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EXISTENCE OF BOUNDED SOLUTIONS FOR NONLINEAR
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

TOKA DIAGANA, MAMADOU MOUSTAPHA MBAYE

Abstract. In this article we first establish a new representation formula for

bounded solutions to a class of nonlinear second-order hyperbolic partial differ-
ential equations. Next, we use of our newly-established representation formula

to establish the existence of bounded solutions to these nonlinear partial dif-

ferential equations.

1. Introduction

Aziz and Meyers [2] established the existence, uniqueness, and continuous depen-
dence on the initial data of periodic solutions to the class of nonlinear second-order
hyperbolic partial differential equations

∂2u

∂x∂t
+ a(t, x)

∂u

∂x
+ b(t, x)

∂u

∂t
+ c(t, x)u = f(t, x, u), in R× [0, T ],

u(t, 0) = θ(t), for all t ∈ R,
(1.1)

where a, b, c : R × [0, T ] → R and f : R × [0, T ] × R → R are p-periodic functions
and θ : R → R is a p-periodic continuously differentiable function. The main tool
utilized by Aziz and Meyers is a representation formula presented by Picone [8].
Some years ago, Al-Islam [1] used the same representation formula to study the
existence and uniqueness of pseudo-almost periodic solutions to (1.2) under some
appropriate conditions.

The use of Picone’s representation formula is somewhat tedious as it is expressed
in terms of three functions α, β, and γ, which are solutions to some other partial
differential equations. The first objective of this paper consists of using operator
theory tools to establish a new representation formula for bounded solutions to
(1.1) in the special case θ(t) ≡ 0; that is,

∂2u

∂x∂t
+ a(t, x)

∂u

∂x
+ b(t, x)

∂u

∂t
+ c(t, x)u = f(t, x, u), in R× [0, T ],

u(t, 0) = 0, for all t ∈ R.
(1.2)

Our second objective consists of using our newly-established representation for-
mula to study the existence of bounded (respectively, pseudo-almost automorphic)

2010 Mathematics Subject Classification. 43A60, 34B05, 34C27, 42A75, 47D06, 35L90.
Key words and phrases. Hyperbolic partial differential equations; bounded solutions;

almost automorphic; pseudo-almost automorphic.
c©2015 Texas State University - San Marcos.

Submitted July 4, 2015. Published September 21, 2015.

1



2 T. DIAGANA, M. M. MBAYE EJDE-2015/241

solutions to (1.2) when the coefficients a, b, c, ax : R × [0, T ] → R are bounded
(respectively, almost automorphic) and the forcing term f : R × [0, T ] × R → R is
bounded (respectively, pseudo-almost automorphic in t ∈ R uniformly with respect
to the two other variables).

One should point out that other slightly different versions of (1.2) have been con-
sidered in the literature. In particular, Poorkarimi and Wiener [9] studied bounded
and almost periodic solutions to a slightly modified version of (1.2), which in fact
represents a mathematical model for the dynamics of gas absorption. However,
the study of pseudo-almost automorphic solutions to (1.2) is an untreated original
question, which constitutes the main motivation of this article.

The study of periodic, almost periodic, almost automorphic, pseudo-almost pe-
riodic, weighted pseudo-almost periodic, and pseudo-almost automorphic solutions
to differential differential equations constitutes one of the most relevant topics in
qualitative theory of differential equations mainly due to their applications. Some
contributions on pseudo-almost automorphic solutions to differential and partial
differential equations have recently been made in [3, 4, 6, 7, 10, 11]. Here we study
the existence of bounded (respectively, pseudo-almost automorphic) solutions to
(1.2) under some appropriate assumptions. One should point out that the case
θ 6≡ 0 makes the operators involved in our study nonlinear. Such a case will be left
for future investigations.

The article is organized as follows: Section 2 is devoted to preliminaries and
notations from operator theory as well as from the concept of pseudo-almost auto-
morphy. In Section 3, we establish a representation formula. Section 4 is devoted
to the main result. In Section 5, we give an example to illustrate our main result.

