(x)¢’, where h(z) is a function on the interval [0, L], and we

obtain
/OL/OT(btth(x)(b/dxdt (h(@)d', d)[T + / / )62 du dt.
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T L
/ / (p()")"h(x) da dt
0 0

/ p(z)h(z)¢"?|kdt + = // ()" dz dt
OT L

/p’() 2)¢"” dx dt_,// o)W () ¢ dz dt.
0 0

T L
/0 /O (b1(z)¢ — (b2(2)p)" + (b3(x)9)")he' du dt

T ,L
[ Gt e

These equalities give

(h(z)¢', o) |E + // 2)¢2 drdt + = // ()¢ du dt
——// (2)¢"” dz dt—f// )W (2)) ¢ dw dt

‘5/0 p(a)h(x)¢"| dt
T , ,
[ oo i) e

Next we use another multiplier h'(z)¢. Integrating by part on [0, 7] x [0, L], we

obtain
//qﬁtth Vo dz dt = (W (2)6, &) |0—/ / B (2)? da dt.

/ / (p(z)e")" N (x)¢p dx dt
/ / B (x)(¢")? dx dt + = / / z)h" ()" * da dt

h/// ( )h”(x))/)¢/ dxdt,

//
/O /0 bi(x)¢ — (b2(x)9)" + (b3(x)¢)”> W (2)é da dt
N /oT /OL (m3(5”)¢2 + m4(fﬂ)¢’2) dz dt,

where functions m;(z)(i = 1,2,3,4) are the function of by (z), ba(z), b3(z), h(z)
and their derivatives. Considering the fact that functions m;(z)(i = 1,2,3,4) are
all lower order term, we omit specific functions form here.

o= N
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By using the above equalities, we have

3| P

; x)o, ¢t / / x) 7 dx dt

¢"2 dz dt

3 f [
2 [ [ v e

T L
B / / [di (2)¢® + da(x)¢'*] da dt,
0 0

= (nw)o’ -

13

(3.17)

Where functions dj (), d2(x) are the function of by (x), ba(x), bs(z), h(z) and their

derivatives.
Let h(z) be the solution of the problem
b
hy = —h+1,
p
h(0) = 0.

where b(z) = max(p,,0), e.g.,
h(z) = elo ”dw/ e Jo3iTds, 0<ax<L.
0
Therefore, if we introduce
1 T
_ U N
Y = (h@)' = 5K (@)6,0:)]|,

From ([3.17)), we obtain

3 | oo |

For |Y|, we have

T

L L
Yi<e /0 o 2da|T + C. /0 (& + ¢)defT
< o(B@) + BO)) + C. (163 +160) 3 ).

Using the inequality in Lemma we compute
T T
/ B> ( / e~ tdt) E(0) ~ TN(T) > krlE(0) + B(T)] -
0

where kr = ([} etdt) ¢ and E(T) > e=“TE(0) — N(T).
Using inequalities (3.19)-(3.20) and (3.15]), we obtain

1

T
3| POMDE L

T L
> krlpO) + B0 - 50 - [ [ oy

N(T)

(3.18)

E(t)dt —|Y| —C/OT /OL(¢>2+¢>’2)dxdt. (3.19)

(3.20)
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—{(B@) + EO) + C- (163 + 160)]13: ) }
> (kr = )[B(0) + B(D)] — Crll9ll3~ o131 0.1
> (ky = )[B(0) + T E(0) = N(T)] = Crllgl3 = o,11,80 (0,00

Choosing € > 0 small enough, such that k7 — ¢ > 0, we obtain

)
)

T
aE(0) < / PR (L)t + Crllélm oy ony,  (3:21)

where a = 2(kr —¢)(1 + e~ ¢7).
By using a compactness and uniqueness argument similar to Lagnese [I1], we
can easily prove that there exist constant C' > 0,such that

2
1612 2211 (0.0 < c/ ¢"(L, t)dt

So the proof is complete. O

Therefore, A defines an isomorphism from HZ(0, L) x L?(0, L) onto H~2(0, L) x
L?(0,L). For vy € L?(0,L),v1 € H~2(0, L) given , we solve
A@o@l) = (¢1, —%0).
Then we define ¢ as the corresponding solution of and we take
u(t) = ¢"(L,t) € L*(0,T),

which is the control driving the system to rest at time ¢t =T
Let us now introduce a new norm

r 2
||(¢0’¢1)H121ew:/0 p(L)¢"* (L, t)dt.