2. Preliminaries

Notation. Let (X, ‖ · ‖) and (Y, ‖ · ‖Y) be Banach spaces. Let BC(R,X) (re-
spectively, BC(R × Y,X)) denote the collection of all X-valued bounded contin-
uous functions (respectively, the class of jointly bounded continuous functions
F : R × Y → X). The space BC(R,X) equipped with its natural norm, that
is, the sup norm defined by

‖u‖∞ = sup
t∈R
‖u(t)‖,

is a Banach space. Furthermore, C(R,Y) (respectively, C(R × Y,X)) denotes the
class of continuous functions from R into Y (respectively, the class of jointly con-
tinuous functions F : R× Y→ X).

If A is a linear operator upon X, then the notations D(A) and ρ(A) stand
respectively for the domain and the resolvent of A. The space B(X,Y) denotes the
collection of all bounded linear operators from X into Y equipped with its natural
uniform operator topology ‖ · ‖. We also set B(Y) = (Y,Y) whose corresponding
norm will be denoted ‖ · ‖.

Pseudo-Almost Automorphic Functions.

Definition 2.1. A function f ∈ C(R,X) is said to be almost automorphic if for
every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N such
that

g(t) := lim
n→∞

f(t+ sn)
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is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.

If the convergence above is uniform in t ∈ R, then f is almost periodic. Denote
by AA(X) the collection of such almost automorphic functions. Note that AA(X)
equipped with the sup-norm ‖ · ‖∞ is a Banach space.

Definition 2.2. A jointly continuous function F : R×Y→ X is said to be almost
automorphic in t ∈ R if t → F (t, x) is almost automorphic for all u ∈ K (K ⊂
Y being any bounded subset). Equivalently, for every sequence of real numbers
(s′n)n∈N, there exists a subsequence (sn)n∈N such that

H(t, u) := lim
n→∞

F (t+ sn, u)

is well defined in t ∈ R and for each u ∈ K, and

lim
n→∞

H(t− sn, u) = F (t, u)

for all t ∈ R and u ∈ K. The collection of such functions will be denoted by
AA(Y,X).

Define

PAP0(R,X) :=
{
f ∈ BC(R,X) : lim

T→∞

1
2T

∫ T

−T
‖f(s)‖ds = 0

}
.

Similarly, PAP0(Y,X) will denote the collection of all bounded continuous functions
F : R× Y→ X such that

lim
T→∞

1
2T

∫ T

−T
‖F (s, x)‖ds = 0

uniformly in x ∈ K, where K ⊂ Y is any bounded subset.

Definition 2.3 ([6, 10]). A function f ∈ BC(R,X) is called pseudo-almost auto-
morphic if it can be expressed as f = g + φ, where g ∈ AA(X) and φ ∈ PAP0(X).
The collection of such functions will be denoted by PAA(X).

The functions g and φ appearing in Definition 2.3 are respectively called the
almost automorphic and the ergodic perturbation components of f .

Definition 2.4. A bounded continuous function F : R × Y → X is said to be
pseudo-almost automorphic whenever it can be expressed as F = G + Φ, where
G ∈ AA(Y,X) and Φ ∈ PAP0(Y,X). The collection of such functions will be
denoted by PAA(Y,X).

Theorem 2.5 ([10]). The space PAA(X) equipped with the supremum norm ‖ · ‖∞
is a Banach space.

Theorem 2.6. Suppose F : R × Y → X belongs to PAA(Y,X); F = G + H, with
u → G(t, u) being uniformly continuous on any bounded subset K of Y uniformly
in t ∈ R. Furthermore, we suppose that there exists L > 0 such that

‖F (t, u)− F (t, v)‖ ≤ L‖u− v‖Y
for all u, v ∈ Y and t ∈ R. Then the function defined by h(t) = F (t, ϕ(t)) belongs
to PAA(X) provided ϕ ∈ PAA(Y).
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Theorem 2.7 ([10]). If F : R× Y→ X belongs to PAA(Y,X) and if u→ F (t, u)
is uniformly continuous on any bounded subset K of Y for each t ∈ R, then the
function defined by h(t) = F (t, ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y).

For more on pseudo-almost automorphic functions and related issues, we refer
the reader to the book by Diagana [4].

3. Representation formula for bounded solutions of (1.2)

Let CT = C[0, T ] be the Banach space of all continuous functions from [0, T ] to
R equipped with the sup norm defined by

‖ϕ‖T := sup
x∈[0,T ]

|ϕ(x)|

for all ϕ ∈ CT .
To study (1.2) our first task consists of using operator theory tools to establish

a new representation formula. For that, if q : [0, T ] → R is a measurable function,
we consider the linear operators A and B defined on CT by

D(A) =
{
ϕ ∈ CT : ϕx =

dϕ

dx
∈ CT and ϕ(0) = 0

}
, Aϕ =

dϕ

dx
, for all ϕ ∈ D(A),

D(Bq) =
{
ϕ ∈ CT : qϕ ∈ CT

}
, Bqϕ = qϕ.

Obviously, if q ∈ CT , then D(Bq) = CT . Moreover, using the above-mentioned
operators, one can easily see that (1.2) can be rewritten as follows

(A+Bb)
∂u

∂t
+ (BaA+Bc)u = f. (3.1)

To study (3.1), we consider the differential equation

L
dv

dt
+Mv = g, (3.2)

where L = A+ Bβ and M = BαA+ Bγ with α, β, γ : [0, T ]→ R being continuous
functions. Notice that L and M are respectively defined by

D(L) = D(A) ∩D(Bβ) = D(A) and Lv =
dv

dx
+ βv, for all v ∈ D(A)

and

D(M) = D(BαA) ∩D(Bγ) = D(A) and Mv = α
dv

dx
+ γv, for all v ∈ D(A).

The next lemma shows that (3.2) in fact is not a singular differential equation
(0 ∈ ρ(L)), which makes our computations less tedious.

Lemma 3.1. If the function β : [0, T ] → R is continuous, then the operator L is
invertible and its inverse L−1 is given for all w ∈ CT by

L−1w(x) :=
∫ x

0

K(x, y)w(y)dy,

where the kernel K is defined by

K(x, y) := e−
R x

y
β(r)dr

for all 0 ≤ y ≤ x ≤ T . Furthermore, if β∗ := infy∈[0,T ] β(y) > 0, then ‖L−1‖ ≤ T .
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Proof. First of all, we need to solve the differential equation

du

dy
+ βu = v (3.3)

where u ∈ D(A) and v ∈ CT . For that, multiplying both sides of (3.3) by the
function R(y) = e

R y
0 β(r)dr and integrating on [0, x], we obtain

u(x) = e−
R x
0 β(r)dr

∫ x

0

e
R y
0 β(r)drv(y)dy

=
∫ x

0

K(x, y)v(y)dy

where K(x, y) = e−
R x

y
β(r)dr for all 0 ≤ y ≤ x ≤ T . Therefore,

L−1v(x) :=
∫ x

0

K(x, y)v(y)dy

for all v ∈ CT .
Now, using the fact K(x, y) ≤ e−β∗(x−y) ≤ 1 for 0 ≤ y ≤ x ≤ T , one can easily

see that

‖L−1v(x)‖ ≤ ‖v‖T
∫ x

0

|K(x, y)|dy ≤ T‖v‖T

and hence ‖L−1‖ ≤ T . �

Let ZT (respectively YT ) be the Banach space of all bounded (jointly) continuous
functions from R × [0, T ] to R (respectively, from [0, T ] × R to R) equipped with
the sup norm defined for each u ∈ ZT (respectively, u ∈ YT ) by

‖u‖T,∞ := sup
t∈R,x∈[0,T ]

|u(t, x)|.

Moreover, we set

Kt(x, y) := e−
R x

y
b(t,r)dr,

H(t, x) =
∂a

∂x
(t, x) + a(t, x)b(t, x)− c(t, x)

for all t ∈ R and x, y ∈ [0, T ]. Let us point out that the quantity H given above is
also known as the Euler’s invariant, see for instance Ibragimov [5].