It follows from that for T > 0,]|(d0, ¢1)|lnew is a norm which is equivalent
to the HZ(0,L) x L*(0, L) norm.

However, the above control strategy only gives distributed control functions be-
cause solutions (7, n;) of the controlled system are only in L% x H~2 no matter
(¢o, 1) are smooth or not.

3.2. Smooth control. Smooth control has been considered by Lasiecka and Trig-
giani [13}[14], Tataru [23]. Here we shall modify the above control strategy to obtain
smooth control to meet the need of Theorem by induction on the order of the
space.

Firstly, we define operator B by

Bu = —(p(z)u")" +bi(z)u = (ba(x)u) + (bs(w)u)”, Vue H*0,L).  (3.22)

Let T > 0 be given. We assume that z € C°°(—00, 00) is such that 0 < z(¢) < 1

with
A(t) = {0’ t2T (3.23)
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For (¢o,¢1) € (H*(0,L) N H2(0,L)) x H3(0,L) given, we solve (3.6) and then,
instead of , we solve the problem

e+ (p(x)n")" = bin +ban’ +b3n”, @ € (0,L),t € (0,7),
n(z, T)=0, n(z,T)=0, z€(0,L),
n(0,t) =0, 7(0,t)=0, te(0,7T),
n(L,t) =0, n'(L,t)==2(t)¢"(L,t), te(0,T),

Let A be given by (3.8]) where 7 is the solution of (3.24) this time. It is easy to
check that, for any (¢o, ¢1), (w0, v1) € Hg(0, L) x L*(0, L),

(3.24)

(Ao, d1), (0, 01)) L2 x L2 =/O 2(t)p(L)¢" (L, )" (L, t)dt, (3.25)

where ¢ and ¢ are solutions of (3.6 with initial data (¢o, ¢1) and (o, ¢1), respec-
tively.

We shall show that problem (3.24)) provides smooth controls to Theorem by
the following lemma.

Lemma 3.4. Let A be given by (3.8) where n is the solution of (3.24). Then there

are constants ¢1 > 0 and co > 0 such that

c1ll(@o, 1)l a2 0,0y x m20,) < 1A (D0, D1)l22(0,2)x H2 (0, 1)

< col[(¢0, d1) || H40,0)x H2(0,1) (3.26)
for all (¢o, ¢1) € (H*(0, L) N HZ(0, L)) x HZ(0, L),
Proof. From the previous argument,
c1l[(do, @1) | 2(0,0)x 2 0,2) < |1A(Po, d1) [l H-2(0,L)xL2(0,1) (3.27)

< cal[(do, d1)llH2(0,0)x L2 (0, 1)

holds. Let (¢g,¢1) € (H*(0, L) N HZ(0, L)) x H2(0,L) be given, Suppose that ¢ is
the solution of problem corresponding to the initial data (¢q, ¢1).

For (o, 1) € (H%(0,L)NHZ(0,L))x (H*(0,L)NHZ(0,L)), let ¢ is the solution
of (3.6) corresponding to the initial data (g, ¢1). Then ¢; and ¢y are the solutions
of corresponding to the initial data (1, Byg) and (Bpg, Bp1), respectively.
Using the initial data (¢o, ¢1) and (Byg, Be1) in the formula , we obtain

T
(1(0), Be1) = (m(0), Beo) = —/0 2(t)p(L)¢" (L, )iy (L, t)dt. (3.28)

On the one hand, integrating by parts with respect to the variable ¢ on [0, 7], we
obtain

T
- / (L) (L, )l (L t)dt
T
= p(L)#(L)PY (L) + pl(L) / 2(£)6" (L)l (L 1)t
T
(L) / ()6 (L, ) (L, 1)t
0

On the other hand, using (3.22)),
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L L
—— [ @@y e+ [ n0)(b@hen - bala)e) + (ala)en))da
0 0
L
—pLHDAD) - [ o) O) prde
0

L
+ [ ()00 + baa © + e’ 0))rdo
then
(77(0)7 B<Pl) - (7715(0)7 BSDO)

L
— p(L)S(L)P (L) - / (p()n"(0))"prde

L
+ [ (s1(0(0) + ba(a)'©) + b (0))rd — (m(0). B,
0
So we have the identity

I(¢, ) = (B™n(0), p1) — (1:(0), Byo), (3.29)
where
T T
I(¢,¢) = p(L) /0 2(t)¢" (L, t)py (L, t)dt + p(L) /0 2(t) ¢y (L, t)} (L, t)dt,
0).