The proof of the main results of this paper requires the following assumptions:
(H1) There exists δ > 0 such that a(t, x) ≥ δ for all t ∈ R and x ∈ [0, T ].
(H2) The function f : R × [0, T ] × R → R is Lipschitz in the third variable

uniformly in the first and second variables; that is, there exists C > 0 such
that ∣∣f(t, x, u)− f(t, x, v)

∣∣ ≤ C|u− v| (3.4)

for all u, v ∈ R uniformly in t ∈ R and x ∈ [0, T ].
(H3) The function f = g + h ∈ PAA(YT ,R) (g being the almost automorphic

component while h represents the ergodic part). Moreover, g : YT →
R, (x, u) → g(t, x, u) is uniformly continuous on bounded subset of YT
uniformly in t ∈ R.

(H4) The functions (t, x) → a(t, x), ∂a∂x (t, x), b(t, x), c(t, x) are jointly continuous
and almost automorphic in t ∈ R uniformly in x ∈ [0, T ].
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Under (H4), we set

C∞ := sup
t∈R,x∈[0,T ]

|H(t, x)| = sup
t∈R,x∈[0,T ]

∣∣∣∂a
∂x

(t, x) + a(t, x)b(t, x)− c(t, x)
∣∣∣,

B∞ := sup
s∈R,x∈[0,T ]

(∫ x

0

e−
R x

y
b(s,r)drdy

)
.

We have the following representation formula for bounded solutions of (1.2).

Theorem 3.2. Assume (H1)–(H2) and the functions a, b, c : R × [0, T ] → R are
jointly bounded continuous. Then (1.2) has a unique bounded continuous solution
ũ whenever C + C∞ < δB−1

∞ . Furthermore, ũ is given by the new representation
formula

ũ(t, x) =
∫ t

−∞
e−

R t
s
a(σ,x)dσGũ(s, x)ds (3.5)

where

Gũ(t, x) =
∫ x

0

[∂a
∂y

(t, y) + a(t, y)b(t, y)− c(t, y)
]
Kt(x, y)ũ(t, y)dy

+
∫ x

0

Kt(x, y)f(t, y, ũ(t, y))dy.

Proof. Replacing α by a, β by b, and γ by c, in the previous setting and using the
fact L−1 exists (Lemma 3.1), it follows that the solvability of (1.2) is equivalent to
that of the following first-order partial differential equation

∂u

∂t
= −L−1Mu+ L−1f. (3.6)

Notice that the operator L−1M can be explicitly computed. Indeed, for each v ∈
D(A), we have

L−1Mv(x) = L−1
(
a
dv

dx
+ cv

)
(x)

=
∫ x

0

Kt(x, y)a(t, y)
dv

dy
dy +

∫ x

0

Kt(x, y)c(t, y)v(y)dy

=
[
a(t, y)Kt(x, y)v(y)

]x
0
−
∫ x

0

∂

∂y
[a(t, y)Kt(x, y)]v(y)dy

+
∫ x

0

Kt(x, y)c(t, y)v(y)dy

= a(t, x)v(x)−
∫ x

0

[∂a
∂y

(t, y) + a(t, y)b(t, y)− c(t, y)
]
Kt(x, y)v(y)dy.

Using the expression of L−1M , one can easily see that (3.6) is equivalent to

∂u

∂t
= −a(t, x)u+Gu(t, x) (3.7)

where

Gu(t, x) =
∫ x

0

[∂a
∂y

(t, y) + a(t, y)b(t, y)− c(t, y)
]
Kt(x, y)u(t, y)dy

+
∫ x

0

Kt(x, y)f(t, y, u(t, y))dy.
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Clearly, bounded solutions to (3.7) are given by

u(t, x) =
∫ t

−∞
exp

{
−
∫ t

s

a(σ, x)dσ
}
Gu(s, x)ds.

Setting

Γu(t, x) :=
∫ t

−∞
e−

R t
s
a(σ,x)dσGu(s, x)ds,

one can easily see that Γ maps ZT into itself.
In addition, it is easy to see that

‖Γu− Γv‖T,∞ ≤ B∞δ−1
(
C + C∞

)
‖u− v‖T,∞.

Therefore, the nonlinear integral operator Γ has a unique fixed point ũ ∈ ZT when-
ever C +C∞ < δB−1

∞ . In this event, the function ũ is the only bounded continuous
solution to (1.2). �

4. Existence of pseudo-almost automorphic solutions

Theorem 4.1. Assume (H1)–(H4) and that b∗ := inft∈R,x∈[0,T ] b(t, x) > 0. Then
(1.2) has a unique pseudo almost automorphic solution ũ whenever C+C∞ < δB−1

∞ .

Proof. Let u = u1 + u2 ∈ PAA(ZT ) and let f = g + h ∈ PAA(YT ,R) where u1

and g are the almost automorphic components while u2 and h represent the ergodic
part. Consequently, G can be rewritten as Gu = G1u+G2u, where

G1u(t, x) =
∫ x

0

[∂a
∂y

(t, y) + a(t, y)b(t, y)− c(t, y)
]
Kt(x, y)u1(t, y)dy

+
∫ x

0

Kt(x, y)g(t, y, u(t, y))dy

and

G2u(t, x) =
∫ x

0

[∂a
∂y

(t, y) + a(t, y)b(t, y)− c(t, y)
]
Kt(x, y)u2(t, y)dy

+
∫ x

0

Kt(x, y)h(t, y, u(t, y))dy

Since t → b(t, x) is almost automorphic uniformly in x ∈ [0, T ], then for every
sequence of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N such that

b1(t, r) := lim
n→∞

b(t+ sn, r)

is well defined for each t ∈ R uniformly in r ∈ [0, T ], and

b(t, r) = lim
n→∞

b1(t− sn, r)

for each t ∈ R uniformly in r ∈ [0, T ].
Now

−
∫ x

y

b1(t, r)dr = −
∫ x

y

lim
n→∞

b(t+ sn, r)dr = − lim
n→∞

∫ x

y

b(t+ sn, r)dr

is well defined for each t ∈ R uniformly in x, y ∈ [0, T ], and

−
∫ x

y

b(t, r)dr = −
∫ x

y

lim
n→∞

b1(t− sn, r)dr = − lim
n→∞

∫ x

y

b1(t− sn, r)dr

for each t ∈ R uniformly in x, y ∈ [0, T ].
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Using the continuity of the exponential function it follows that

K1
t (x, y) := lim

n→∞
Kt+sn

(x, y)

is well defined for each t ∈ R uniformly in x, y ∈ [0, T ], and

Kt(x, y) = lim
n→∞

K1
t−sn

(x, y)

for each t ∈ R uniformly in x, y ∈ [0, T ], and hence t → Kt(x, y) is almost auto-
morphic uniformly in x, y ∈ [0, T ].

Clearly, t → H(t, y)Kt(x, y)u1(t, y) and t → Kt(x, y)g(t, y, u(t, y)) are almost
automorphic functions for all x, y ∈ [0, T ] as products of almost automorphic func-
tions. It easily follows that t → G1u(t, x) is almost automorphic uniformly in
x ∈ [0, T ].

Now
1
2r

∫ r

−r
|G2u(t, x)|dt

=
1
2r

∫ r

−r

∣∣∣ ∫ x

0

H(t, y)Kt(x, y)u2(t, y) +
∫ x

0

Kt(x, y)h(t, y, u(t, y))dy
∣∣∣dt

≤ C∞e
Tb∗

2r

∫ r

−r

∫ x

0

|u2(t, y))| dy dt+
eTb∗

2r

∫ r

−r

∫ x

0

|h(t, y, u(t, y))| dy dt

≤ C∞eTb∗
∫ x

0

( 1
2r

∫ r

−r
|u2(t, y))|dt

)
dy + eTb∗

∫ x

0

( 1
2r

∫ r

−r
|h(t, y, u(t, y))|dt

)
dy,

and thus

lim
T→∞

1
2r

∫ r

−r
|G2u(t, x)|dt = 0

uniformly in x ∈ [0, T ]. Therefore t→ Gu(t, x) ∈ PAA(ZT ) uniformly in x ∈ [0, T ].
Now

Γu(t, x) :=
∫ t

−∞
e−

R t
s
a(σ,x)dσGu(s, x)ds = Γ1u(t, x) + Γ2u(t, x),

where

Γju(t, x) :=
∫ t

−∞
e−

R t
s
a(σ,x)dσGju(s, x)ds, j = 1, 2.