B*n(0) = —(p(x)n"(0))" + b1 (2)1(0) + bz (x)n’ (0) + ba(x)n"(

Since (HS(0,L) N H2(0,L)) x (H*(0,L) N H2(0,L)) is dense in (H*(0,L) N
2(0,L)) x HZ(0,L), the identity (3.29) is true for all (po,¢1) € (H*(0,L) N

H
HE(0,L)) x H3(0,L). Letting ¢ = 0 in (3.29), we obtain

1(¢,¢) = (B™1(0), ¢1), (3.30)

for 1 € H3(0, L) where ¢ is the solution of (3.6]) for the initial data (0, 7).
Moreover, by inequality (3.15]), we have the estimate

1(¢, )]
T T
=p(L)/O Zt(t)qﬁ”(L’t)%'(L,t)dt+p(L)/O 2(t)¢1 (L, )t (L, t)dt

= C[/OTP(L)(¢/I(L,t))2dt + /OTP(L)(fi)Q/(L,t))zdt} 1/2
x (/OTP(L)(@Q’(L,t))%lt)l/2 (3.31)

1/2

< (B o0 + BlorBew) ([ L)

9 9 1/2
< c(ligol; + ll9113) " lipnle-
In terms of (3.30)-(3.31)), we obtain

1B 00) 2 < s (Bn(0),01) < elldolld + 6])7> (3:32)

lp1ll2=1
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Now using the ellipticity of the operator B* and from ([3.32)), we have
In©)ll> < e(lIn(©)lo + 1B*n(0)]|—2)

< c(lInlo + (g3 + ll6113)/2)
< c(llgolF + llo:[3)"*.
where [[7(0)]lo < c(||¢ol|2 + ||¢1]|2)'/? is used. A similar argument yields
76 (0)llo < e(llgollF + [l #al13)"2, (3.33)
after we let o € (H*(0, L) N H3(0,L)), 1 = 0 in (3.29).
Next, let us prove the left hand side of inequality (3.26]). We set ¢9 = o and
(bl = ¥1 in "
T T
16.0)2 [ pOIHE0Pd—c. [ L)L) de
0 0

e /0 p(L)(&1(L,1))?]dt (3.34)

T
> / P(L)(@(L,1)2dt — ¢ B (b0, é1) — eE(é, Bdo)

> C1E(¢1, Bdo) — ce([l9oll3 + ll113)-

L L
—— [ v @etdo+ [ (bi@hn(0) + ba(o) (0) + bala)’'(0))
0 0

we have

(B*0(0),61) — (1(0), Boo)
< c(In(0)l2llén I + 17(0) oll B o) (3.35)
1/2 1/2
< c(In(O)13 + Il (©)12) (o113 + 1Booli2) -
Using ((3.34)-(3.35) and the induction assumption
(lléol3 + l6113) < IO + 17 (0) 2,
it follows that
160l13 + 6113 < cB(61, Bao) + c(llgol + l161113)

< c(In()113 + m(O)I13) + e(lool3 + o113

< (O[3 + In)[13).
The proof is complete. O

A similar argument can used for establishing the inequality

c1l|(¢o, d1) 1o 0,0y x m4(0,2) < 1A (Do, d1) | 2(0,0)x H4(0,1) (3.36)
< e2|[(¢0, 1)l o (0,0) x 14 (0,1) - '

for all (o, é1) € (HO(0, L) N HZ(0, L)) x (H*(0,L) N H3(0, L)).
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Proof of Theorem[31]. Tt follows that the operator
A+ (HO(0, L) N H{(0, L)) x (H*(0, L) VHG (0, L)) — V(0, L) x (H*(0, L) N V(0, L))

\%4
is surjective. Let (v,%1) € (H*(0,L) NV (0,L)) x V(
(¢, ¢1) € (H®(0,L) N Hg(0,L)) x (H*(0, L) N Hg (0, L

u(t) = 2(t)¢" (L, t)

which drives system to rest at the time 7', where ¢ is the solution of
with the initial data (¢g, ¢1).

Since ¢y, ¢y is the solution of with the initial data (¢1, Bog) and (Beo, Br)
respectively, we conclude that ¢} (L,t),0},(L,t) € L*(0,T) from Lemma Then
u e H%(0,7). O

0
0, L) be given, then there is
)) such that the control

If we change the boundary control condition into ¢(0,t) = 0, ¢”(0,t) = 0,
¢(L,t) =0, ¢"(L,t) = u(t) or others, the methods in this article still be applicable.
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