Since s→ e−
R t

s
a(σ,x)dσG1u(s, x) is almost automorphic and that

‖Γ1u‖T,∞ ≤ ‖G1u‖T,∞δ−1 <∞
it follows that t 7→ Γ1u(t, x) is almost automorphic uniformly in x ∈ [0, T ].

Now
1
2r

∫ r

−r
|Γ2u(t, x)|dt ≤ 1

2r

∫ r

−r

∫ t

−∞
e−δ(t−s)|G2u(s, x)| ds dt

=
∫ ∞

0

e−δσ
( 1

2r

∫ r

−r
|G2u(t− σ, x))|dt

)
dσ.

Since PAP0(ZT ) is translation invariant and G2 ∈ PAP0(ZT ) it follows that

lim
r→∞

1
2r

∫ r

−r
|G2u(t− σ, x))|dt = 0

for each σ ∈ R, uniformly in x ∈ [0, T ].
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Using the Lebesgue’s Dominated Convergence Theorem it follows that

lim
r→∞

1
2r

∫ r

−r
|Γ2u(t, x)|dt = 0

uniformly in x ∈ [0, T ].
In view of the above, it follows that t→ Γu(t, x) is pseudo-almost automorphic

uniformly in x ∈ [0, T ]. Therefore, Γ maps PAA(ZT ) into itself. Moreover, from
Theorem 3.2, we have

‖Γu− Γv‖T,∞ ≤ B∞(C + C∞)δ−1‖u− v‖T,∞.

Therefore Γ has a unique fixed point ũ ∈ ZT whenever C + C∞ < δB−1
∞ . In this

event, the function ũ is the only pseudo-almost automorphic solution to (1.2). �

5. An example

Fix δ0 > 0. Consider the system of nonlinear hyperbolic partial differential
equations (1.2) in which

a(t, x) = δ0(2 + sin t)(2 + cos
x

δ0
), b(t, x) = 2− sin t,

c(t, x) = δ0(4− sin2 t)(2 + cos
x

δ0
), f(t, x, u) =

1
2
(
u sin t+ e−|t| sinu

)
for all t ∈ R, x ∈ [0, 1], and u ∈ R. For all u, v ∈ R, t ∈ R and x ∈ [0, 1], we have

|f(t, x, u)− f(t, x, v)| = 1
2
|(u− v) sin t+ e−|t|(sinu− sin v)| ≤ |u− v|,

a(t, x) = δ0(2 + sin t)(2 + cos
x

δ0
) ≥ δ0 > 0,

b∗ := inf
t∈R,x∈[0,1]

b(t, x) = inf
t∈R,x∈[0,1]

(2− sin t) = 1 > 0.

Clearly, assumptions (H1)–(H4) are satisfied with δ = δ0 and C = 1. From∫ x

0

e−
R x

y
b(s,r)drdy =

∫ x

0

e−
R x

y
(2−sin s)drdy

=
∫ x

0

e−(2−sin s)(x−y)dy

=
1− ex(sin s−2)

2− sin s
,

we deduce that

B∞ = sup
s∈R,x∈[0,1]

(1− ex(sin s−2)

2− sin s

)
≤ 1− e−3.

Similarly,

C∞ = sup
t∈R,x∈[0,1]

|H(t, x)| = sup
t∈R,x∈[0,1]

∣∣∣−(2 + sin t) sin
x

δ0

∣∣∣ ≤ 3.

In view of the above, B∞(C +C∞) ≤ 4(1− e−3). Therefore, using Theorem 4.1, it
follows that (1.2) with the above-mentioned coefficients has a unique pseudo-almost
automorphic solution whenever δ0 is chosen so δ0 > 4(1− e−3).
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